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Particle-wave duality
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ELECTROMAGNETIC WAVES AS PARTICLES

* Electromagnetic waves can act as particles: photons

* Energy hf = %
* Momentum hy = k
C A

* Described as particles: Photoelectric effect, Compton effect, etc.

* BUT what about diffraction of light ? This is wave-like behavior

* What is the wavelength or frequency of a particle?
* How large is a photon?

* Light is both particle and wave at the same time ?
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PARTICLES WITH WAVE-LIKE BEHAVIOR

1923: Louis de Broglie: All matter is both wave and particle

* Every particle has an associated wave

: h h . . h
* de Broglie wavelength A1 = - = —orif relativistic 4 =
D mu ymu
. E .
* Associated frequency [ = - where E is the total energy

* Principle of complementarity:

The wave and particle models of light and matter
complement each other
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ELECTRONS WITH WAVE-LIKE BEHAVIOR

» Consider an electron that has velocity u = 1.0 X 10’ m/s and
massm, = 9.11 x 103! kg:

* What is the associated de Broglie wavelength?

h 6.624 x 10734 - s
m,u 9.11x10731kg 1.0 x 10’7m/s

A= ~ 727 x 107 m

Since 1] =1 kg-:m?:s7? the unit of the wavelength is meter
The resulting wavelength is on the order of an Angstrom
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

1927 Clinton Davisson and Lester Germer, and Thomson
performed independent electron diffraction experiments

* Single crystal of Nickel: ~ Movable
Detector
periodic structure _ Q> N
Chamber - electron beam
* Diffraction peaks found
| = | | Hf"l Mickel
1 l | Electron Beam |l Target
F_I
) e e [ ] Wvll.r_
* Similar to x-ray diffraction o
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X-RAY DIFFRACTION: SHORT RISTORY

* |n 1895 Rontgen discovers x-rays

2. Ueber eine neue Art von Strahlen;
von W. C. Rintgen.,
(Zweite Mittheilung.)

Aus den Sitzungsber. der Wiirzburger Physik.-Medic. Gesellschaft.
Jahrg. 1895,

Da meine Arbeit auf mehrere Wochen unterbrochen werden
muss, gestatte ich mir im Folgenden einige neue Krgebnisse
schon jetzt mitzutheilen,

18. Zur Zeit memner ersten Publication war mir bekannt,
dass die X-Strahlen im Stande sind, electrische Korper zu ent-
laden, und ich vermuthe, dass es auch die X-Strahlen und
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X-RAY DIFFRACTION: SHORT HISTORY

* |n 1895 Rontgen discovers x-rays
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X-RAY DIFFRACTION: SHORT HISTORY

* |n 1895 Rontgen discovers x-rays

* In 1912 Von Laue found that x-rays
diffract at crystals

* |n 1913 Bragg formulates his
Bragg equation:

nA = 2d sin(8)

Relates diffraction angle 0 to \

crystal plane distance d and 4
° ® ® ° ®
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X-RAY DIFFRACTION: SHORT HISTORY

* XRD experiments
* Bragg equation:

nA = 2d sin(60)
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

1927 Clinton Davisson and Lester Germer, and Thomson
performed independent electron diffraction experiments

* Single crystal of Nickel:
periodic structure

* Diffraction peaks found

e Electrons of 54 eV — 50° -
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hMovable |
Detector .-~
VacuLum ::1 Diffracted
Chambher - electron beam
| = | Hf Mickel
1 | Electron Beam [l Target
F_I
LT -
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

558 NATURE

[AprIL 16, 1927

Letters to the Editor.

[The Editor does mot hold himself r
opinions expressed by his correspondents Neuher
can he undertake to return, nor to correspond with
the writers of, rejected manuscripts intended for this
or any other part of NATURE. No notice 18 taken
of anonymous communications.]

The Scattering of Electrons by a Single Crystal
of Nickel.

