PHOT 110: Introduction to programming
LECTURE 03

Michaél Barbier, Spring semester (2023-2024)

Lecture 03: while, for, lists, and iterators

CONTROL FLOW: CONDITIONAL BRANCHING AND

LOOPS

* Branching & loops

(" sTarT)
|

/ INPUT T /

False
T<0
True l

H« 5

!

H«« 2

|

OUTPUT “It is cold,
heater at 5”

//

OUTPUT “Itis
warm, heater at 2”

/

v
(enp)

¥
(END)

while

loop

Lecture 03: while, for, lists, and iterators

>

N>1

True

N<N-1

!

f<fXN

False

/

OUTPUT f

/

b
(END)

CONTROL FLOW: CONDITIONAL BRANCHING AND
LOOPS

e Branching if/else statements
e The while loop
e Lists of objects

e The for loop: iterating over a list

Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING:
IF/ELIF/ELSE

CONDITIONAL BRANCHING

e Run code-blocks according to a condition
= An 1f code-block is executed when the condition is True

= An else code-block is executed when the conditionis False

if <condition>: if <condition>:
<statement> <statement>

else <condition>:
<statement>

Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING

e elif keyword actsasaelse if

e multiple elif statements can follow an if, with an optional else

i1f <condition>: if <condition>:
<statement> <statement>

elif <condition>: elif <condition>:
<statement> <statement>

elif <condition>: elif <condition>:
<statement> <statement>

else <condition>:
<statement>

Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING

e Run code-blocks according to a condition

= An 1f code-block is executed when the condition is True

age = 46
if age >= 16:
print ("You can drive a tractor") # 1f code-block

You can drive a tractor

Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING

e Run code-blocks according to a condition

s if code-blockis executed when the condition is True

e The indented code-block can contain multiple statements

speed limit = 120
speed 137
if speed > speed limit:
speed diff = speed - speed limit
print (f"You drive {speed diff} km/h too fast")

You drive 17 km/h too fast

Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING

e Run code-blocks according to a condition

s if code-blockis executed when the condition is True

» else code-block is executed when the condition is False

age = 11
if age > 18:
print ("You can drive a car")

else:
print ("You should take the bus")

You should take the bus

Lecture 03: while, for, lists, and iterators

10

CONDITIONAL BRANCHING

e Run code-blocks according to a condition

s if code-blockis executed when the condition is True

» else code-block is executed when the condition is False

» elif keyword actsasaelse if

age = 17
if age > 18:
print ("You can drive a car")

elif age > 16:
print ("You can drive a tractor")

else:
print ("You can ride a bicycle")

You can drive a tractor

Lecture 03: while, for, lists, and iterators

11

CONDITIONAL BRANCHING

e Run code-blocks according to a condition
s if code-block is executed when the condition is True
e The indented code-block can contain multiple statements

e indentation is the same within a code-block

age = 19
if age > 18:
print ("You can drive a car") # This line 1s indent

print ("You can drive a bicycle™)
print ("You can drive a tractor")

IndentationError: unindent does not match any outer
indentation level (<string>, 1line 4)

Lecture 03: while, for, lists, and iterators 12

WHILE LOOP

Lecture 03: while, for, lists, and iterators

14

THE WHILE LOOP

e Repeats code-block until the condition is False

e Awhile loop is used when:
= we don’t know how many iterations we need, and
= we have a stopping criterium/condition

while <condition>:
<statement>
<statement>
<statement>

<statement>

Lecture 03: while, for, lists, and iterators

THE WHILE LOOP

e Repeats code-block until the condition is False

e Awhile loop is used when:

= we don’t know how many iterations we need, and

= we have a stopping criterium/condition

The
The
The
End

t = 0; t max = 10
while t < t max:

t =t + 3.86

print (f"The elapsed time 1s: {t:5.3} s")
print ("End of the program")

elapsed time 1s: 3.86 s
elapsed time 1is: 7.72 s
elapsed time 1s: 11.6 s
of the program

Lecture 03: while, for, lists, and iterators

16

THE WHILE LOOP

e Repeats code-block until the condition is False
e Cangetin an infinite loop!

