



# PHOT 222: Quantum Photonics

## LECTURE 06

*Michaël Barbier, Spring semester (2024-2025)*

# OVERVIEW OF THE COURSE

| week          | topic                                           | Serway 9th    | Young         |
|---------------|-------------------------------------------------|---------------|---------------|
| Week 1        | Relativity                                      | Ch. 39        | Ch. 37        |
| Week 2        | Waves and Particles                             | Ch. 40        | Ch. 38-39     |
| Week 3        | Wave packets and Uncertainty                    | Ch. 40        | Ch. 38-39     |
| Week 4        | The Schrödinger equation and Probability        | Ch. 41        | Ch. 39        |
| Week 5        | <b>Midterm exam 1</b>                           |               |               |
| <b>Week 6</b> | <b>Quantum particles in a potential</b>         | <b>Ch. 41</b> | <b>Ch. 39</b> |
| Week 7        | Harmonic oscillator                             |               |               |
| Week 8        | Tunneling through a potential barrier           |               |               |
| Week 9        | The hydrogen atom, absorption/emission spectra  |               |               |
| Week 10       | <b>Midterm exam 2</b>                           |               |               |
| Week 11       | Many-electron atoms                             |               |               |
| Week 12       | Pauli-exclusion principle                       |               |               |
| Week 13       | Atomic bonds and molecules                      |               |               |
| Week 14       | Crystalline materials and energy band structure |               |               |

# Quantum mechanical rules so far

# WAVE FUNCTION: SCHRODINGER'S EQUATION

- Wave function determines system

$$\Psi \rightarrow \Psi(x, y, z, t)$$

- 1925: Schrodinger's equation
- Schrodinger's equation for particle :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$



**Erwin Schrodinger**  
Picture from Wikipedia

# WAVE FUNCTION: PROBABILITY DENSITY

- Wave function determines system

$$\Psi \rightarrow \Psi(x, y, z, t)$$

- Schrodinger's equation for particle :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, y, z, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

- 1925 - ... Probability interpretation of the wave function:

$$P \propto |\Psi(x, y, z, t)|^2$$



**Max Born**

Picture from Wikipedia

# 1D PARTICLE: PROBABILITY DENSITY FUNCTION

- Wave function determines system

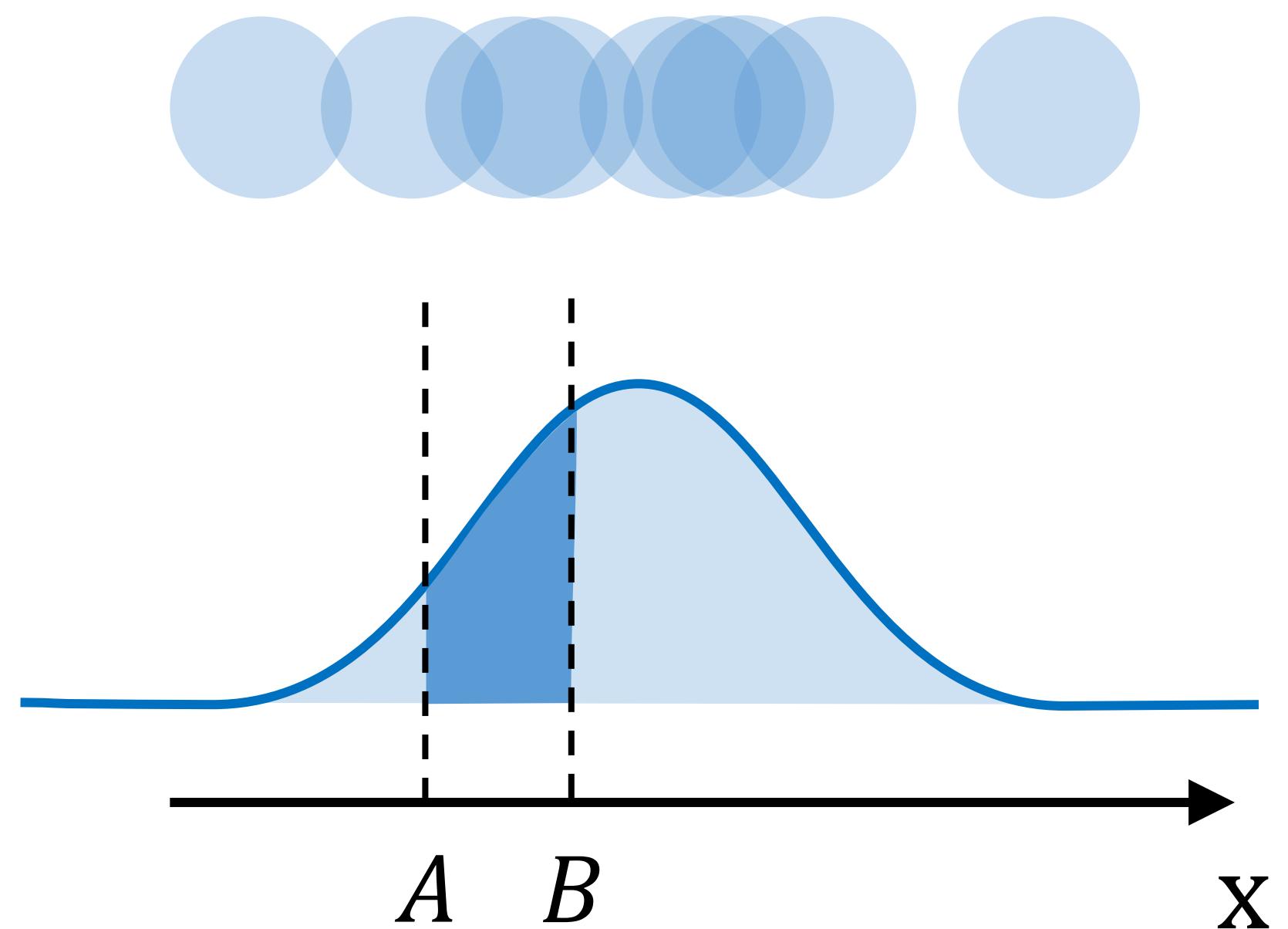
$$\Psi \rightarrow \Psi(x, t)$$

- Schrodinger's equation for particle :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