IN a series of experiments now in progress, we are
directing a narrow beam of electrons normally against
a target cut from a single crystal of nickel, and are
measuring the intensity of scattering (number of
electrons per unit solid angle with speeds near that of
the bombarding electrons) in wvarious directions In
front of the target. The experimental arrangement
is such that the intensity of scattering can be measured

target. There are six such azimuths, and any one of
these will be referred to as a {110}-azimuth. It follows
from considerations of s etry that if the intensity
of scattering exhibits a dependence upon azimuth as
we pass from a {100}-azimuth to the next adjacent
{111}-azimuth (60°), the same dependence must be
exhibited in the reverse order as we continue on
through 60° to the next following {100}-azimuth.
Dependence on azimuth must be an even function of
period 2w/3.

In general, if bombarding potential and azimuth are
fixed and exploration is made in latitude, nothing very
striking is observed. The intensity of scattering
increases continuously and regularly from zero in the
plane of the target to a highest value in co-latitude
20°, the himit of observations. If bombarding poten-
tial and co-latitude are fixed and exploration is made
in azimuth, a variation in the intensity of scattering
of the type to be expected is always observed, but in
general this variation is slight, amounting in some
cases to not more than a few per cent. of the average
intensity. This is the nature of the scattering for
bombarding potentials in the range from 15 volts to
near 40 volts.

At 40 volts a slight hump appears near 60° in the
co-latitude curve for azimuth-{111}. This hump
develops rapidly with increasing voltage into a strong
spur, at the same time moving slowly upward toward
the incident beam. It attains a maximum intensity
in co-latitude 50° for a bombarding potential of

| 54 volts, then decreases in intensity, and disappears
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ELECTRON DIFFRACTION:

558
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The Scattering of Electrons by a Single Cr
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PRIMARY BEAM

TARGET

Fia. 1.—Intensity of electron scattering vs. co-latitude angle for
various bombarding voltages—azimuth-{111}-330°,
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ELECTRON DIFFRACTION:
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

e 1927 Clinton Davisson and Lester Germer, and Thomson
performed independent electron diffraction experiments

130°
54 eV, 50° —» 06 = = 65°

2

* Single crystal of Nickel:
periodic structure

* Bragg equation:
nA = 2d sin(6)

e x-ray diffraction: d = 0.091 nm ° o o ° °
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

* Xx-ray diffraction tells us that:
A= 2dsin(8) = 2 (0.091 nm) X sin(65°) = 0.165 nm

* De Broglie:
h
A =
ymeu
h h 6.63X1073% J-s

NS
S

= = (.166 nm

2 (9.1x10731) (54 eV) (1.6x10_19$)

Mmell B J2meK
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ELECTRON DIFFRACTION: DAVISSON-GERMER EXPERIMENT

* Xx-ray diffraction tells us that:
A= 2dsin(8) = 2 (0.091 nm) X sin(65°) = 0.165 nm

» De Broglie: E = K + mgc® =ymec?

1=—— whereK (54 eV) K m,c?(0.5MeV) >y ~ 1

ymeu

h h 6.63X1073% ]-s
= = 6o 7 s = (0.166 nm
meu  /2mMeK

2 (9.1x10731) (54 eV) (1.6x10_19$)

NS
S
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ELECTRON MICROSCOPY

* |n 1873 Abbe diffraction limit in light microscopy :

A A A

Resolution A = = — x —
2 n siné@ 2NA 2.8

* Visible light is in the interval: 380 - 700 nm
Resolution A > 135 nm

* Electrons can have very small de Broglie wavelengths

* Previously: a low energy of 54 eV resulted in 4 = 0.166 nm

0.753 . .
* Formula for TEM: A = ™ with IV the acceleration voltage
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ELECTRON MICROSCOPY

* Electrons can have very small de — ]
Broglie wavelengths

* 2002 model at EMAT, University of
Antwerp: resolution = 0.135 nm

5.03.2025 Lecture 02: Waves and Particles



ELECTRON MICROSCOPY

* Electrons can have very small de
Broglie wavelengths

* 2002 model at EMAT, University of
Antwerp: resolution = 0.135 nm

* 2010 model at EMAT, University of
Antwerp: resolution = 0.070 nm
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SUMMARY PARTICLE-WAVE DUALITY

e Electrons show wave-like behavior when accelerated

* De Broglie: particles-wave duality

* Associated wave with a particle

* Wavelength 1 = LS.

