PHOT 222: Quantum Photonics
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Waves and the wave equation
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TRAVELING WAVES AND PULSES

* Description 1D waves y = ¢ (x, t)

Y a t=20
* Traveling wave ¢(x,t) = f(x — vt) /\ ,

X

* For x = vt the shape is constant Y4 /\t= 1 sec

» Right-traveling ¢ (x,t) = f(x — vt) *

o Left-traveling ¢ (x,t) = f(x + vt) V 4 /C 2 sec

X
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TRAVELING WAVES AND PULSES

* Description 1D waves y = ¢ (x, t)

YV a
t =

* Traveling wave ¢(x,t) = f(x — vt) N A N\ NN
\VARVARVARVAAVES

* For x = vt the shape is constant t =1 sec
ANIVANVANVANIVA
* Right-traveling ¢(x,t) = f(x — vt) \VARVERVERV/ \/ X
o Left-traveling ¢ (x,t) = f(x + vt) Y 4 =D cac
ANIWANVANWANFAW

V VUV VUV VU
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TRAVELING WAVES AND PULSES

e Standard form:

YV 4
d(x,t) = A cos(kx — wt) N At=/\ PN
fl—vt)? ( k ) VARVARVARVAAVAL'
= A coS w(—x—t) v,
W t =1 sec
ANIA /‘\\/\ N
* Velocity 1 = % = Af ; Vv v \J \U x
* \WWave number AL t = 2 sec
; NWANWANaNWAN

* Angular frequency w = 2nf /S V VYV U \u
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THE STANDARD WAVE EQUATION: SOUND, LIGHT

* Description of waves ¢(x,t) by the wave
equation : Solution ?

E)qu . E)qu d(x,t) = A cos(kx — wt)

e Are the solutions waves?
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PARTIAL DERIVATIVES

* Description of waves ¢ (x,t) by the wave
eguation :

02¢ 1 0%

0x?% v?4 0t?

* Partial derivatives of function f(x,y)

of _9f(x,y) _ (df(x, )

0x 0x dx )
y = constant

af(x,y) ” af (x,y)

* Possible difference:
dx 0x
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PARTIAL DERIVATIVES

* Partial derivatives of function f(x,y) :

of _f(x,y) _ (df(x, )

0x 0x dx )
Y = constant

e Example 1: f(x,y) = yxz Ty

of J0(yx*+y)
ox 0x

of 9(yx®+y)

— — v2 41
9y 9y X< +

= 2XY,
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PARTIAL DERIVATIVES

* Partial derivatives of function f(x,y) :

of _f(x,y) _ (df(x, )

Ox  Ox dx

e Example 2: f(x,y) = xy

of _0(xy) _
0x 0x V>

14.03.2025 Lecture 04: Schrodinger’s equ

)y = constant
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PARTIAL DERIVATIVES

* Partial derivatives of function f(x, y) :

f of(x,y) [(df(x,y)
ox  Ox dx

* Example 3: f(x,t) = sin(t — ax)

)y = constant

df 0 sin(t — ax)
ox 0x

df  0Osin(t — ax)
ot ot

= —a cos(t — ax)

= cos(t — ax)
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PARTIAL DERIVATIVES

* Second (partial) derivative of function f(x,y) :

daf
0f _° (ﬁ) d*f (x,y)
0x2  Ox dx?2

* Example 4: f(x,t) = cos(t — ax)

)y = constant

0°f 0%cos(t—ax) 0dasin(t— ax)
0x2 0x* a 0x

—a® cos(t — ax)
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PARTIAL DERIVATIVES

 Second (partial) derivative of function f(x,y) :

0x2  Ox dx?

* Example 4: f(x,t) = cos(t — ax)

() _ (dzf(x, )

0°f 0°%cos(t—ax) 0 asin(t— ax)
0x2 0x* a 0x

0°f 0%cos(t—ax) 0 (—sin(t— ax))

ot? dt4 ot
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THE STANDARD WAVE EQUATION: SOUND, LIGHT

* Description of waves ¢(x,t) by the wave equation :

02¢ 1 9%¢

0x%  v? 0t?

* Partial differential equation, find solutions for ¢(x,t)

* Solution f(x,t) = cos(t — ax)

aZ

(’)_x]; = —a* cos(t — ax)
02

6_15]; = —cos(t — ax)
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THE STANDARD WAVE EQUATION: SOUND, LIGHT

* Description of waves ¢(x,t) by the wave equation :

02¢ 1 9%¢

0x%  v? 0t?