- Probability (1D) to be found in interval

$$P(x \in [A, B]) = \int_A^B |\Psi(x, t)|^2 \, dx$$



# 1D PARTICLE WAVE FUNCTION

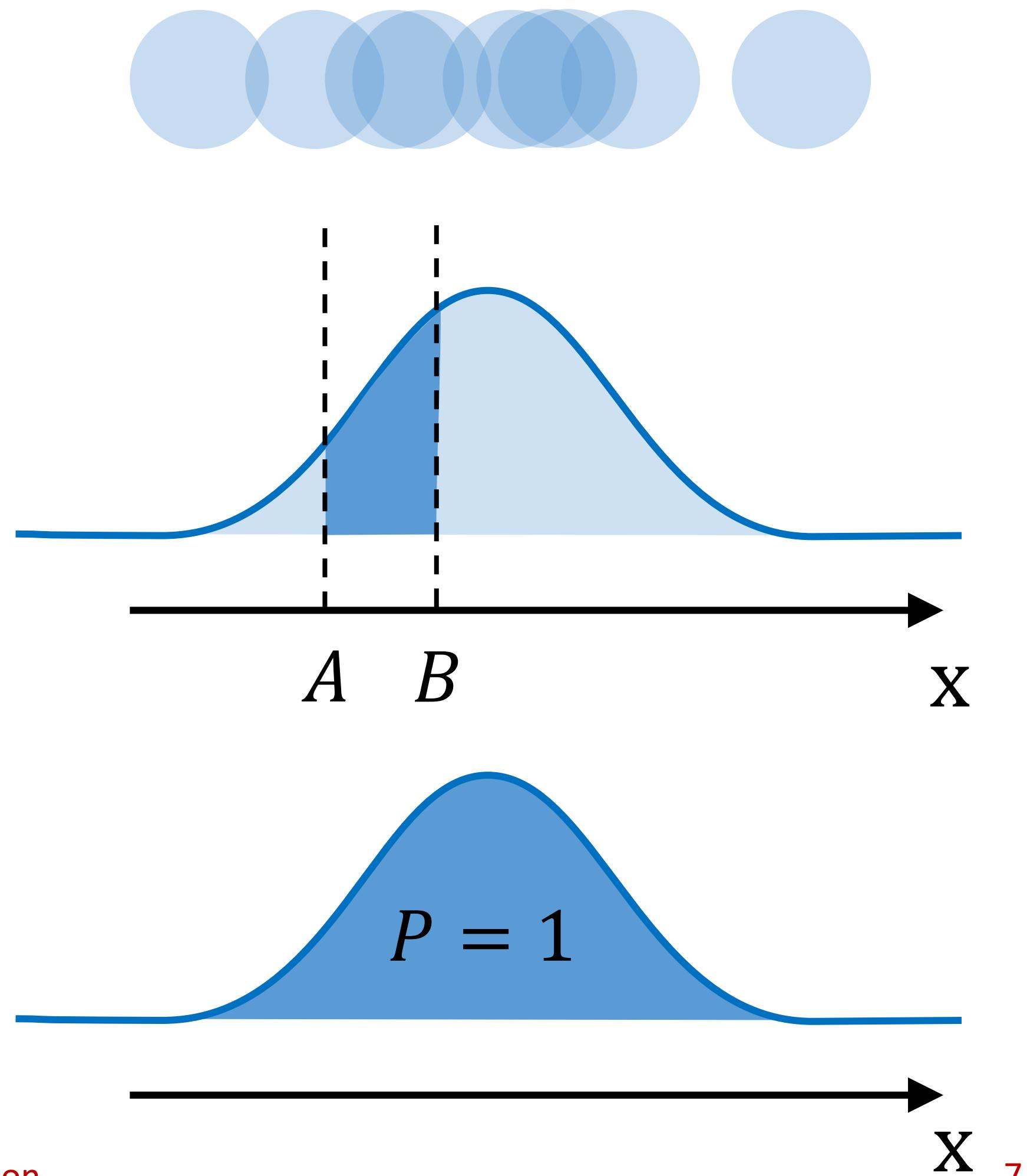
- **Probability (1D) to be found in interval**

$$P(x \in [A, B]) = \int_A^B |\Psi(x, t)|^2 \, dx$$

- **Total probability is normalized**

$$]-\infty, \infty[ \Rightarrow \int_{-\infty}^{+\infty} |\Psi(x, t)|^2 = 1$$

- Particle to be found somewhere with probability equal to 1

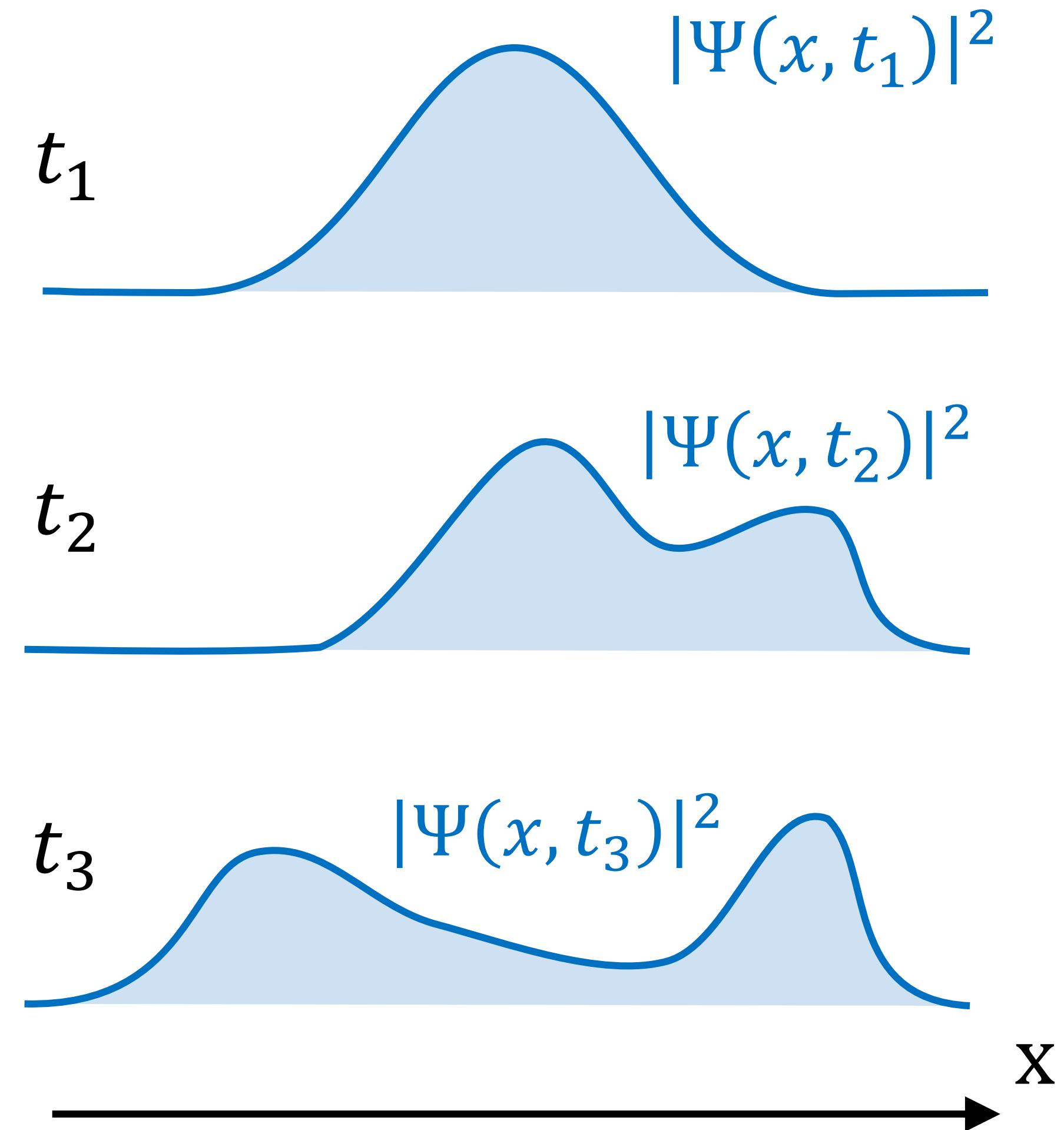


# 1D PARTICLE EQUATIONS OF MOTION

- Schrodinger's equation :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

- Wave function defines **probability**
- Probability density  $\rightarrow$  the particle **position** and evolves with time



