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Quantum mechanical rules so far
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WAVE FUNCTION: SCHRODINGER’'S EQUATION

* Wave function determines system

Y - Y(x,vy,2z1t)

* 1925: Schrodinger’s equation

* Schrodinger’s equation for particle :

& aij+U( t) ¥ = 'haLp
2m 0x? o BT

Erwin Schrodinger
Picture from Wikipedia
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WAVE FUNCTION: PROBABILITY DENSITY

* Wave function determines system

Y - Y(x,vy,2z1t)

* Schrodinger’s equation for particle :

& aZLIJ+U( t) P = 'h&\Lp
2m 0x? Y2 D — ot

e 1925 - ... Probability interpretation of
the wave function:

P x |¥(xy,zt)| Max Born

Picture from Wikipedia
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1D PARTICLE: PROBABILITY DENSITY FUNCTION

* Wave function determines system

¥ - Y(x,t)

* Schrodinger’s equation for particle :

h* 0%y A Y
+ U(x,t) ¥ = ih

- 2m 0x? ot o
* Probability (1D) to be found in interval ‘ \
B
P(x € [A,B]) = [ W (x, t)]|* dx I S
A A B X
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1D PARTICLE WAVE FUNCTION

* Probability (1D) to be found in interval ‘

B
P(x € |A, B]) =f W (x,t)]* dx
A

* Total probability is normalized

| — 00,00 = f_ W(x,t)|* =1

e Particle to be found somewhere with
probability equal to 1
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1D PARTICLE EQUATIONS OF MOTION

» Schrodinger’s equation : W (x, t1)]?
2 81
P2 32w oy ‘_/\_
+ U(x,t) ¥ = in

- 2m 0x2 ot
W(x,t,)|?
* Wave function defines probability t, ¥x L))
* Probability density = the particle
position and evolves with time
t3 ‘LIJ(X) tB)‘Z

_—
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1D PARTICLE EQUATIONS OF MOTION

» Schrodinger’s equation : W (x, t1)]?
2 81
P2 32w oy ‘_/\_
+ U(x,t) ¥ = in

- 2m 9x2 ot

W(x,t,)|?
* Wave function defines probability t, ¥x L))
* Probability density = the particle

position and evolves with time

t3 ‘LIJ(XI tB)‘Z
How to calculate the wave M

function ?

S ————————————
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Time-independent schrodinger’s
eguation
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

Schrodinger’s equation of a particle in a potential:

h* 0°Y o0V
+ U(x,t) ¥ = in

 2m 0x2 ot
15t Assumption: U(x,t) = U(x)
2"9 Assumption: Separation of variables:
Y(x,t) = P(x) O(t)
2 12
St €O LIC NP 1 7€) LI

2m x4 ot
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL
h* 0% (x) O(t) 0 P(x) (1)

+ UG (x) O(t) = ik

14.04.2025

- 2m x4 ot
h? 07
> —%G)(t) 0164(2 X) + U(x)Y(x) O(t) = ih 1/)(x) (t)
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL
h* 0% (x) O(t) 0 P(x) (1)

+ UG (x) O(t) = ik

- 2m x4 ot
h? 07
> —%G)(t) 0164(2 X) + U(x)Y(x) O(t) = ih 1/)(x) (t)

Divide by W(x,t) = yP(x) O(t):

A2 1 92 y(x) 1 900

TomuG) oxz TUW =ihges TS,
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL
h* 0% (x) O(t) 0 P(x) (1)

+ UG (x) O(t) = ik

- 2m x4 ot
h? 07
> —%G)(t) ali(z X) + U(x)Y(x) O(t) = ih 1/)(x) (t)

Divide by W(x,t) = yP(x) O(t):

A2 1 32 y(x) 1 00(t)

Tamut axz T UW =g T
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL
h* 0% (x) O(t) 0 P(x) (1)

+ UG (x) O(t) = ik

- 2m x4 ot
h? 07
> —%G)(t) ali(z X) + U(x)Y(x) O(t) = ih 1/)(x) (t)

o X and t independent
Divide by W(x,t) = y(x) O(t): needs to be constant

A2 1 92 y(x) ﬁ 1 90t

Zmlp(x) - ox2 tUX) = lh@ ot
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

