PHOT 110: Introduction to programming

LECTURE 11: Object Oriented Programming:
Classes (Ch. 7 &9)

Michaél Barbier, Spring semester (2023-2024)

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

CLASSES

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

WHAT IS A CLASS ?

e Part of object-oriented programming

e Aclass combines
= Attributes (parameters of the class), and
= Methods (functions of the class)

e Anobjectis aninstance of a class

text = "This 1s an object of class string"
print (type (text))

<class 'str'>

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

WHAT IS A CLASS ?

e Part of object-oriented programming

e Aclass combines
= Attributes (parameters of the class), and
= Methods (functions of the class)

e Anobjectis aninstance of a class

a list = ["Green", "Yellow", "Orange"]
print (a list. doc)

Bulilt—-in mutable sequence.

If no argument i1s given, the constructor creates a new empty
list.
The argument must be an i1terable 1f specified.

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

CLASS DEFINITION

e Attributes (parameters of the class), and

e Methods (functions of the class)
class SimpleClass:

An attribute
secret = "45067"

A method

def tell the secret (self):
return "The code = " 4+ self.secret

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

CLASSES & OBJECTS
An object is an instance of a class

class SimpleClass:
secret = "4567"

def tell the secret (self):
return "The code = " 4+ self.secret

c = SimpleClass ()
print (c.secret)
print (c.tell the secret())

45607
The code = 4567

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

CONSTRUCTORS

class SimpleClass:

def init (self, code):
self.secret = str (code)

def tell the secret (self):
return "The code = " 4+ self.secret

A constructor creates an instance of a class with parameters

c = SimpleClass (1234560)
print (c.tell the secret())

The code = 123456

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

A SLIGHTLY MORE COMPLEX EXAMPLE CLASS

class spaceship:

def 1init (self, pos 0, orient 0, image):
self.position = pos 0
self.orientation = orientation 0
self.image = 1mage

def teleport(self, displacement):
self.position = self.position + displacement

def test collision(pos, R):
i1f (pos - self.position)**2 < R ** 2:
return True
return False

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

EXTRA ATTRIBUTES

c = SimpleClass(512)
print (c.tell the secret())

Define attributes after creation
c.color = "Green"

Test the attribute 1s there
print (c.color)

The code = 512
Green

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

10

OBJECTS OF A CLASS
Adding attributes per object

cl = SimpleClass (123)
cl.color = "Yellow"

c2 = SimpleClass (456)
c2.name = "Mehmet"

print ("cl says: " + cl.tell the secret())
cl says: The code = 123

print ("c2 says: " + c2.tell the secret())
c2 says: The code = 456

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

11

OBJECTS OF A CLASS
Adding attributes per object

cl = SimpleClass (123)
cl.color = "Yellow"

c2 = SimpleClass (456)
c2.name = "Mehmet"

print (cl.color)

Yellow

print (c2.color)

AttributeError: 'SimpleClass' object has no attribute

'color'
Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

METHODS VERSUS FUNCTIONS

e Methods act on objects: You need an object!

a list = [1, 2, 3]
a list.reverse ()
print (a list)

[3, 2, 1]

functions are not bound to an object

a list = [1, 2, 3]
print (list (reversed(a list)))

[3, 2, 1]

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

13

SPECIAL METHODS

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

15

SPECIAL METHODS OF A CLASS

Special methods use double underscores in their name:

e Constructor: __init ()
e Callable: call ()

e Printing a classinstance: __str__ ()

Operator overloading: Using operators +, -, * between objects

e Notequalsign: ne_ ()

e Plusoperator: __add__ ()

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

16

CALLABLES

e Especially for classes defining a formula

e Call aclassinstance like a function

class Formula:

def init (self, a):

gglf.a = a

def call (self, a, Xx):
return self.a * x

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

17

CALLABLES

class Formula:

def init (self, a):

self.a = a

def call (self, a, x):
return self.a * x

Formula is a class:

f = Formula (0)
print (f)

< main .Formula object at 0x0000023543DEEF30>

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

18

CALLABLES

class Formula:

def init (self, a):

self.a = a

def call (self, a, x):

return self.a * x

Formula can be called like a function:

f called f(o, 4)
print (f called)

24

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

19

TELLING HOW TO PRINT AN INSTANCE: STR()

class Formula:

def init (self, a):

self.a = a

def str (self) :

return f"My special format: {self.a} + 5"

f = Formula (6)
print (f)

My special format: 6 + 5

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

20

OPERATOR OVERLOADING

Using for example “+” between custom class objects

class Figure:

def init (self, a):

self.a = a

def add (self, a, x):

return self.a * x

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

21

CLASS HIERARCHY

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

23

EXAMPLE CLASS

class Vehicle:

location = None

city list = ["Izmir", "Istanbul", "Bursa"]

def init (self, location):
self.location = str(location)

def drive to city(self, city):
self.location = city

def tell current location(self, city):
return self.location

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

24

IF YOU NEED SOMETHING SIMILAR BUT NOT EXACTLY
THE SAME

Cargo delivery service: We want to transport goods

e Alist of stock of goods in each city ? as an attribute ?
e Amethod deliver()?