= Stop the program with the stop button, in a terminal press key
combination Ctrl +c

» Adapt the stopping criterium/condition

n = 0
while n > -100:
n =n 4+ 1

print (f"The current number 1is: {n}")

Lecture 03: while, for, lists, and iterators

17

PYTHON LISTS

Lecture 03: while, for, lists, and iterators

19

LISTS OF OBJECTS

e Alist can contain several objects

e The object types can be different

e Lists are also objects

A list with mixed object types

my list of objects = ["It's Monday",

Lists can be elements of a 1list

a_list_with_a_list

(5,

10.5,

print(a list with a list)
(5, 10.5, ['green', 'red'],

True]

["green",

Lecture 03: while, for, lists, and iterators

False, 34,

"red"] ,

23.4]

True]

20

LISTS OF OBJECTS

e Length of the list is the number of elements applying the 1en()
function: len(a_list)

e The object types can be different

e Lists are also objects

A 1list with mixed object types
my list of objects = ["It's Monday", False, 34, 23.4]

Lists can be elements of a list
a list with a list = [5, 10.5, ["green", "red"], True]
print(a list with a list)

[5, 10.5, ['green', 'red'], True]

Lecture 03: while, for, lists, and iterators

21

APPENDING AN ELEMENT TO A LIST

e Append an element to the end of a list

e Length (number of elements) of the list increases with one

Printing the first and then the second element

a list = ["First", False, 34, 23.4]

print(a list)

print (f"The length of the list = {len(a list)}")

a list.append("extra element")

print(a list)

print (f"The length of the adapted list = {len(a list)}")

['First', False, 34, 23.4]

The length of the list = 4

['First', False, 34, 23.4, 'extra element']
The length of the adapted list = 5

Lecture 03: while, for, lists, and iterators

MORE METHODS OF LIST

e We use the dot-notation: the list.append(the element)
e This notation is to call a method on an object

e We will see how to make our own methods (and classes) later in the
chapter on object oriented programming

e There are more methods we can make use of, see

https://docs.python.org/3/tutorial/datastructures.html#more-on-
lists

a list = ["First", False, 34, 5, 34] # Define the 1list
a list.remove (34) # Remove first 34
a list.insert (3, "inserted string") # Insert str
print (a list) # Print the 1ist

['First', False, 5, 'inserted string', 34]

Lecture 03: while, for, lists, and iterators 23

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

SELECTING ELEMENTS IN A LIST

e Select an element of a list by its index
e syntax forindexing: a_list[element index]
e index is zero-based

e negative index starts from the end of the list

Printing the first and then the second element
a list = ["First", False, 34, 23.4]
print (a 1i1st([0])

print(a list[1])

First
False

Lecture 03: while, for, lists, and iterators

24

SELECTING ELEMENTS IN A LIST

e Select an element of a list by its index
e syntax forindexing: a_list[element index]
e index is zero-based

e negative index starts from the end of the list

Using negative indexing
a list = ["First", False, 34, 23.4]
print (a list[-1])

23.4

Lecture 03: while, for, lists, and iterators

25

SLICING A LIST

e Selecting multiple elements is called slicing

e syntax forslicing:a_list[start:stop exclusive]

A list with mixed object types
a list = [23, 45, 65, 78, 92, 100, 102, 105]
print(a list[2:5])

[65, 78, 92]

Lecture 03: while, for, lists, and iterators

26

SLICING A LIST

e Selecting multiple elements is called slicing

e syntax forslicing:a_list[start:stop exclusive]

An empty start index starts from the first index
a list = [23, 45, 65, 78, 92, 100, 102, 105]
print(a list[:5])

[23, 45, 65, 78, 92]
An empty end index end at the last index
a list = [23, 45, 65, 78, 92, 100, 102, 105]
print(a list([3:])

(78, 92, 100, 102, 105]

Lecture 03: while, for, lists, and iterators

27

SLICING A LIST

e Selecting multiple elements is called slicing
e syntax forslicing:a_list[start:stop exclusive]

e Additional step parameter:
a_list[start:stop exclusive:step]