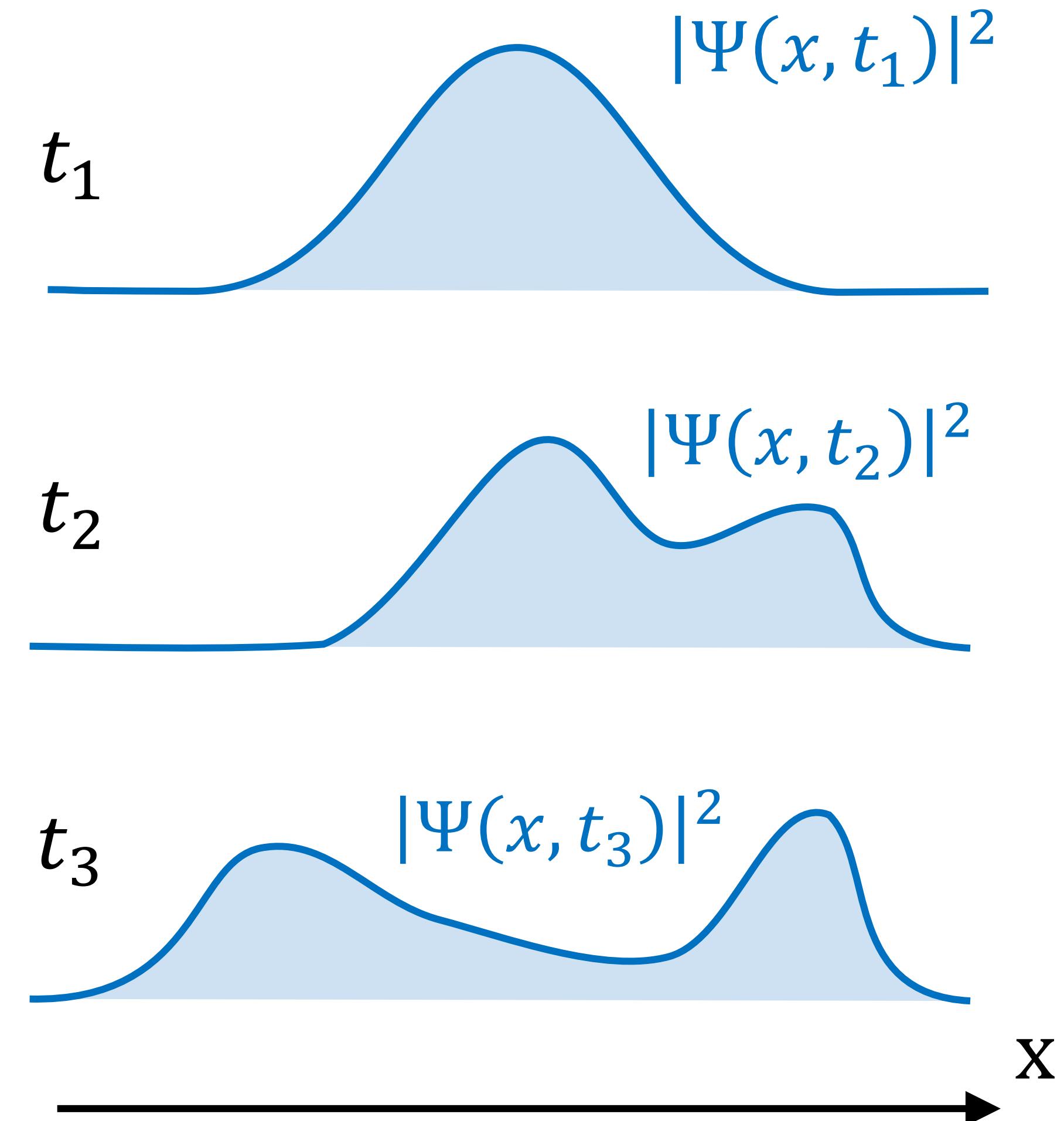
# 1D PARTICLE EQUATIONS OF MOTION

- Schrodinger's equation :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

- Wave function defines **probability**
- Probability density  $\rightarrow$  the particle **position** and evolves with time

How to calculate the wave function ?



# Time-independent schrodinger's equation

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

Schrodinger's equation of a particle in a potential:

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x, t) \Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

1<sup>st</sup> Assumption:  $U(x, t) = U(x)$

2<sup>nd</sup> Assumption: Separation of variables:

$$\Psi(x, t) = \psi(x) \Theta(t)$$

→ 
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x) \Theta(t)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \frac{\partial \psi(x) \Theta(t)}{\partial t}$$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x) \Theta(t)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \frac{\partial \psi(x) \Theta(t)}{\partial t}$$

→  $-\frac{\hbar^2}{2m} \Theta(t) \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \psi(x) \frac{\partial \Theta(t)}{\partial t}$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x) \Theta(t)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \frac{\partial \psi(x) \Theta(t)}{\partial t}$$

→  $-\frac{\hbar^2}{2m} \Theta(t) \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \psi(x) \frac{\partial \Theta(t)}{\partial t}$

Divide by  $\Psi(x, t) = \psi(x) \Theta(t)$ :

$$-\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) = i\hbar \frac{1}{\Theta(t)} \frac{\partial \Theta(t)}{\partial t}$$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x) \Theta(t)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \frac{\partial \psi(x) \Theta(t)}{\partial t}$$

→  $-\frac{\hbar^2}{2m} \Theta(t) \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \psi(x) \frac{\partial \Theta(t)}{\partial t}$

Divide by  $\Psi(x, t) = \psi(x) \Theta(t)$ :

$$-\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) = i\hbar \frac{1}{\Theta(t)} \frac{\partial \Theta(t)}{\partial t}$$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x) \Theta(t)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \frac{\partial \psi(x) \Theta(t)}{\partial t}$$

→  $-\frac{\hbar^2}{2m} \Theta(t) \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) \Theta(t) = i\hbar \psi(x) \frac{\partial \Theta(t)}{\partial t}$

Divide by  $\Psi(x, t) = \psi(x) \Theta(t)$ :

x and t independent  
needs to be constant

$$-\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) = E = i\hbar \frac{1}{\Theta(t)} \frac{\partial \Theta(t)}{\partial t}$$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

System of two differential equations:

$$\left\{ \begin{array}{l} -\frac{\hbar^2}{2m} \frac{1}{\psi(x)} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) = E \\ i\hbar \frac{1}{\Theta(t)} \frac{\partial \Theta(t)}{\partial t} = E \end{array} \right.$$

- Can we solve these equations for  $\psi(x)$  and  $\Theta(t)$ ?
- If we can solve these equations:  $\Psi(x, t) = \psi(x) \Theta(t)$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

System of two differential equations:

$$\left\{ \begin{array}{l} -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x) \\ i\hbar \frac{\partial \Theta(t)}{\partial t} = E \Theta(t) \end{array} \right.$$

- Can we solve these equations for  $\psi(x)$  and  $\Theta(t)$ ?
- If we can solve these equations:  $\Psi(x, t) = \psi(x) \Theta(t)$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

Solving the time-dependent part:

$$i\hbar \frac{\partial \Theta(t)}{\partial t} = E \Theta(t)$$

$$\rightarrow \frac{\partial \Theta(t)}{\partial t} = -i \frac{E}{\hbar} \Theta(t)$$

This is a first order differential equation:

$$\Theta(t) = A e^{-iE t/\hbar} = e^{-iE t/\hbar}$$

With  $A$  some constant which we can put equal to one

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

This is a first order differential equation:

$$\Theta(t) = A e^{-iE t/\hbar} = e^{-iE t/\hbar}$$

The time-dependent part is very simple: phase rotating in time !



$$\Psi(x, t) = \psi(x) \Theta(t) = \psi(x) e^{-iEt/\hbar}$$

Requirement: potential independent of time:  $U(x, t) = U(x)$

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

What about the time-independent equation?

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

This is the famous **time-independent Schrodinger equation (TISE)**

# 1D PARTICLE WAVE FUNCTION IN A POTENTIAL

What about the time-independent equation?

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

This is the famous **time-independent Schrodinger equation (TISE)**

- Need to know the potential  $U(x)$  to solve it
- Both constant (energy)  $E$  and function  $\psi(x)$  are unknown
- If we can solve it our complete solution is:

$$\Psi(x, t) = \psi(x) e^{-iEt/\hbar}$$

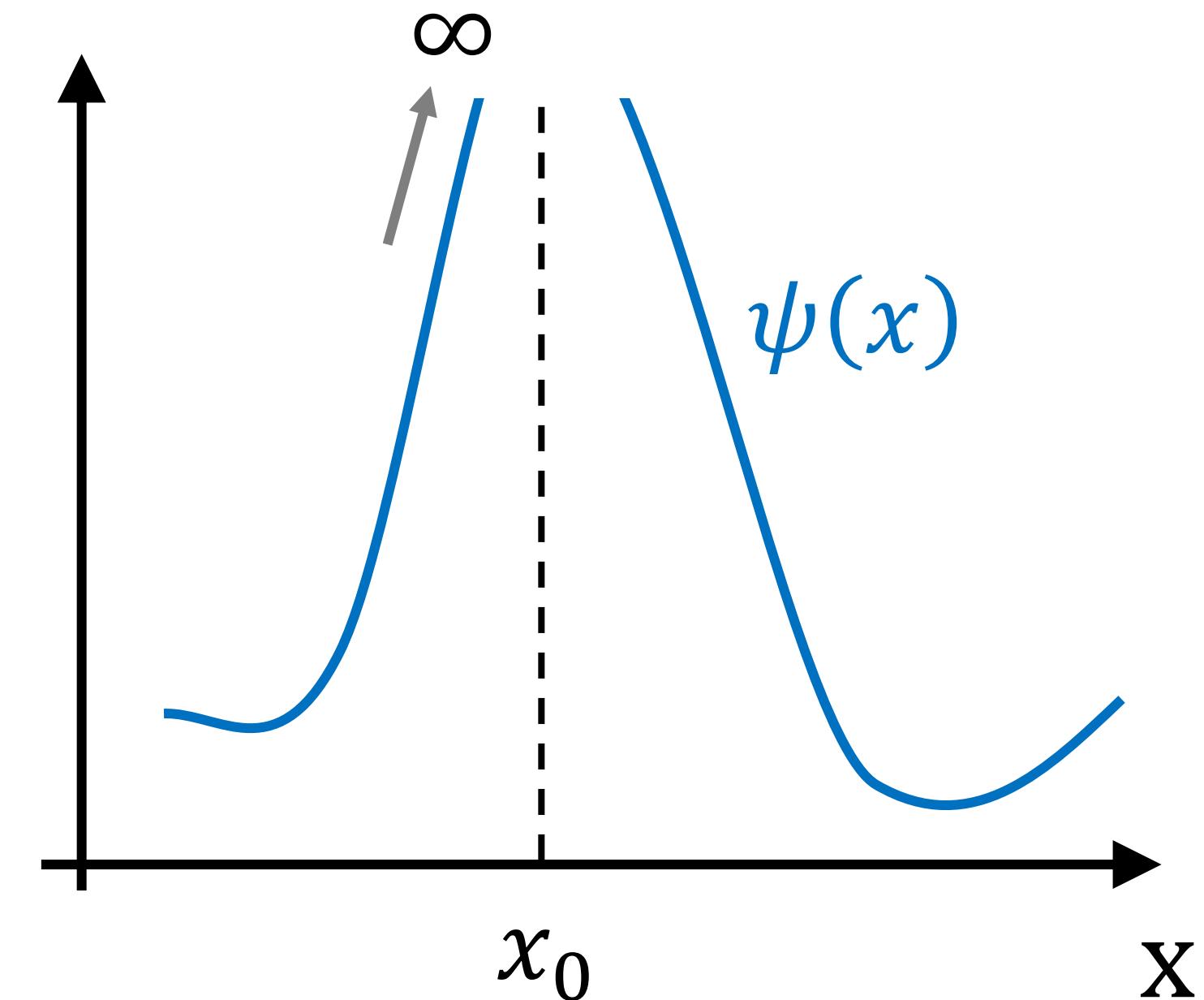
# Before going to specific potentials: Conditions on the wave function

# CONSEQUENCES FOR THE WAVE FUNCTION

- The probability  $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$
- Wave function needs to be normalizable
- Therefore  $\psi(x)$  needs to fulfill:

$\lim_{x \rightarrow \pm\infty} \psi(x) \rightarrow 0$

Other  $x$ :  $\psi(x)$  finite



# CONSEQUENCES FOR THE WAVE FUNCTION

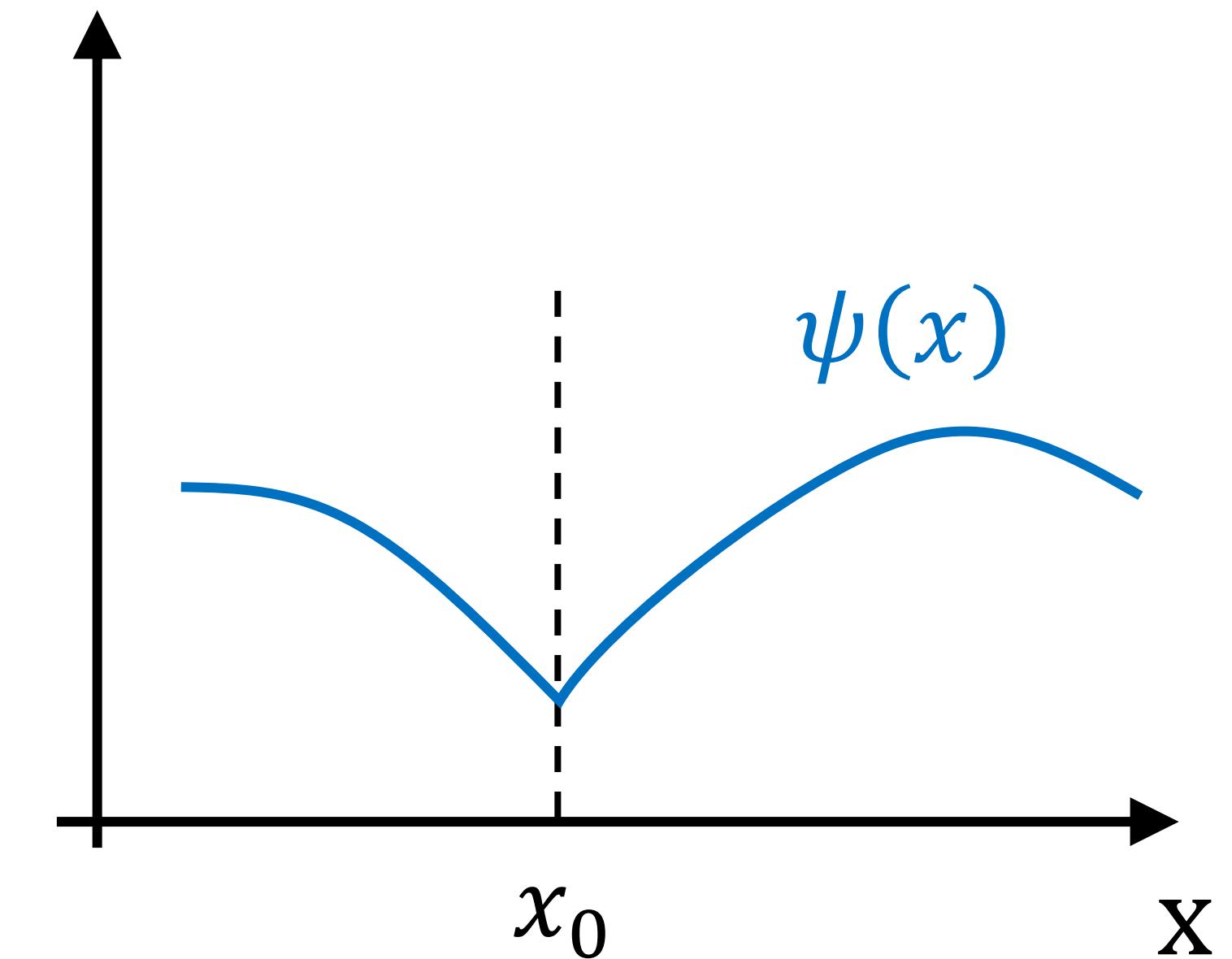
- Schrodinger's equation for a particle :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

- And wave function  $\psi(x)$  is finite

Derivative  $\psi' = \frac{\partial \psi(x)}{\partial x}$  continuous

Unless at  $x_0$ :  $U(x_0) = \pm\infty$



# CONSEQUENCES FOR THE WAVE FUNCTION

- Schrodinger's equation for a particle :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