Bus transport of persons

e time tables
e number of seats

e ticket price per person

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

25

IF YOU NEED SOMETHING SIMILAR BUT NOT EXACTLY

THE SAME

Do we need to write code for a whole new class ?

e How to add functionality to the vehicle class ?

e Change methods?

We can derive a

e Keepingtheo
e Extending wit

e Adapting met

class from another class

d functionality

N new methods/attributes

nods

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

26

FAMILY OF CLASSES

class DerivedClass (BaseClass) :
<statement>

<statement>

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

27

EXAMPLE CLASS

class Vehicle:

city list = ["Izmir", "Istanbul", "Bursa"]

def i1nit (self, location):
self.city list = ["Izmir", "Istanbul", "Bursa"]
self.location = location

def drive to city(self, city):
print (f"Driving from {self.location} to {city}")
self.location = city

car = Vehicle("Izmir")
car.drive to city("Istanbul")

Driving from Izmir to Istanbul
Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

28

EXAMPLE CLASS

class Vehicle:

city list = ["Izmir", "Istanbul", "Bursa"]

def i1nit (self, location):
self.city list = ["Izmir", "Istanbul", "Bursa"]
self.location = location

def drive to city(self, city):
print (f"Driving from {self.location} to {city}")
self.location = city

bus = Vehicle("Izmir")
bus.drive to city("Istanbul")

Driving from Izmir to Istanbul
Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

29

DERIVED CLASSES

Make a derived class (subclass)

e Use super() to access BaseClass

e Usesuper(). init () to have BaseClass constructor

class DerivedClass (BaseClass) :

<attribute>
<attribute>

<method>
<method>

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

30

DERIVED CLASSES

class Vehicle:

def init (self, location):
self.city list = ["Izmir", "Istanbul", "Bursa"]
self.location = location

def drive to city(self, city):
print (f"Driving from {self.location} to {city}")
self.location = city

class Bus (Vehicle) :

def 1nit (self, location, passengers):
super (). 1init (location)
self.max passengers = 4

self.passengers = passengers

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

DERIVED CLASSES

class Bus (Vehicle) :

def init (self, location, passengers) :

super (). 1nit (location)
self.max passengers = 4
self.passengers = passengers

bus = Bus ("Izmir", ["Ahmet",

1] Zeynepn])
bus.drive to city("Istanbul")

Driving from Izmir to Istanbul

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

32

DERIVED CLASSES, USE SUPERCLASS METHOD

class Bus (Vehicle) :

super (). 1nit (location)
self.max passengers = 4
self.passengers = passengers

def init (self, location, passengers):

def accept passenger (self, name) :

if len(self.passengers) < self.max passengers:

self.passengers.append (name)
else:

print ("Sorry, the bus 1s full !")

bus = Bus ("Izmir", ["Ahmet", "Zeynep"])
bus.drive to city("Istanbul")

Driving from Izmir to Istanbul

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

33

DERIVED CLASSES, USE SUBCLASS METHOD

class Bus (Vehicle) :

super (). 1nit (location)
self.max passengers = 4
self.passengers = passengers

def init (self, location, passengers):

def accept passenger (self, name) :

if len(self.passengers) < self.max passengers:

self.passengers.append (name)
else:

print ("Sorry, the bus 1s full !")

bus = Bus ("Izmir", ["Ahmet", "Zeynep"])
bus.accept passenger ("Kemal'); print (bus.passengers)

['Ahmet', 'Zeynep', 'Kemal']

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

34

DERIVED CLASSES, USE SUBCLASS METHOD

bus = Bus("Izmir", ["Ahmet", "Zeynep"])
bus.accept passenger ("Mehmet")
print (bus.passengers)

['Ahmet', 'Zeynep', 'Mehmet']

bus.accept passenger ("Rani'")
print (bus.passengers)

['Ahmet', 'Zeynep', 'Mehmet', 'Rani']

bus.accept passenger ("Bob")
print (bus.passengers)

Sorry, the bus 1s full !
['"Ahmet', 'Zeynep', 'Mehmet', 'Rani']

Lecture 11: Object Oriented Programming: Classes (Ch. 7 &9)

35

CLASSES

e For a more comprehensive overview of the possibilities of classes,
see e.g. the video of the OpenCourseWare class: CS50 course on
Object Oriented Programming

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

36

https://cs50.harvard.edu/python/2022/weeks/8/
https://cs50.harvard.edu/python/2022/weeks/8/

Lecture 11: Object Oriented Programming: Classes (Ch. 7 & 9)

