
PHOT 222: Quantum Photonics
Final exam A: questions & solutions

Michaël Barbier, Spring semester (2024-2025)

General information on the exam

Grading: The final exam counts for 60% of your total grade.

Exam type: The exam consists of 6 open questions/problems. The exam is a written
exam and all questions can be answered using only pen and paper. Calculators, mobile
phones, laptops are not needed, and are not allowed to be used during the exam.

The duration of the exam is 3 hours.

Exam questions

Please fill in all questions listed below. Each of the questions is valued equally in the
score calculation of the exam.

Please tell if any question is unclear or ambiguous.

This document contains both the problems and their solutions. Considering the scoring
calculation:

• when you have to answer multiple subproblems each of the subtasks is given a score
out of 5 points. For each question the sub-scores are then averaged.

• Answers should contain: The final formula/expression together with its derivation
and a numerical approximate value with the correct units.

Question 1: Bohr model

A hydrogen atom is in state 𝑛 = 2 and gets ionized by absorbing a photon.

(a) What is the minimum energy that the photon must have?
(b) What is the wavelength of the photon for that energy?
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Solution (Q1)

For the hydrogen atom to get ionized (electron to escape) it should be brought from the
initial state with 𝑛 = 𝑛𝑖 = 2 to a final state with 𝑛𝑓 ⟶ ∞, i.e. the energy should become
𝐸𝑛𝑓→∞ = 0.

(a) The photon should minimally have the energy Δ𝐸:

Δ𝐸 = 𝐸𝑛→∞ − 𝐸𝑛𝑖
= − ( 1

𝑛2
𝑓

− 1
𝑛2

𝑖
) Ry = − ( 1

∞2 − 1
22 ) Ry = 0 + Ry/4 = 3.4 eV

(b) The maximum wavelength of the photon corresponding to this energy difference can
be derived as:

Δ𝐸 = ℎ𝑓 = ℎ𝑐
𝜆 ⇒ 𝜆 = ℎ𝑐

Δ𝐸 = 1240 eV nm
3.4 eV ≈ 365 nm

where the accuracy of the last approximation is not required for this exam, and an ap-
proximate numerical value using 124

34 ≲ 4 is sufficient.

Question 2: Quantum Hydrogen Atom

The radial wave function of a hydrogen atom in the 2𝑠 state is given by:

𝑅2,0(𝑟) = 1
√2𝑎3

0

(2 − 𝑟
𝑎0

) 𝑒−𝑟/2𝑎0

(a) Calculate the most likely radius for the particle to be found, i.e. where |𝑅2,0(𝑟)|24𝜋𝑟2

attains its maximum value.
(b) Calculate the expectation value: ⟨𝑟⟩. Hint: Integrating in spherical coordinates the
volume element 𝑑𝑉 = 4𝜋𝑟2𝑑𝑟.

Solution (Q2)

(a) The most probable radius is where |𝑅2,0(𝑟)|24𝜋𝑟2 attains its maximum value. There-
fore we look where the derivative 4𝜋 𝑑

𝑑𝑟 |𝑅2,0(𝑟)|2𝑟2 becomes zero.

First, we simplify the condition 4𝜋 𝑑
𝑑𝑟 [𝑟2 |𝑅2,0(𝑟)|2] = 0 by the following argument:

Set 𝑓(𝑟) = 𝑟 𝑅2,0(𝑟) then 𝑑𝑓2

𝑑𝑟 = 2𝑓 𝑑𝑓
𝑑𝑟 which means that:

𝑑
𝑑𝑟 [𝑟 𝑅2,0(𝑟)] = 0 ⇒ 𝑑

𝑑𝑟 [𝑟 |𝑅2,0(𝑟)|] = 0 ⇒ 𝑑
𝑑𝑟 [|𝑅2,0(𝑟)|2𝑟2] = 0
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Using the first condition and substituting 𝜌 = 𝑟/𝑎0 to simplify further calculations:

𝑑
𝑑𝑟 [𝑟 𝑅2,0(𝑟)] ∝ 𝑑

𝑑𝜌 [𝜌 (2 − 𝜌) 𝑒−𝜌/2]

= 𝑑
𝑑𝜌 [(2𝜌 − 𝜌2) 𝑒−𝜌/2]

= 𝑒−𝜌/2 𝑑 (2𝜌 − 𝜌2)
𝑑𝜌 + (2𝜌 − 𝜌2) 𝑑 𝑒−𝜌/2

𝑑𝜌

= 𝑒−𝜌/2 [2 − 3𝜌 + 𝜌2

2 ]

Since 𝑒−𝜌/2 ≠ 0 for finite 𝜌, this gives us a quadratic equation:

𝜌2

2 − 3𝜌 + 2 = 0 ⇒ 𝜌± = 3 ±
√

5 ≈ 3 ± 2.25

For the solution 𝜌− = 𝑟/𝑎0 ≈ 0.75 < 1, the radius is smaller than the “most likely radius”
of the 1𝑠 orbital: 𝜌1𝑠 = 1. The other solution 𝜌+ ≈ 5.25 is roughly comparable to 4, the
radius calculated from the Bohr model, a better option.

To make sure we could sketch the function 𝑔(𝜌) = 𝜌2 (2 − 𝜌)2 𝑒−𝜌.

An alternative solution is to start from the probability 4𝜋𝑟2|𝑅(𝑟)|2:

𝑑
𝑑𝑟 [𝜌2 (2 − 𝜌)2 𝑒−𝜌] =

𝑑 [𝜌2 (2 − 𝜌)2]
𝑑𝑟 𝑒−𝜌 + 𝜌2 (2 − 𝜌)2 𝑑𝑒−𝜌

𝑑𝑟
= [2𝜌 (2 − 𝜌)2 − 2𝜌2(2 − 𝜌)] 𝑒−𝜌 − 𝜌2 (2 − 𝜌)2 𝑒−𝜌

= 𝜌 (2 − 𝜌) 𝑒−𝜌 [2 (2 − 𝜌) − 2𝜌 − 𝜌 (2 − 𝜌)]
= 𝜌 (2 − 𝜌) 𝑒−𝜌 [4 − 6𝜌 + 𝜌2]

The prefactor contains the roots in 𝜌 = 2 and 𝜌 = 0 and 𝑒−𝜌 ≠ 0. This brings us to the
same 2nd order polynomial 4 − 6𝜌 − 𝜌2 = 0 as before with the same roots.

(b) The expectation value ⟨𝑟⟩ is given by:

⟨𝑟⟩ = ∫
∞

0
|𝜓(𝑟)|24𝜋𝑟2 𝑑𝑟 = ∫

∞

0

|𝑅(𝑟)|2
4𝜋 4𝜋𝑟2 𝑑𝑟 = ∫

∞

0
|𝑅(𝑟)|2𝑟2 𝑑𝑟 = 1

2𝑎3
0

∫
∞

0
𝑟2 (2 − 𝜌)2 𝑒−𝜌 𝑑𝑟

And if we express 𝑟 in units of the Bohr radius 𝑎0:
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⟨𝑟⟩/𝑎0 = ⟨𝜌⟩ = 1
2 ∫

∞

0
𝜌2 (2 − 𝜌)2 𝑒−𝜌 𝑑𝜌

= 1
2 ∫

∞

0
[𝜌4 − 4𝜌3 + 4𝜌2] 𝑒−𝜌 𝑑𝜌

= 1
2 [∫

∞

0
𝜌4 𝑒−𝜌 𝑑𝜌 − 4 ∫

∞

0
𝜌3 𝑒−𝜌 𝑑𝜌 + 4 ∫

∞

0
𝜌2 𝑒−𝜌 𝑑𝜌]

= 1
2 [4! − 4 ⋅ 3! + 4 ⋅ 2!]