System of two differential equations:

f

A 1 0% yY(x) B
- 2m Y (x) - ox2 tUX) =E
1 006
- i O(t) Jt =

* Can we solve these equations for ¥ (x) and O(t)?
* If we can solve these equations: W(x,t) = yP(x) O(t)
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

System of two differential equations:

h* 0°
TV U ) = v
a6 _
5 ih Fran E O(t)

* Can we solve these equations for ¥ (x) and O(t)?
* If we can solve these equations: W(x,t) = yP(x) O(t)
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

Solving the time-dependent part:

a0
ih Fran E O(t)
a0(t) E

4 6‘t — —lﬁ @(t)

This is a first order differential equation:

(")(t) — A e—iE t/n — e—iE t/h

With A some constant which we can put equal to one
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

This is a first order differential equation:

@(t) — A e—iE t/h — e—iE t/h

The time-dependent part is very simple: phase rotating in time !

> W(x,t) = P(x) B(t) = P(x) e EL/A

Requirement: potential independent of time: U(x,t) = U(x)
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

What about the time-independent equation?
h? 0% P(x)
2m  0x“

+ U(x) P(x) = E ¢p(x)

This is the famous time-independent Schrodinger equation (TISE)
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1D PARTICLE WAVE FUNCTION IN A POTENTIAL

What about the time-independent equation?
h? 0% P(x)
2m  0x“

+ U(x) Y(x) = E P(x)
This is the famous time-independent Schrodinger equation (TISE)

* Need to know the potential U(x) to solve it
* Both constant (energy) E and function y)(x) are unknown
* |f we can solve it our complete solution is:

WY(x, t) = P(x) e tEU/R
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Before going to specific potentials:

Conditions on the wave function
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CONSEQUENCES FOR THE WAVE FUNCTION

* The probability f_OOOO [Y(x)|? dx =1
* Wave function needs to be normalizable
* Therefore 1 (x) needs to fulfill:

lim ¥(x) - 0 /

X—+ 0o

P (x)
Other x: Y(x) finite
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CONSEQUENCES FOR THE WAVE FUNCTION

* Schrodinger’s equation for a particle :
h* 0% P(x)
2m  0x?

+U(x) Y(x) = Ep(x)

* And wave function Y (x) is finite

0P (x)

continuous
0x

Derivative Y’ =

Unless at xy: U(xy) = too
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CONSEQUENCES FOR THE WAVE FUNCTION

» Schrodinger’s equation for a particle : 0P (xp —) . 0P (xp +)
0x 0x
% 9% () 2
g OV O R OB A TCO R
X

* And wave function ¥ (x) is finite =  P(xp) & ©

h(x)

0P (x)

continuous
0x

Derivative Y’ =

Unless at xy: U(xy) = too
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First example potential: U(x) =0

Free particle revisited
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THE WAVE FUNCTION FOR A FREE PARTICLE

* Schrodinger’s equation of a free
particle
he 0%y oY

 2m 0x2 = i ot

 \We had solutions of the form:

W, ave(X, t) = A cos(kx — wt)

W, ave(X, t) = A sin(kx — wt)

> LIJ(X, t) — A eikx e—iwt
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DISPERSION RELATION: ENERGY AND MOMENTUM

* Schrodinger’s equation of a free particle

h? 0% oY

- 2m 0x2 ot

* Fill in the solution W(x,t) = A efX g7lwt .

hz azA eikx e—ia)t 0A eikx e—iwt
2m 0x? l ot
h%i%k? . . . .
> . g (A elkx e—lwt) — _izwh (A elkx e—lwt)

2m
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DISPERSION RELATION: ENERGY AND MOMENTUM

* Schrodinger’s equation of a free particle

h? 0% oY

- 2m 0x2 ot

* Fill in the solution W(x,t) = A efX g7lwt .

hz azA eikx e—iwt 0A eikx e—iwt
- 2m 0x? = i ot
he i k> . .
> 74 % (A elk 5 lwt) — 7¢1/th (A Lk e—lwt)

2m
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DISPERSION RELATION: ENERGY AND MOMENTUM