Take every second element by stepping
a list = [23, 45, o5, 78, 92, 100, 102, 105]
print(a list[1l::2])

(45, 78, 100, 105]

Lecture 03: while, for, lists, and iterators

28

THE FOR LOOP

Lecture 03: while, for, lists, and iterators

30

THE FOR LOOP

e To iterate: to repeat a process

e Afor loop can be used when:
= the number of iterations is known, or

= e iterate over a list of elements

for <element> in <list>:
<statement>
<statement>

<statement>

Lecture 03: while, for, lists, and iterators

31

THE FOR LOOP

e To iterate: to repeat a process

e Afor loop can be used when:
= the number of iterations is known, or

= e iterate over a list of elements

Print all elements of a 1list
days — ["Mon"’ "Tue"’ "Wed", "Thu",
for el in days:

print (el)

Mon
Tue
Wed
Thu

Fri
Lecture 03: while, for, lists, and iterators

"Fri"]

32

INTERMEZZO: USING RANGE()

e Arange is a sequence type (like 1ist) for integer numbers

e Constructitusing: range(start, stop_exclusive, step)

e Itis convenient for for loop

e See also: https://docs.python.org/3/library/stdtypes.html#range

A list with mixed object types

a range = range(l, 10, 2) # Construct a range
print (a range) # Lazy evaluated
print (list (a range)) # Converted to a 1list

range (1, 10, 2)
(1, 3, 5, 7, 9]

Lecture 03: while, for, lists, and iterators

33

https://docs.python.org/3/library/stdtypes.html#range

THE FOR LOOP

e Toiterate: to repeat a process
e Afor loop can be used when:
= the number of iterations is known, or

= e iterate over a list of elements

Use the range function to get a sequence of numbers
for 1 in range(1,10,2) :
print (1)

O J 01w

Lecture 03: while, for, lists, and iterators

34

THE FOR LOOP

e To iterate: to repeat a process

e Afor loop can be used when:
= the number of iterations is known, or

= e iterate over a list of elements

Use the range function to get indices
days — ["Mon"’ "Tue"’ "Wed", "Thu", "Fri",
for 1 in range (0, len(days),?2):

print (days[i])

Mon
Wed
Fri
sSun

Lecture 03: while, for, lists, and iterators

"Sat",

LA Sun" :l

35

EXAMPLE SCIENTIFIC ALGORITHM

NUMERICAL APPROX. OF THE TRAJECTORY OF A BALL

e Gravitation: ¢ = 9.81 m/s?
e Air resistance: ignore for a slow heavy ball

e horizontal velocity is constant

Lecture 03: while, for, lists, and iterators

38

TRAJECTORY OF A BALL

Load library for sine and cosine
import math

Algorithm parameters in MKS units
vl) = 6

angle in degrees = 37

g = 9.81

x =0; y=1.20; t =0

Calculate initial velocity 1in X

and y directions
angle = angle in degrees * math.pi/180
vx = v0 * math.cos (angle)

vy = v0 * math.sin (angle)

Lecture 03: while, for, lists, and iterators

39

TRAJECTORY OF A BALL

t = 0.10: (0.48,1.40)
t 0.20: (0.96,1.63)
t 0.30: (1.44,1.69)
t 0.40: (1.92,1.60)
t 0.50: (2.40,1.53)
t 0.00: (2.838,1.31)
t 0.70: (3.35,0.98)
t 0.80: (3.83,0.506)
t 0.90: (4.31,0.04)
t =1.00: (4.79,-0.58)

Lecture 03: while, for, lists, and iterators

NUMERICAL APPROXIMATION ERRORS

Comparison with exact trajectory obtained before

y (in m)

1.51

1.07

0.5

0.0-

—0.5

— Exact
— Approx.

2 3 4
x (in m)

Lecture 03: while, for, lists, and iterators

41

SUMMARY

Control flow exists of
» Branching if/else

» while/for loops

Allows implementing complex algorithms

Lists are versatile data structures

The for loop: iterating over list elements

More complex scientific algorithms:

= |terative methods

= Stopping criteria

Lecture 03: while, for, lists, and iterators

42

Lecture 03: while, for, lists, and iterators