- And wave function  $\psi(x)$  is finite

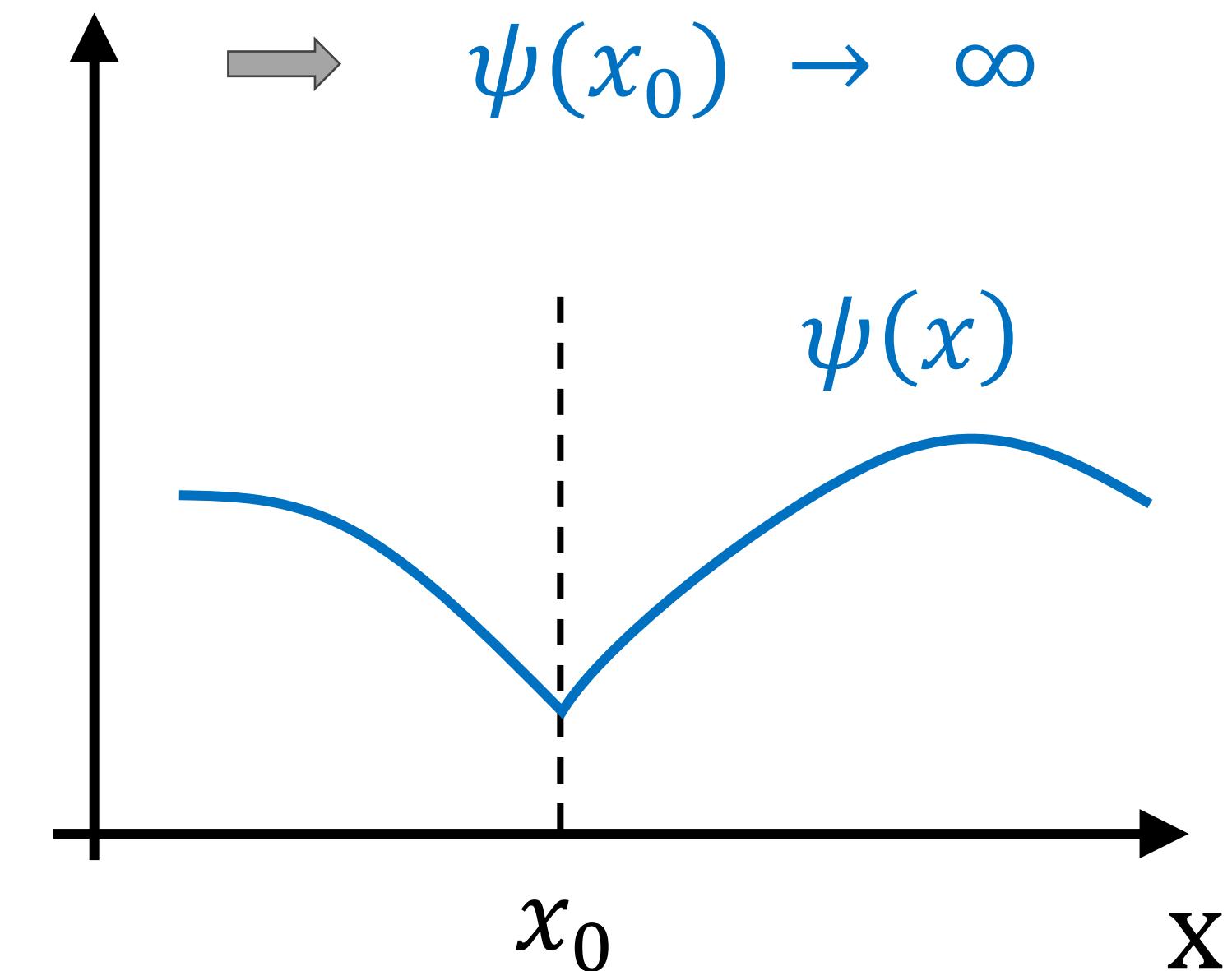
Derivative  $\psi' = \frac{\partial \psi(x)}{\partial x}$  continuous

Unless at  $x_0$ :  $U(x_0) = \pm\infty$

$$\frac{\partial \psi(x_0 -)}{\partial x} \neq \frac{\partial \psi(x_0 +)}{\partial x}$$

$$\rightarrow \frac{\partial^2 \psi(x_0)}{\partial x^2} \rightarrow \infty$$

$$\psi(x_0) \rightarrow \infty$$



First example potential:  $U(x) = 0$

Free particle revisited

# THE WAVE FUNCTION FOR A FREE PARTICLE

- Schrodinger's equation of a free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

- We had solutions of the form:

$$\Psi_{\text{wave}}(x, t) = A \cos(kx - \omega t)$$



$$\Psi(x, t) = A e^{ikx} e^{-i\omega t}$$

$$\Psi_{\text{wave}}(x, t) = A \sin(kx - \omega t)$$

# DISPERSION RELATION: ENERGY AND MOMENTUM

- Schrodinger's equation of a free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

- Fill in the solution  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$ :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 A e^{ikx} e^{-i\omega t}}{\partial x^2} = i\hbar \frac{\partial A e^{ikx} e^{-i\omega t}}{\partial t}$$


$$-\frac{\hbar^2 i^2 k^2}{2m} (A e^{ikx} e^{-i\omega t}) = -i^2 \omega \hbar (A e^{ikx} e^{-i\omega t})$$

# DISPERSION RELATION: ENERGY AND MOMENTUM

- Schrodinger's equation of a free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

- Fill in the solution  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$ :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 A e^{ikx} e^{-i\omega t}}{\partial x^2} = i\hbar \frac{\partial A e^{ikx} e^{-i\omega t}}{\partial t}$$

→ 
$$-\frac{\hbar^2 i^2 k^2}{2m} (A e^{ikx} e^{-i\omega t}) = -i^2 \omega \hbar (A e^{ikx} e^{-i\omega t})$$

# DISPERSION RELATION: ENERGY AND MOMENTUM

- Schrodinger's equation of a free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

- Fill in the solution  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$ :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 A e^{ikx} e^{-i\omega t}}{\partial x^2} = i\hbar \frac{\partial A e^{ikx} e^{-i\omega t}}{\partial t}$$



$$\frac{\hbar^2 k^2}{2m} = \omega \hbar$$

# DISPERSION RELATION: ENERGY AND MOMENTUM

- Schrodinger's equation of a free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

- Fill in the solution  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$ :

$$-\frac{\hbar^2}{2m} \frac{\partial^2 A e^{ikx} e^{-i\omega t}}{\partial x^2} = i\hbar \frac{\partial A e^{ikx} e^{-i\omega t}}{\partial t}$$



$$K = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} = \hbar\omega = hf = E$$

# TIME DEPENDENCY AND ENERGY

- Solution of a free particle:  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$

$$\left\{ \begin{array}{ll} \text{Kinetic energy term:} & K = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} \\ \text{Total energy } (K + U): & E = \hbar\omega \end{array} \right.$$

Compare the time-dependent part for a stationary problem:

$$\Psi(x, t) = \psi(x) e^{-iEt/\hbar} \longrightarrow \psi(x) = A e^{ikx}$$

# NORMALIZABLE SOLUTIONS: WAVE PACKETS

- Schrodinger's equation free particle

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$$

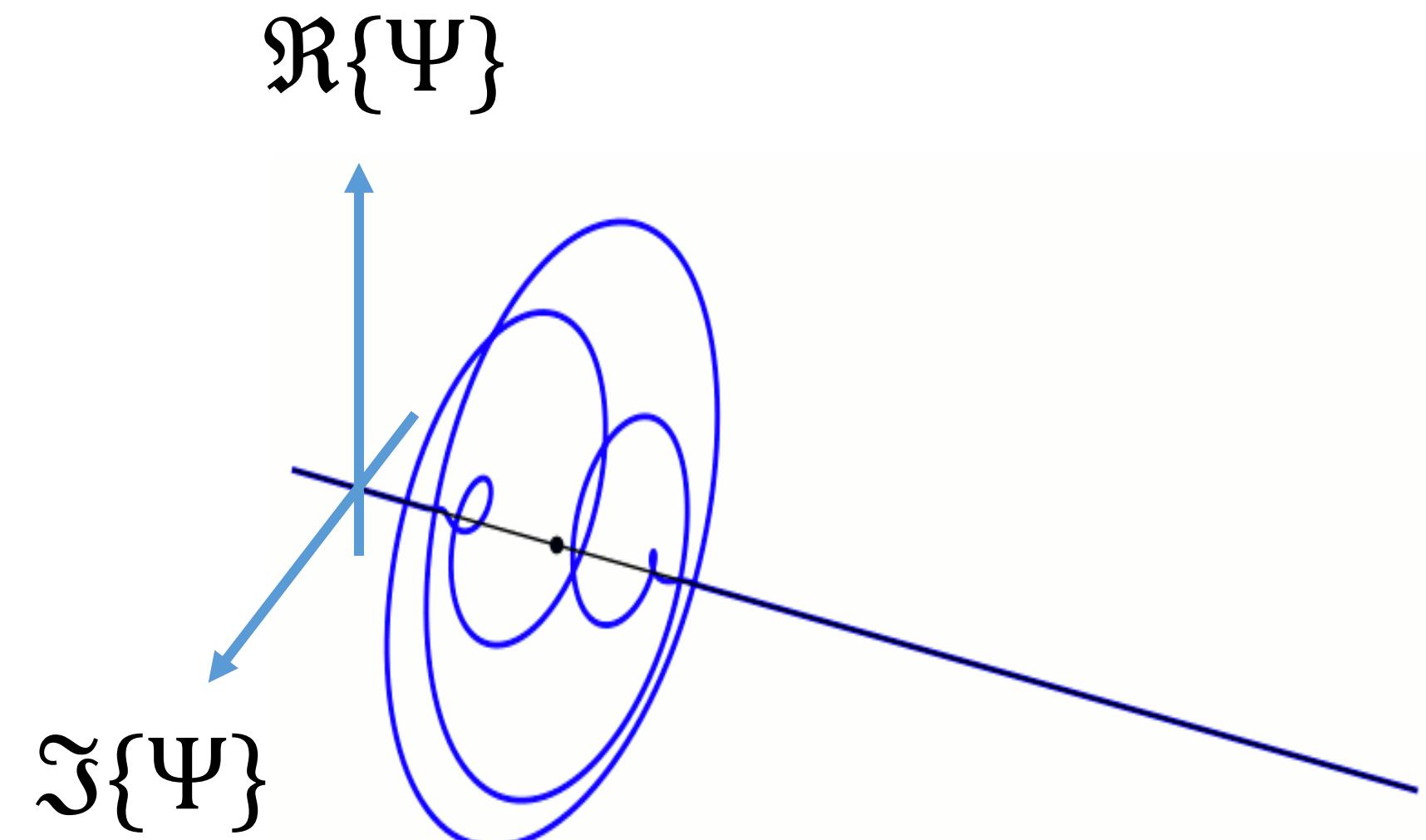
Complex wave packet

$$\begin{aligned}\Psi &= x + i y \\ &= \Re\{\Psi\} + i \Im\{\Psi\}\end{aligned}$$

- Solutions of the form:

$$\Psi(x, t) = \int_{-\infty}^{\infty} A(k) e^{i(kx - \omega t)} dk$$

- Here  $\omega = \omega(k)$  depends also on  $k$
- Time-dependency: rotating phase
- Complex wave packet



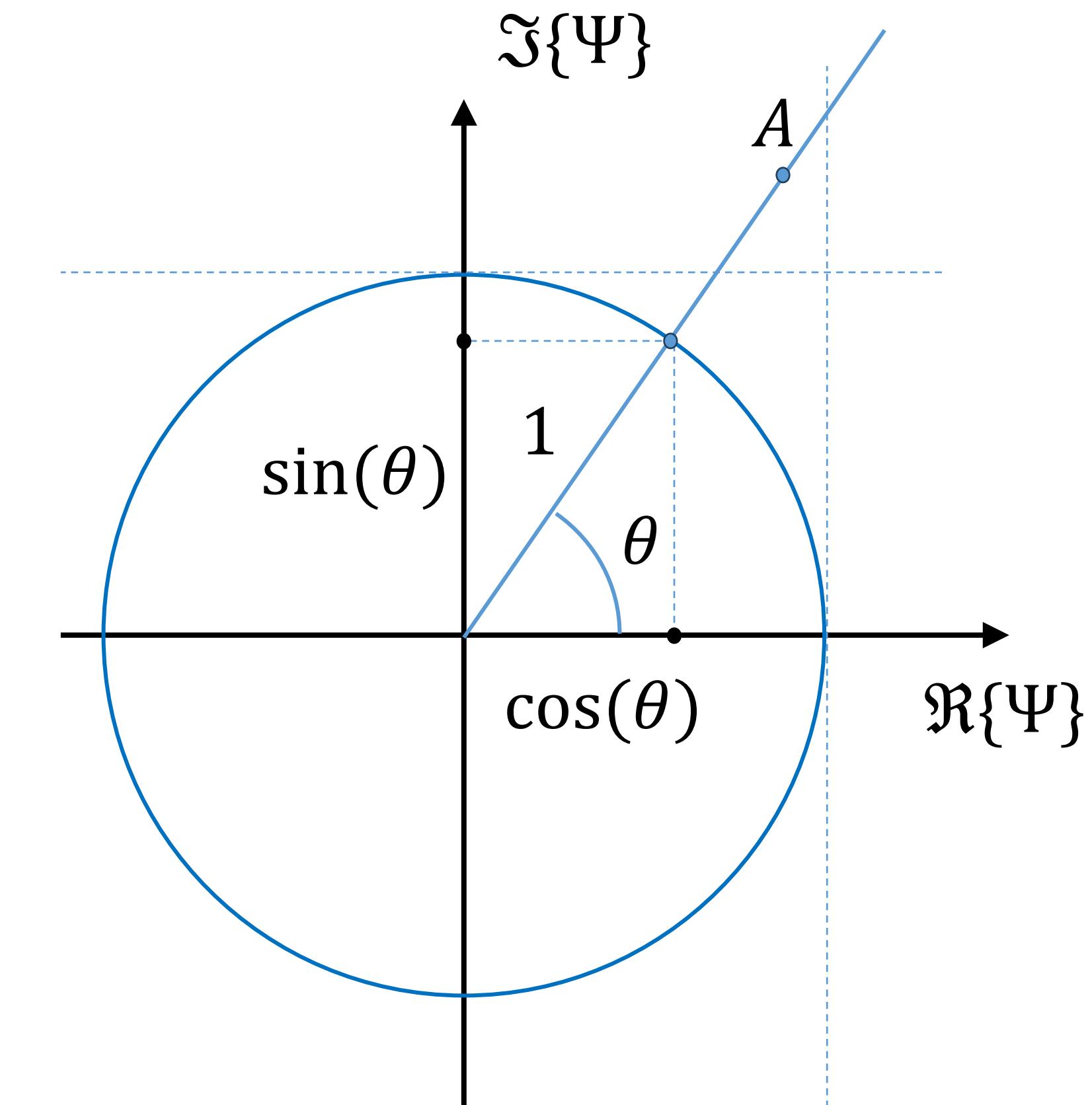
Adapted from Wikipedia: Gaussian wave packet with  $a=2, k=4$

# INTERMEZZO: COMPLEX NUMBERS AND WAVES

- Complex numbers:

$$e^{i\theta} = \cos \theta + i \sin \theta \quad \left\{ \begin{array}{l} \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{array} \right.$$

$$\Psi = x + i y = \Re\{\Psi\} + i \Im\{\Psi\}$$



# INTERMEZZO: COMPLEX NUMBERS AND WAVES

- Complex numbers:

$$\Psi = x + i y = \Re\{\Psi\} + i \Im\{\Psi\}$$

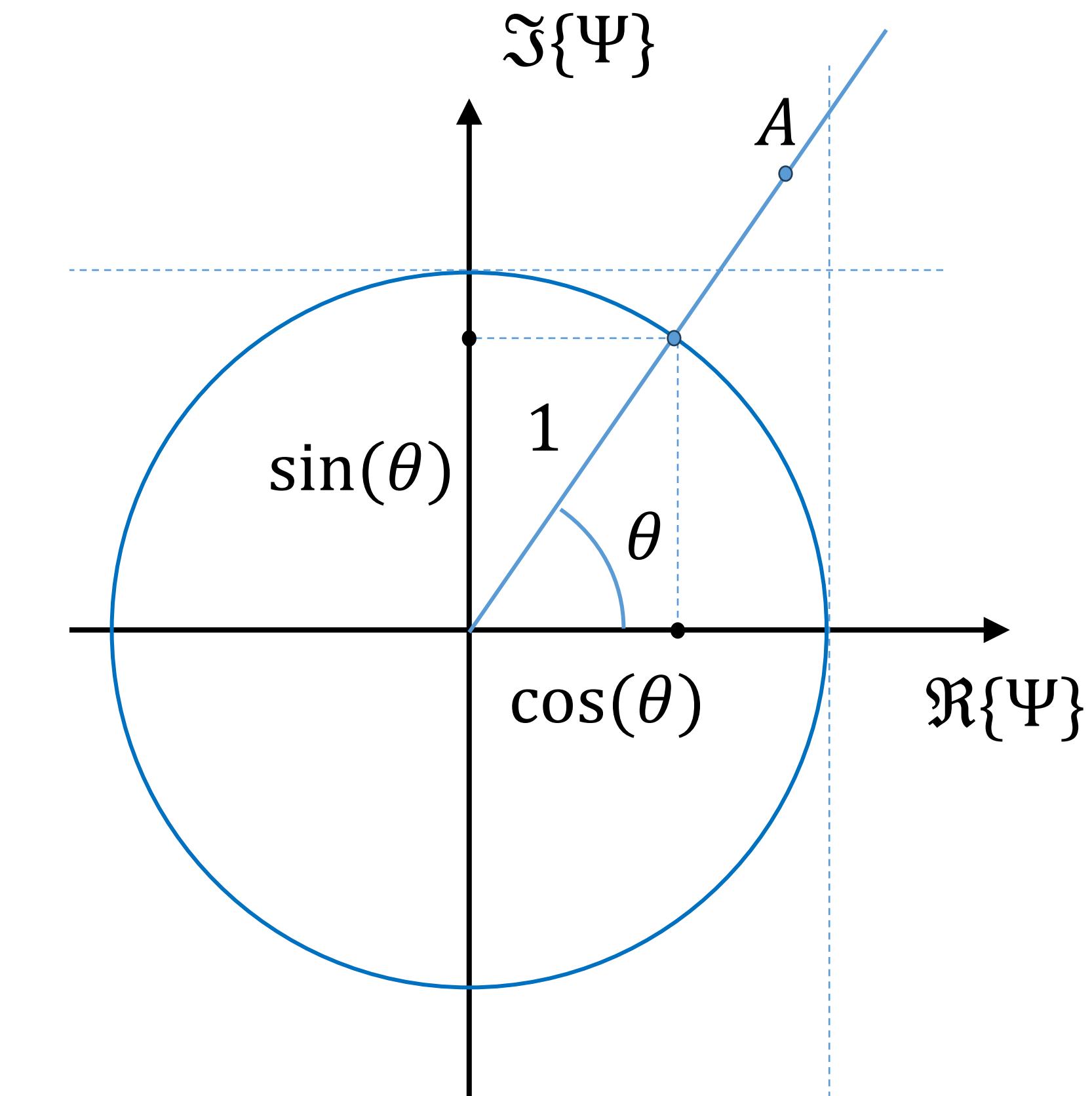
$$e^{i\theta} = \cos \theta + i \sin \theta \quad \left\{ \begin{array}{l} \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{array} \right.$$