= 1
2 [8] = 4

This means that ⟨𝑟⟩ = 4𝑎0 with 𝑎0 the Bohr radius.

Question 3: Angular momentum

A hydrogen atom has an angular momentum 𝐿 = 2.583 × 10−34 J ⋅ s.

(a) What is the orbital quantum number 𝑙?
(b) What are the possible values for the magnetic quantum number 𝑚𝑙?

Solution (Q3)

(a) The angular momentum is quantized as 𝐿 = √𝑙(𝑙 + 1)ℏ

𝐿 = √𝑙(𝑙 + 1)ℏ ⇒ √𝑙(𝑙 + 1) = 𝐿
ℏ = 2.583 × 10−34J ⋅ s

1.055 × 10−34J ⋅ s ≈ 2.5

𝑙 must be an integer 𝑙 = 0, 1, 2, 3, ⋯, and for all 𝑙 we have:

𝑙2 < 𝑙(𝑙 + 1) < (𝑙 + 1)2 ⇒ 𝑙 =
√

𝑙2 < √𝑙(𝑙 + 1) < √(𝑙 + 1)2 = 𝑙 + 1

Since √𝑙(𝑙 + 1) ≈ 2.5 and 2 < 2.5 < 3, the orbital quantum number 𝑙 = 2.

(b) The options for 𝑚𝑙 are 0, ±1, … , ±𝑙, and since 𝑙 = 2 we obtain:

𝑚𝑙 = −2, −1, 0, 1, 2
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Question 4: Shielding and effective nuclear charge

A Lithium atom in the ground state has configuration 1𝑠2 2𝑠1. Assume that the 𝑍eff,2𝑠 ≈
1.28 and 𝑍eff,2𝑝 ≈ 1. Then suppose that the atom absorbs a photon and the electron in
the ��1𝑠 2𝑠 orbital gets excited to the 2𝑝 orbital.

(a) What is the wavelength of the photon assuming that the effective nuclear charges
are good approximations.
(b) The real wavelength for the excitation from 2s to 2p is actually 670 nm. Assuming
that our approximation for 𝑍eff,2𝑝 ≈ 1 is to blame, what would be correct energy level of
the 2𝑝 orbital be (to compensate for the error in the wavelength)?

Solution (Q4)

For this question the numerical value is more important since we are looking for a possible
small difference.

(a) The wavelength of the photon 𝜆 is determined by Δ𝐸 = ℎ𝑐
𝜆 ⇒ 𝜆 = ℎ𝑐

Δ𝐸 . The energy
difference Δ𝐸 between the 2𝑠 and 2𝑝 levels is given by:

Δ𝐸 = (
𝑍2

eff,2𝑝
𝑛2

2𝑝
−

𝑍2
eff,2𝑠
𝑛2

2𝑠
) Ry = (𝑍2

eff,2𝑝 − 𝑍2
eff,2𝑠) Ry

4 = (1.282 − 1) 3.4 eV = 2.176 eV

The last numerical value is calculated relatively accurate to understand the difference in
wavelength afterwards in (b). The value can be obtained as follows:

(1.282 − 1) 3.4 eV = (1 + 0.56 + (28)2

10000 − 1) 3.4 eV = (0.56 + (30 − 2)2

10000 ) 3.4 eV

= (0.56 + 784
10000) 3.4 eV = 0.6384 ⋅ 3.4 eV

≈ (60 + 4) ⋅ (30 + 4) × 10−3 eV = (1800 + 360 + 16) × 10−3 eV = 2.176 eV

We can now obtain the wavelength:

𝜆 = ℎ𝑐
Δ𝐸 ≈ 1240 eV nm

64 ⋅ 34 eV × 103 = 155
8 ⋅ 34 × 103 nm

= 155 ⋅ 125
34 nm = (140 + 15)(140 − 15)

34 nm = 1402 − 225
34 nm

≈ (4.1 ⋅ 140 − 7) nm = (560 + 14 − 7) nm = 567 nm

Where we in the last approximation put more effort in the numerical value to see that it
is different from the real wavelength 𝜆real = 670 nm