* Partial differential equation, find solutions for ¢(x,t)

* Solution ¢(x,t) = cos (t - lx)

(%

02 1 ( 1 )
— cos|t——Xx

0x 2 V2 v

02¢ 1 02%¢

0x2 12 Jt2

2
0 ¢ — —COS(t—l.X)

dt? v
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THE STANDARD WAVE EQUATION: SOUND, LIGHT

* Description of waves ¢(x,t) by the wave
eguation :

0% 1 0%

0x?% v?4 0t?

* Solutions for ¢(x,t)
Acos(kx —wt) and Bsin(kx — wt)
* A linear combination is also a solution

d(x,t) = Acos(kx — wt) + Bsin(kx — wt)
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Particle waves
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ENERGY OF PARTICLE WAVES

* Energy of a free particle

E =-mp? =2
2 2m
* de Broglie relations:

Energy: E = hf nw
Momentum: Lo hk

P = A 21T A

> E =hf = hw

h*k?

= hw =
“ 2m
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ENERGY OF PARTICLE WAVES

e Different relation than for standard waves
Solution ?

o h*k? d(x,t) = A cos(kx — wt)

o VAVAYAVAS

* Schrodinger Wave equation of a free
particle

h* 0*W 0V

— = N——

2m 0x% ot
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The wave function & probability
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THE WAVE FUNCTION OF A SINGLE PARTICLE

* When wave function W represents a
single particle then:

Y - ¥Y(xv,zt)

* Probability (1D) to be found in interval

B
P(x € |A,B)) =[ W (x, t)]|* dx
A

e |If |—o00,00] = fjozo\q’(x, )4 =1

14.03.2025 Lecture 04: Schrodinger’s equation




WAVE PACKET OF A FREE PARTICLE

AVAVAVAVAV

* Single wave is not localized

W ave (X, t) = A cos(kx — wt)

* Localized particles: a wave packet
* Yis a superposition of waves

P(xt) = 2 A, cos(kx — wt) ‘ \
k
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THE WAVE FUNCTION REVISITED

* The wave function is a complex function:

YW=a+ib

* Probability density is the absolute value squared:

Y| =9*¥Y=(a—ib)(a+ib) =a?+ b?

e By definition the probability density |¥|% > 0
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THE WAVE FUNCTION

* Schrodinger’s equation of a free
particle
he 0%y oY

 2m 0x2 = i ot

* Time-dependency: rotating phase
* Complex wave packet
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THE WAVE FUNCTION

* Schrodinger’'s equation of a free Complex wave packet
particle
. Y=a+ib
- h° 0 ‘P_iha‘ll = R{¥} + i I{¥}
2m 0x?2 ot R{V}

* Time-dependency: rotating phase

* Complex wave packet

Ut

Adapted from Wikipedia: Gaussian wave packet with a=2, k=4
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THE WAVE FUNCTION REVISITED

* The wave function is a complex function

* |t describes a system, not always a single particle, examples:
* A neutron traveling in a vacuum
* An electron in trapped in a harmonic potential
* A Helium atom with two interacting electrons orbiting the nucleus
* The nuclei and electrons of the atoms in a semi-conductor

* The system can be a single particle in a potential
* Schrodinger’s equation of a particle in a potential:

AT o7 + U(x,t) ¥ haqj
2m 0x? o =
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NORMALIZATION OF THE WAVE FUNCTION

* The wave function represents probability to find a particle

B
P(x € |A,B)) =[ W (x,t)]|* dx
A

* Total probability must be one

P(x € |[—00,0]) = [00 W(x, t)|* dx =1
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EXPECTATION VALUES

* The expectation value of the position of a particle

(x) = f_ocx W (x,t)]|% dx

* (x) can be still a function of time
* In general, the expectation value of a function f(x) is given by:

(F) = | f@) ¥ dx
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EXPECTATION VALUES

» The variance g or expectation value of the deviation from the
mean squared: (x — (x))? is given by:

62 = ((x — (x))?) = [ (x — (x)? [W(x, )] dx

* We can simplify this as:

02 = ((x — (x))?) = (x? — 2x(x) + (x)?)
= (x%) — 2{x){(x) + (x)*
= (x%) — (x)*

Resulting in the simplified definition: % = (x?) — (x)~
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EXPECTATION VALUES

* We will see later on expectation values of operators Q
(Q) = f P*(x,t) Q P(x,t) dx

* Notice that for operators W*(x,t)0 # O W*(x,t) and
therefore the integrand can (in general) not be reduced to:

M
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14.03.2025

SUMMARY PROBABILITY & WAVE FUNCTIONS

* Wave function W(x,y,z,t) interacts in a wave-like
manner

* Schrodinger’s equation allows complex wave functions
* Schrodinger’s equation of a single particle:
h% 0°Y oY

_%W-I_ U(x,t)‘P — _lha_t

* The wave function should be normalized

* Expectation values link probability density and expected
measurement outcomes
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