Standing waves:

$$\psi(x) = A \sin(kx) + B \cos(kx)$$

Propagating waves:

$$\psi(x) = A e^{ikx}$$



# INTERMEZZO: COMPLEX NUMBERS AND WAVES

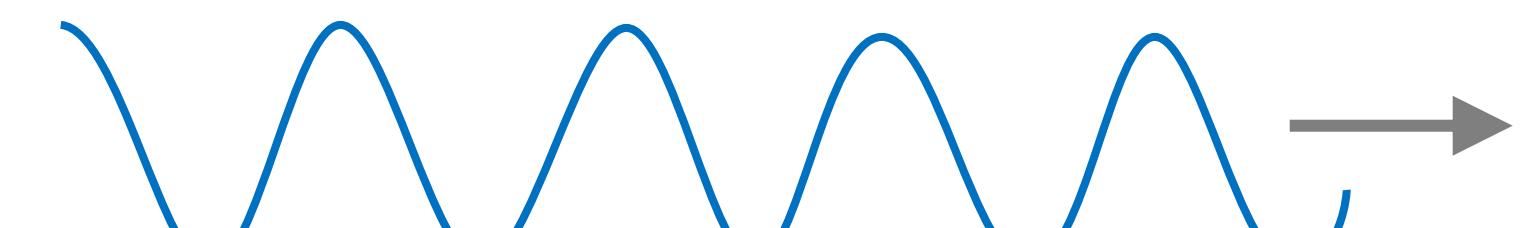
## Propagating waves

Right:  $\Psi(x, t) = A e^{ikx} e^{-i\omega t}$

$$= A e^{i(kx - \omega t)}$$

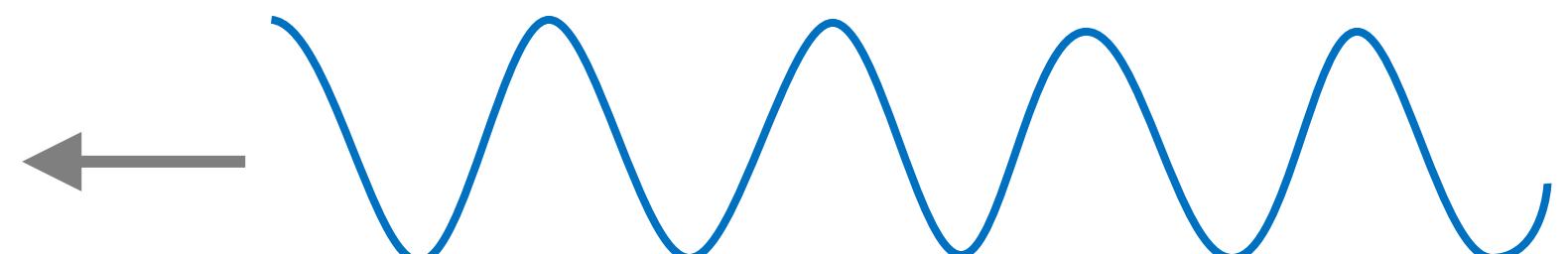
$$= A \cos(kx - \omega t) + i \sin(kx - \omega t)$$

$$\Psi_{\text{right}}(x, t) = A \cos(kx - \omega t)$$



Left:  $\psi(x) = A e^{-ikx} e^{-i\omega t}$

$$\Psi_{\text{left}}(x, t) = A \cos(-kx - \omega t)$$



# INTERMEZZO: COMPLEX NUMBERS AND WAVES

Propagating waves

$$\begin{aligned}\text{Right: } \Psi(x, t) &= A e^{ikx} e^{-i\omega t} \\ &= A e^{i(kx - \omega t)} \\ &= A \cos(kx - \omega t) + \\ &\quad i \sin(kx - \omega t)\end{aligned}$$

$$\text{Left: } \psi(x) = A e^{-ikx} e^{-i\omega t}$$

Standing waves (choose sine)

$$\begin{aligned}\psi(x) &= A \sin(kx) \\ \Psi(x, t) &= A \sin(kx) e^{-i\omega t} \\ &= A \frac{e^{ikx} - e^{-ikx}}{2i} e^{-i\omega t} \\ &= \frac{A}{2i} (e^{ikx - i\omega t} - e^{-ikx - i\omega t})\end{aligned}$$

