
PHOT 110: Introduction to programming
LECTURE 06

Michaël Barbier, Spring semester (2023-2024)

1Lecture 11: Input/Output and error-handling

HANDLING RUNTIME ERRORS
(TEXTBOOK CH. 4)

3Lecture 11: Input/Output and error-handling

DIFFERENT KINDS OF ERRORS
Remember that we have different types of errors

Syntax errors: code inconsistent with the Python language, the
code will not run (i.e. not start).

Runtime errors: exceptions occurring while the program runs, the
code will crash.

Semantic errors: the code does not what was intended

Try to make the following files error free:

lecture_11_ex_errors_books.py

lecture_11_ex_errors_runtime.py

4Lecture 11: Input/Output and error-handling

EXAMPLE: INTEGER DIVISION
Remember the function for division:

def div(number, divisor):1
 """ divides n/m and returns the quotient and rest """2
 quotient = number // divisor3
 remainder = number % divisor4

5
 return quotient, remainder6

7
print("Division of n/m:")8
n = int(input("\tn = "))9
m = int(input("\tm = "))10
quotient, remainder = div(n, m)11
print(f"Dividing {n} by {m} = {quotient}, rest = {remaind12

5Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "5.6"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

ValueError: invalid literal for int() with base 10: '5.6'

6Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "4,1"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

ValueError: invalid literal for int() with base 10: '4,1'

7Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "4.00"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

ValueError: invalid literal for int() with base 10: '4.00'

8Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "0x002A"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

ValueError: invalid literal for int() with base 10: '0x002A'

9Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "010"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

Provided number n = 10 with type = <class 'int'>

10Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

input function returns a string1
n_str = input("n = ")2
n_str = "5-2"3
n = int(n_str)4
print(f"Provided number n = {n} with type = {type(n)}")5

ValueError: invalid literal for int() with base 10: '5-2'

11Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
User input can be anything runtime errors / crashes

runtime errors

undefined behavior: no crash but wrong results

→

print(f"The division {-9} / {4} = {-9 // 4} with remainde1
print(f"The division {9} / {-4} = {9 // -4} with remainde2

The division -9 / 4 = -3 with remainder = 3
The division 9 / -4 = -3 with remainder = -3

12Lecture 11: Input/Output and error-handling

USER INPUT AND RUNTIME ERRORS
Two options to prevent runtime error crashes:

1. Anticipate any error: Validate the input data

2. Handle the error when it occurs

Try to prevent the error by input validation?
Or handle the error “when it already occurred”?

In Python preventing a problem is not always better than treating it !

13Lecture 11: Input/Output and error-handling

OPTION (1): TEST INPUT ON VALIDITY
We can use eval function to evaluate a string expression

function isinstance(object, type) checks if an object is of
type

n_str = input("provide a number for n = ")1
n_str = "1.3"2
n = eval(n_str)3
print(f"Provided number n = {n} with type = {type(n)}")4
return validity5
if not isinstance(n, int):6
 print("Input is invalid !")7

Provided number n = 1.3 with type = <class 'float'>
Input is invalid !

14Lecture 11: Input/Output and error-handling

OPTION (2): ERROR HANDLING
When a runtime error occurs Python raises an exception

To catch an error we use the try - except block

Statements in the try block are executed until an exception is
encountered

The except block is executed on encountering an exception

try:1
 <statements>2
except:3
 <statements>4

15Lecture 11: Input/Output and error-handling

OPTION (2): ERROR HANDLING
When a runtime error occurs Python raises an exception

To catch an error we use the try - except block

Statements in the try block are executed until an exception is
encountered

The except block is executed on encountering an exception

n_str = input("provide a number for n = ")1
try:2
 n_str = "1.3"3
 n = int(n_str)4
except:5
 print("Input is invalid !")6

Input is invalid !

16Lecture 11: Input/Output and error-handling

RECOVERING FROM RUNTIME ERRORS
If the user input was invalid:

Allow the user to try again

Specify the problem to the user

Look at the Python script file:
lecture_11_ex_errors_validate_input.py

17Lecture 11: Input/Output and error-handling

MORE COMPLEX ERROR-HANDLING
try:1
 n = int("3"); m = int("5.5")2
 quotient = n // m3
except ZeroDivisionError:4
 print("Can't divide by zero")5
except ValueError:6
 print("Please provide two integers")7
else:8
 print(f"quotient = {quotient}")9
finally:10
 # Always executed11
 print(f"You tried to divide n / m")12

Please provide two integers
You tried to divide n / m

18Lecture 11: Input/Output and error-handling

MORE COMPLEX ERROR-HANDLING
try:1
 n = int("5"); m = int("0")2
 quotient = n // m3
except ZeroDivisionError:4
 print("Can't divide by zero")5
except ValueError:6
 print("Please provide two integers")7
else:8
 print(f"quotient = {quotient}")9
finally:10
 # Always executed11
 print(f"You tried to divide n / m")12

Can't divide by zero
You tried to divide n / m

19Lecture 11: Input/Output and error-handling

MORE COMPLEX ERROR-HANDLING
try:1
 n = int("6"); m = int("2")2
 quotient = n // m3
except ZeroDivisionError:4
 print("Can't divide by zero")5
except ValueError:6
 print("Please provide two integers")7
else:8
 print(f"quotient = {quotient}")9
finally:10
 # Always executed11
 print(f"You tried to divide n / m")12

quotient = 3
You tried to divide n / m

20Lecture 11: Input/Output and error-handling

MORE COMPLEX ERROR-HANDLING: else
else keyword allows to split the error handling of the try block:

try-part which you want to catch errors now

else-part which you have code that has its own error handling,
or should crash if a problem occurs.