Yymeu  MeplU
* Proof by electron diffraction experiments

* Electron microscopy: wave-like behavior electrons

Lecture 02: Waves and Particles
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Probability, Wave packets, and
uncertainty
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WAVES DESCRIBING PROBABILITY OF A PARTICLE

* What are the de Broglie waves associated with the particles ?

* When we measure accurately, we can measure single photons

In 1926 Max Born: Probability interpretation:
Wave is determined by the wave function W(x, y, z, t)

Probability to find a particle at position (x, y, z) at time t is
proportional to |¥(x,y, z, t) |

5.03.2025 Lecture 02: Waves and Particles
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5.03.2025

WAVES DESCRIBING PROBABILITY OF A PARTICLE

Wave is determined by the wave function W(x, y, z, t)

Probability to find a particle at position (x, vy, z) at time t is
proportional to |W(x,y, z, t) |4
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DOUBLE SLIT EXPERIMENTS WITH SINGLE ELECTRONS

* Electrons accelerated == corresponding de Broglie wavelength
* When reducing number of electrons: “single electrons”

Accelerated
electrons 'I ,,,,,,,,,, |
5
@ —> Detector
screen
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DOUBLE SLIT EXPERIMENTS WITH SINGLE ELECTRONS

* Electrons arrive one by one

» probability to find an electron at coordinates (x,y,t) = |WY(x,y, t)|?
* Higher photon densities ==) diffraction pattern: |[W(x, v, t)|?

* “Similar” to the intensity of electric waves: | « E?
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WAVE PACKETS

* A single wave can be written:
2TC

y = cos(kx — wt) with k = — W= 2ntf

* Superposition of 2 cosine waves:
y1 + v, = cos(kix — wqt) + cos(k,x — wyt)
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WAVE PACKETS

* Goniometric identity:

cos(a) + cos(b) = 2 cos (a ; b) Cos(a ; b)

* Superposition of 2 cosine waves:

y1 +7vy, =cos(k;x —wqt) + cos(k,x — w,t)
= 2cos(Akx —Awt) X cos((k1+k2)x — (w1+w>y)t)

5.03.2025 Lecture 02: Waves and Particles
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WAVE PACKETS

* Superposition of 2 cosine waves:
W(x,t) =2cos(Akx —Awt) X cos((k1+k2)x — (w1t wy)t)

Envelope function:
2 cos(Ak x — Aw t)

il fﬂm"'q“ml
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* Superposition

* Phase velocity:

0,

k

Vphase =

* Group velocity:

Aw
Vsroup = A

5.03.2025

W(x, t)
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WAVE PACKETS
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* Superposition of
waves

* Many waves can
form a wave packet

e |l ocalized wave

5.03.2025

W(x)

w(x)

Y(x)

WAVE PACKETS

M
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GROUP VELOCITY OF WAVE PACKETS

* Superposition of many waves

1% =20 0 _d00)\here h = -
ErOUP — Ax " dk  d(hk) ~ on
h
* Numerator: hw = po— 2nf = hf =E
: h 21 h
Denominator: hk = — =7=D

2
d(2
_ak _ (Zm) _D_
group dp dp m
* So group velocity equals the particle associated with the wave

5.03.2025 Lecture 02: Waves and Particles

33



UNCERTAINTY RELATION

* In 1927 Heisenberg introduces his uncertainty principle:

If position and momentum of a particle are measured
simulaneously with uncertainties Ax and Ap,,. then:

n
Ax-AprE

5.03.2025 Lecture 02: Waves and Particles
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UNCERTAINTY RELATION

* In 1927 Heisenberg introduces his uncertainty principle:

If position and momentum of a particle are measured
simulaneously with uncertainties Ax and Ap,,. then:

W W W
n . ‘

Ax-Apx_E /\

-
—-- T

—]L > kK

> k
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SUMMARY PROBABILITY & WAVE FUNCTIONS

* Wave function W(x,y,z,t) interacts in a wave-like
manner

* Probability to find a particle determined by the
probability density function |¥(x,y, z, t) |4

* Wave packets describe “localized” particles

* Uncertainty relation: impossible to know both velocity
and location

Lecture 02: Waves and Particles
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