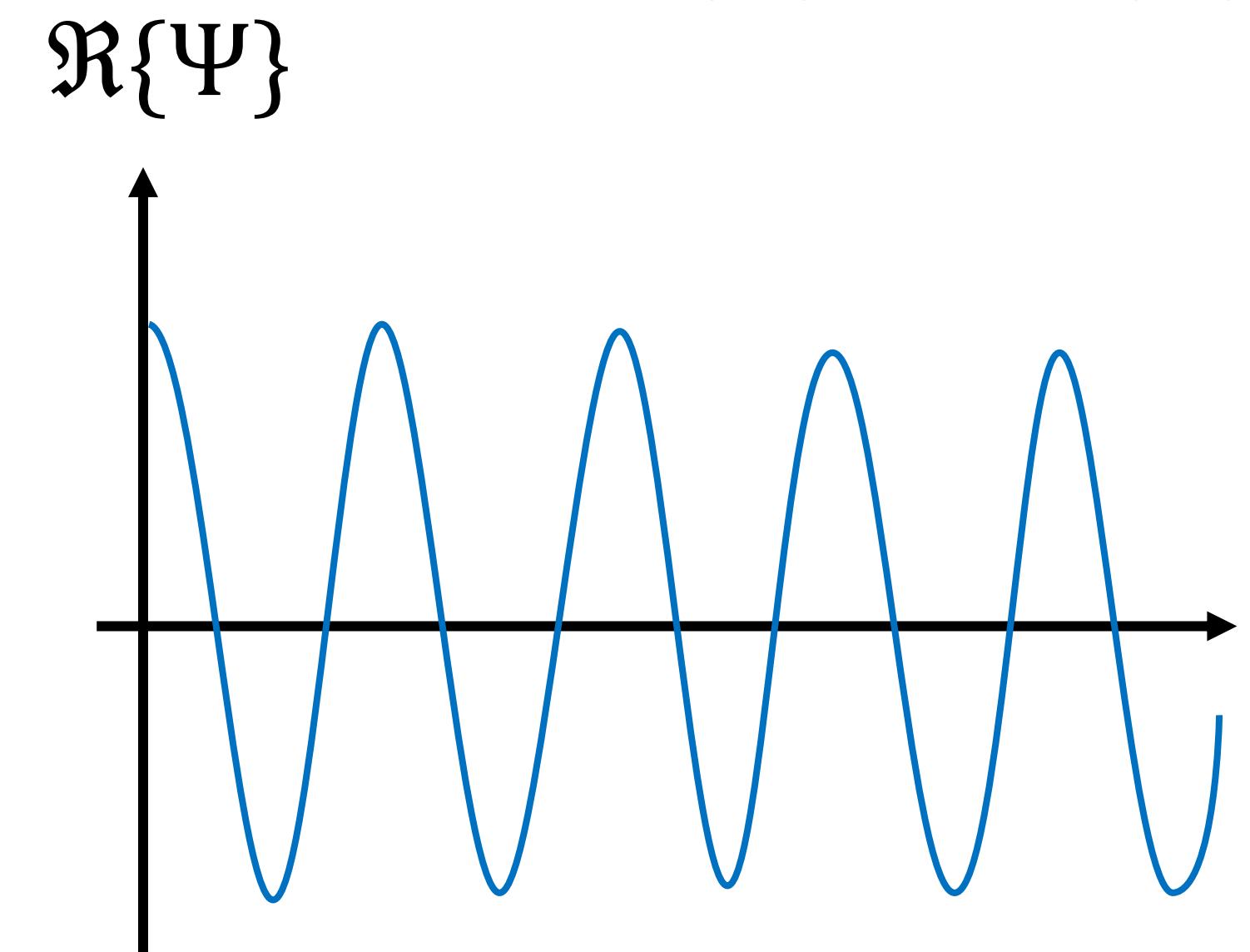
# THE WAVE FUNCTION

- Simple waves:

$$\Psi(x, t) = A e^{ikx} e^{-i\omega t}$$
$$= A \cos(kx - \omega t) + i \sin(kx - \omega t)$$

- Complex wave packet

$$\Psi = a + i b$$
$$= \Re\{\Psi\} + i \Im\{\Psi\}$$



- Represent the complex wave function by the **real and imaginary part**
- The solution to the time-independent wave equation **can often be chosen real**

Adapted from Wikipedia: Gaussian wave packet with  $a=2$ ,  $k=4$

# PARTICLES WITH NONZERO MASS: WAVE PACKETS BROADEN

- Dispersion relation (massive)

$$\hbar\omega = \frac{\hbar^2 k^2}{2m}$$

- Phase velocity

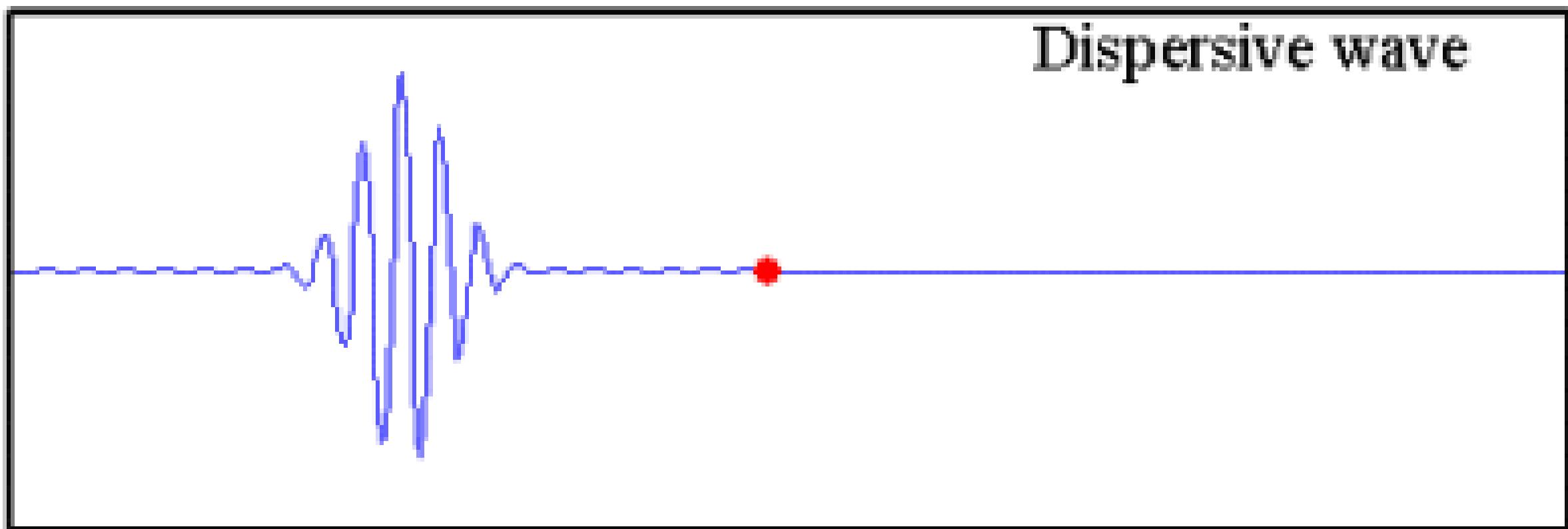
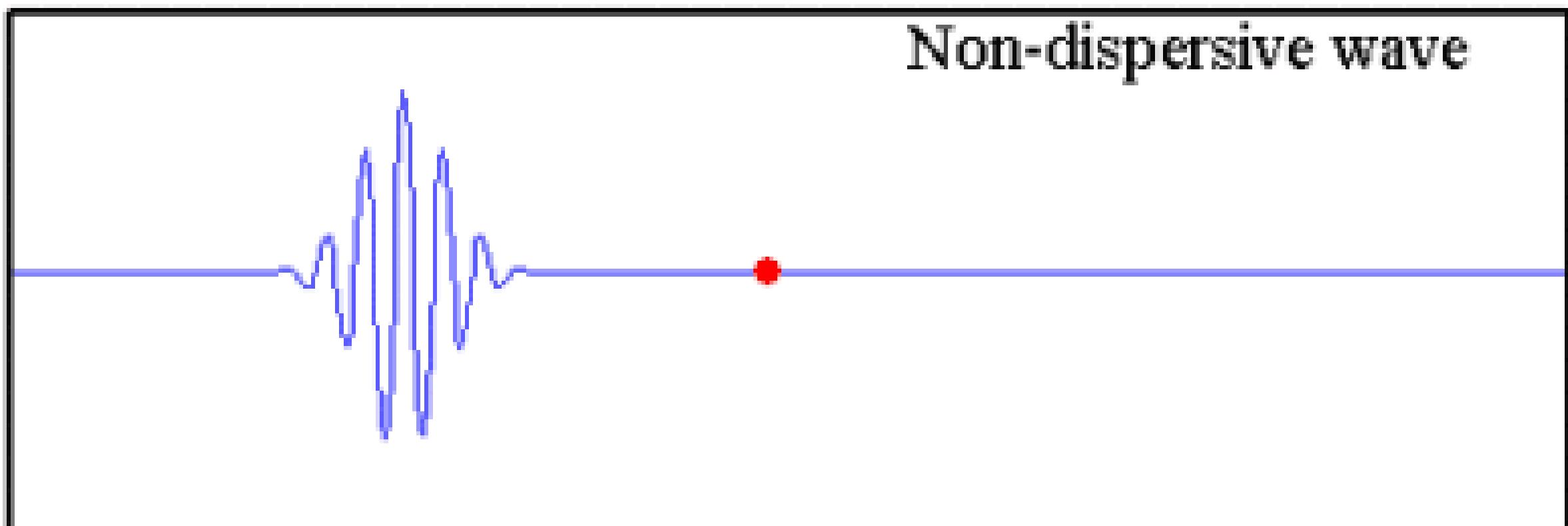
$$v_{\text{phase}} = \frac{\omega}{k} = \frac{\hbar^2 k}{2m}$$

- Group velocity

$$v_g = \frac{\partial \omega}{\partial k} = \frac{\hbar^2 k}{m}$$

- Velocity dependent on  $k$

- Wave packets broaden in time



Adapted from ISVR (University of South Hampton): Dispersive vs nondispersive wave packet

# THE UNCERTAINTY RELATIONS

- Wave packets are superpositions of many waves (many wave numbers)
- Uncertainty relation:

$$\Delta p_x \Delta x \geq \frac{\hbar}{2}$$

- Uncertainty relation for energy-time

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$