(b) The real energy difference can be calculated as follows:
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Δ𝐸real = ℎ𝑐
𝜆 = 1240 eV nm

670 nm = 124
67 eV ≈ 1.85 eV

Where for the last more accurate approximate value we used:

124
67 ⇒ 124 = (2 − 𝑥) 67 ⇒ 𝑥 = 10/67 ≈ 10/66.67 ≈ 0.15

Therefore a better approximation for the 𝐸real,2𝑝 = 𝐸2𝑠 + Δ𝐸real would be:

𝐸real,2𝑝 = 𝐸2𝑠 − Δ𝐸real ≈ −(3.4 + 1.85) eV = −5.25 eV

which is different from 𝐸real,2𝑝 = −(3.4 + 2.174) eV = −5.574 eV.

Question 5: Normal Zeeman effect

A hydrogen atom 𝐻 is put in a magnetic field 𝐵⃗ = 𝐵 ⃗𝑒𝑧. Ignore spin and assume that the
only contribution to the hydrogen atom energy levels is 𝑈 = 𝑚𝑙𝜇𝐵𝐵 with 𝜇𝐵 the Bohr
magneton.

(a) Calculate the energy levels of the 3𝑑 orbital if 𝐵 = 0.1 Tesla.
(b) How strong does the magnetic field have to be for the 2𝑝 and 3𝑑 energy levels to
overlap?

Solution (Q5)

(a) For the 3𝑑 orbital 𝑛 = 3 and 𝑙 = 2, therefore 𝑚𝑙 = 0, ±1, ±2 and the energy levels
are given by:

𝐸𝑛,𝑚𝑙
= 𝐸𝑛 + 𝑈𝑚𝑙

= −Ry
𝑛2 eV/T + 𝑚𝑙𝜇𝐵𝐵 = −13.6

32 + 𝑚𝑙(5.8 × 10−5 eV/T) ⋅ (0.1 T)

= [−10 + 3.6
9 + 𝑚𝑙5.8 × 10−6] eV = − [1.411111 ⋯ + 𝑚𝑙 5.8 × 10−6] eV

So the 5 levels are close to 1.411111 eV and split over an interval of 23.2 meV.

(b) The energy difference between the 2𝑝 and 3𝑑 orbitals of hydrogen is given by:

Δ𝐸 = |𝐸2 − 𝐸3| = − (1
4 − 1

9) Ry = (3.4 − 1.4111) eV = 2.9899 eV

If energy levels are splitted this energy difference reduces with increasing magnetic field
𝐵. The 2𝑝 orbital has 𝑙 = 1 and largest 𝑚𝑙 = 1, while the 3𝑑 orbital has 𝑙 = 2 and largest
negative 𝑚𝑙 = −2 leading to:
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Δ𝐸 = max(|𝑈2𝑝|) + max(|𝑈3𝑑|) = (1 + 2) 𝜇𝐵𝐵

Extracting 𝐵 we get:

𝐵 = Δ𝐸
3𝜇𝐵𝐵 = 2.9899 eV

3 ⋅ 5.8 × 10−5 eV / T = 2.9899 eV
3 ⋅ 5.8 × 10−5 eV / T = 1

5.8 × 105 T ≈ 1.5 × 104 T

Notice that the resulting magnetic field is not feasible in reality: the magnetic field
strength is huge (found in certain neutron stars but not feasible in a lab). Further,
these large magnetic fields actually require to take into account spin, nonlinear effects,
and using the relativistic Dirac equation (our model is not appropriate here).
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Question 6: Molecular spectra

Assume you have a 𝑁𝑂 molecule existing of an oxygen and a nitrogen atom with a
separation distance 𝑟0 = 0.115 nm.