* Schrodinger’s equation of a free particle

h? 0% oY

- 2m 0x2 ot

* Fill in the solution W(x,t) = A efX g7lwt .

hz azA eikx e—ia)t 0A eikx e—iwt
- 2m 0x? = i ot
hek?
4 = wh

2m
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DISPERSION RELATION: ENERGY AND MOMENTUM

* Schrodinger’s equation of a free particle

h? 0% oY

- 2m 0x2 ot

* Fill in the solution W(x,t) = A efX g7lwt .

hz azA eikx e—ia)t 0A eikx e—iwt
- 2m 0x? = i ot
2 h2k2
K== =  ho=hf=E

2m 2m
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TIME DEPENDENCY AND ENERGY

» Solution of a free particle: W(x,t) = A e e7t@t

B o . pz thz
Kinetic energy term: K=—=
i 2m 2m

~ Total energy (K + U): E=hw

Compare the time-dependent part for a stationary problem:

W(x,t) = p(x) e EL/R > Y(x) = Ael™*
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NORMALIZABLE SOLUTIONS: WAVE PACKETS

* Schrodinger’s equation free particle Complex wave packet
2 A2
_h (?Lf:iha_q’ Y=x+1iy
2m 0x ot = R{¥} + i J{¥}
R{V}

e Solutions of the form:

Y(x,t) = f A(k) ettkx=wt) g

* Here w = w(k) depends also on k I{P)
* Time-dependency: rotating phase
* Complex wave packet

Adapted from Wikipedia: Gaussian wave packet with a=2, k=4
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INTERMEZZO: COMPLEX NUMBERS AND WAVES

 Complex numbers:

€

14.04.2025

16

= coSO +isinf —

; el@ 1 e—l@
COS U =
2
., el@ _e—iH
S1I = -
21
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INTERMEZZO: COMPLEX NUMBERS AND WAVES

* Complex numbers: Y=x+iy=R{W}+i3{V}
_ ele _I_ e—le 'C:S{LIJ}
cos 0 =
. 2 i
el® = cos B + isinf — | | o
el@ . e—l9 ! |
g =
sin o

Standing waves:

(W)
Y(x) = Asin(kx) + B cos(kx)

Propagating waves:

Ph(x) = A e
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INTERMEZZO: COMPLEX NUMBERS AND WAVES

Propagating waves

Right: W(x,t) = A efXe~twt Wright (X, t) = 4 cos(kx — wt)

= A ettore? \NANANN—

= A cos (kx — wt) +
[ sin(kx — wt)

Left: Y(x) = A e W¥etwt Wiert (X, t) = A cos(—kx — wt)

—\/VVV\
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INTERMEZZO: COMPLEX NUMBERS AND WAVES

Propagating waves Standing waves (choose sine)
Right: W(x,t) = A etkxe~iwt P(x) = Asin(kx)
— l(kx—wt) |
Ae W(x,t) = Asin(kx) e” 't
= A cos (kx — wt) +
isin(kx o wt) eikx L e—ikx
= A e—iwt
. . 21
Left: Y(x) = A e X i@l
— é (eikx—iwt . e—ikx—ia)t)

21
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THE WAVE FUNCTION

* Simple waves: Complex wave packet

W=a+ib

T
W(x,t) = AetX e7l@ = R{¥} + i J{P}

RV}
= A cos (kx — wt) + i sin(kx — wt)

* Represent the complex wave function by
the real and imaginary part

* The solution to the time-independent
wave equation can often be chosen real

Adapted from Wikipedia: Gaussian wave packet with a=2, k=4
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PARTICLES WITH NONZERO MASS: WAVE PACKETS BROADEN

Dispersive wave

* Dispersion relation (massive)
hek?
2m
* Phase velocity

how =

a)_hzk

(Y —
phase o

2m
* Group velocity

- 0w h%k
0k m
* Velocity dependent on k

Non-dispersive wave

Vg

* Wave packets broaden in
time

Adapted from ISVR (University of South Hampton): Dispersive vs nondispersive wave packet
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THE UNCERTAINTY RELATIONS

* Wave packets are superpositions of
many waves (many wave nhumbers)

* Uncertainty relation:

h
Apy Ax > 5

* Uncertainty relation for energy-time

h

AE At = —
2
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