21Lecture 11: Input/Output and error-handling

MORE COMPLEX ERROR-HANDLING: finally
Usage of finally is used to gracefully crash, examples would be:

you opened a file, a problem occurred but it needs to be closed
before stopping

script saved temporary results: clean up

22Lecture 11: Input/Output and error-handling

INPUT AND OUTPUT

24Lecture 11: Input/Output and error-handling

INPUT/OUTPUT WITH PYTHON (I/O)
Command line arguments

We can read and writes files to and from the hard disk

text files

formatted text: xml, html, markdown, postscript

multimedia: music, images, video

25Lecture 11: Input/Output and error-handling

INPUT/OUTPUT WITH PYTHON (I/O)
Command line arguments

We can read and writes files to and from the hard disk

text files

formatted text: xml, html, markdown, postscript

multimedia: music, images, video

Interactive input events:

keyboard and mouse

we have to constantly “wait” for them? How?

Graphical user interfaces

26Lecture 11: Input/Output and error-handling

EXECUTING A SCRIPT IN THE TERMINAL OR
COMMAND LINE

Command line arguments can be found with sys.argv

Code to print the arguments:

Look at the Python script file:
lecture_11_ex_command_line.py

import sys1
for i, arg in enumerate(sys.argv):2
 print(f"Argument {i} = {sys.argv[i]}")3

27Lecture 11: Input/Output and error-handling

EXECUTING A SCRIPT IN THE TERMINAL OR
COMMAND LINE

More advanced argument handling using argparse

define type of argument

help description

positional vs. named arguments

Look at the Python script file:
lecture_11_ex_argparse.py

28Lecture 11: Input/Output and error-handling

READING FILES FROM THE HARD DISK
Make sure the file path exists

Be careful with file path separators

Unix/Linux uses / symbols (forward slash)

Windows uses \ symbols (backslash)

The \ separator should be escaped \\

Python expects / or \\ as file separator !

Problem with file paths in Windows:1
file_path_in_windows = "C:\Users\mich\Documents\my_file.t2
file_path_in_linux = "/home/mich/Documents/my_file.txt"3

29Lecture 11: Input/Output and error-handling

READING FILES FROM THE HARD DISK
Make sure the file path exists

Be careful with file path separators

Unix/Linux uses / symbols (forward slash)

Windows uses \ symbols (backslash)

The \ separator should be escaped \\

While you occupy a file for reading/adapting it might not be
accessible by others

Important to close the file after finishing

What happens if your script crashes while it was writing to a file?

30Lecture 11: Input/Output and error-handling

TEXT FILES
Opening the file and closing after done

When do you use this method:

Multiple separate read/write access

for a longer time, doing complex actions

file_path = "samples/sample_text_file.txt"1
file = open(file_path)2
print(file.read())3
file.close()4

This is the first line of the file.
The second line ...
I like banana cake !

31Lecture 11: Input/Output and error-handling

TEXT FILES
Opening using the with keyword

Automatically closes the file after it

file_path = "samples/sample_text_file.txt"1
with open(file_path) as file:2
 print(file.read())3

This is the first line of the file.
The second line ...
I like banana cake !

32Lecture 11: Input/Output and error-handling

HANDLING FILES THAT DON’T EXIST
Opening using the open keyword

Ensure that file is closed afterwards by finally

file_path = "samples/sample_text3_file.txt"1
try:2
 file = open(file_path, "r")3
 print(file.read())4
except FileNotFoundError:5
 print("The file does not exist")6
except:7
 print("Some issue occurred during file reading")8
finally:9
 file.close()10

The file does not exist

33Lecture 11: Input/Output and error-handling

VECTOR GRAPHICS: SVG-FILES
Open the file in PyCharm

file_path = "samples/sample_vector_graphics.svg"1
with open(file_path) as file:2
 print(file.read())3

<svg version="1.1"
 width="400" height="400"
 xmlns="http://www.w3.org/2000/svg">

 <rect width="100%" height="100%" fill="red" />
 <circle cx="150" cy="100" r="80" fill="green" />
 <text x="150" y="125" font-size="60" text-anchor="middle"
fill="white">SVG</text>

</svg>

34Lecture 11: Input/Output and error-handling

KEYBOARD AND MOUSE INPUT
Install the package pynput

Look up the documentation to control keyboard and mouse,
example:

from pynput.mouse import Button, Controller1
2

mouse = Controller()3
4

Read pointer position5
print(f"Mouse position is {mouse.position}")6

7
Set pointer position8
mouse.position = (100, 200)9
print(f"Mouse moved to {mouse.position}")10

35Lecture 11: Input/Output and error-handling

Lecture 11: Input/Output and error-handling