(a) Calculate the reduced mass 𝜇 and the moment of inertia 𝐼 of the molecule. Remember
that nitrogen has an atomic mass of approximately 14 and oxygen 16 atomic mass units
(or Dalton, see formulas/values).
(b) Suppose the molecule is in state with rotational quantum number 𝑙 = 3, and transi-
tions to 𝑙 = 4 thereby absorbing a photon. Calculate the wavelength of the photon.

Solution (Q6)

(a) The reduced mass 𝜇 is given by:
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𝜇 = 𝑚1𝑚2
𝑚1 + 𝑚2

= 14 ⋅ 16
14 + 16Da = 225 − 1

30 ⋅ 5
3 × 10−27 kg ≈ 1.25 × 10−26 kg

The moment of inertia 𝐼 = 𝜇𝑟2
0. The numerical value is approximately:

𝐼 = 𝜇𝑟2
0 = (1.25 × 10−26) ⋅ (1.15)2 × 10−20 kg m2

= 5
4(1 + 0.3 + 0.225) × 10−46 kg m2 ≈ 5

4 ⋅ 4
3 × 10−46 kg m2

≈ 1.66 × 10−46 kg m2

(b) The wavelength of the photon can be derived from 𝜆 = ℎ𝑐
Δ𝐸 where the difference

between the rotational energy Δ𝐸 is given by

Δ𝐸 = 𝐸rot,4 − 𝐸rot,3 = [4(4 + 1) − 3(3 + 1)] ℏ2

2𝐼 = 4 ℏ2

𝐼
and the approximate numerical value is given by:

𝜆 = ℎ𝑐
Δ𝐸 = ℎ𝑐 ⋅ 𝐼

4 ℏ2 ≈ (1240 eV nm) ⋅ (5/3 × 10−46 kg m2)
4 ⋅ (10−68 J2 s2) ⋅ (10/16 × 1019 eV/J)

≈ 1240 ⋅ 5
3 ⋅ 16

4 ⋅ 10 × 103 nm

= 0.827 mm

A wavelength roughly about a millimeter.
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Values and formulas:

Mass of an electron: 𝑚𝑒 = 9.11 × 10−31 kg
Mass of a proton: 𝑚𝑝 ≈ 1836 𝑚𝑒
1 eV = 1.602 × 10−19 J
An atomic mass unit: 1 Dalton = 1.66 × 10−27 kg ≈ 5

3 × 10−27 kg
Bohr magneton: 𝜇𝐵 = 9.3 × 10−24 J/T = 5.8 × 10−5 eV/T
Joule in SI units: [J = kg m2/s2]
ℎ = 6.63 × 10−34 J s = 4.14 × 10−15 eV s
ℏ = ℎ

2𝜋 = 1.055 × 10−34 J s = 6.582 × 10−16 eV s
𝑐 = 3 × 108 m/s
ℎ𝑐 = 1240 eV nm
Rydberg energy unit: Ry = 13.6 eV
Rydberg constant for hydrogen: 𝑅𝐻 = 1.0968 × 107m−1 ≈ 1.1 × 107m−1

Rydberg constant for heavy atoms: 𝑅∞ = 1.0974 × 107m−1 ≈ 1.1 × 107m−1

𝑚𝑒𝑐2 = 0.511 MeV

For a wave function 𝜓(𝑥) with 𝑥 ∈ [𝑎, 𝑏], the expectation value of a function 𝑓(𝑥) is:

⟨𝑓(𝑥)⟩ = ∫
𝑏

𝑎
𝑓(𝑥) |𝜓(𝑥)|2 𝑑𝑥.

You can also make use of following definite integrals:

Definite integrals:

∫
∞

0
𝑥𝑛𝑒−𝑎𝑥 𝑑𝑥 = 𝑛!

𝑎𝑛+1

∫
∞

0
𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋
2√𝑎

∫
∞

0
𝑥2𝑒−𝑎𝑥2 𝑑𝑥 =

√𝜋
4𝑎3/2

∫
∞

0
𝑥4𝑒−𝑎𝑥2 𝑑𝑥 = 3√𝜋

8𝑎5/2
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