
PHOT 110: Introduction to programming
LECTURE 03

Michaël Barbier, Spring semester (2023-2024)

1Lecture 03: while, for, lists, and iterators

CONTROL FLOW: CONDITIONAL BRANCHING AND
LOOPS

2Lecture 03: while, for, lists, and iterators

CONTROL FLOW: CONDITIONAL BRANCHING AND
LOOPS

Branching if/else statements

The while loop

Lists of objects

The for loop: iterating over a list

3Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING:
IF/ELIF/ELSE

5Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

An if code-block is executed when the condition is True

An else code-block is executed when the condition is False

if <condition>:1
 <statement>2
 ...3

if <condition>:1
 <statement>2
 ...3
else <condition>:4
 <statement>5
 ...6

6Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
elif keyword acts as a else if

multiple elif statements can follow an if, with an optional else

if <condition>:1
 <statement>2
 ...3
elif <condition>:4
 <statement>5
 ...6
elif <condition>:7
 <statement>8
 ...9
else <condition>:10
 <statement>11
 ...12

if <condition>:1
 <statement>2
 ...3
elif <condition>:4
 <statement>5
 ...6
elif <condition>:7
 <statement>8
 ...9

7Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

An if code-block is executed when the condition is True

age = 461
if age >= 16:2
 print("You can drive a tractor") # if code-block3

You can drive a tractor

8Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

if code-block is executed when the condition is True

The indented code-block can contain multiple statements

speed_limit = 1201
speed = 1372
if speed > speed_limit:3
 speed_diff = speed - speed_limit4
 print(f"You drive {speed_diff} km/h too fast")5

You drive 17 km/h too fast

9Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

if code-block is executed when the condition is True

else code-block is executed when the condition is False

age = 111
if age > 18:2
 print("You can drive a car")3
else:4
 print("You should take the bus")5

You should take the bus

10Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

if code-block is executed when the condition is True

else code-block is executed when the condition is False

elif keyword acts as a else if

age = 171
if age > 18:2
 print("You can drive a car")3
elif age > 16:4
 print("You can drive a tractor")5
else:6
 print("You can ride a bicycle")7

You can drive a tractor

11Lecture 03: while, for, lists, and iterators

CONDITIONAL BRANCHING
Run code-blocks according to a condition

if code-block is executed when the condition is True

The indented code-block can contain multiple statements

indentation is the same within a code-block

age = 191
if age > 18:2
 print("You can drive a car") # This line is indent3
 print("You can drive a bicycle")4
 print("You can drive a tractor")5

IndentationError: unindent does not match any outer
indentation level (<string>, line 4)

12Lecture 03: while, for, lists, and iterators

WHILE LOOP

14Lecture 03: while, for, lists, and iterators

THE WHILE LOOP
Repeats code-block until the condition is False

A while loop is used when:

we don’t know how many iterations we need, and

we have a stopping criterium/condition

while <condition>:1
 <statement>2
 <statement>3
 <statement>4
 ...5
 <statement>6

15Lecture 03: while, for, lists, and iterators

THE WHILE LOOP
Repeats code-block until the condition is False

A while loop is used when:

we don’t know how many iterations we need, and

we have a stopping criterium/condition

t = 0; t_max = 101
while t < t_max:2
 t = t + 3.863
 print(f"The elapsed time is: {t:5.3} s")4
print("End of the program")5

The elapsed time is: 3.86 s
The elapsed time is: 7.72 s
The elapsed time is: 11.6 s
End of the program

16Lecture 03: while, for, lists, and iterators

THE WHILE LOOP
Repeats code-block until the condition is False

Can get in an infinite loop !

Stop the program with the stop button, in a terminal press key
combination Ctrl + c

Adapt the stopping criterium/condition

n = 01
while n > -100:2
n = n + 13
print(f"The current number is: {n}")4

17Lecture 03: while, for, lists, and iterators

PYTHON LISTS

19Lecture 03: while, for, lists, and iterators

LISTS OF OBJECTS
A list can contain several objects

The object types can be different

Lists are also objects

A list with mixed object types1
my_list_of_objects = ["It's Monday", False, 34, 23.4]2

3
Lists can be elements of a list4
a_list_with_a_list = [5, 10.5, ["green", "red"], True]5
print(a_list_with_a_list)6

[5, 10.5, ['green', 'red'], True]

20Lecture 03: while, for, lists, and iterators

LISTS OF OBJECTS
Length of the list is the number of elements applying the len()
function: len(a_list)

The object types can be different

Lists are also objects

A list with mixed object types1
my_list_of_objects = ["It's Monday", False, 34, 23.4]2

3
Lists can be elements of a list4
a_list_with_a_list = [5, 10.5, ["green", "red"], True]5
print(a_list_with_a_list)6

[5, 10.5, ['green', 'red'], True]

21Lecture 03: while, for, lists, and iterators

APPENDING AN ELEMENT TO A LIST
Append an element to the end of a list

Length (number of elements) of the list increases with one

Printing the first and then the second element1
a_list = ["First", False, 34, 23.4]2
print(a_list)3
print(f"The length of the list = {len(a_list)}")4
a_list.append("extra_element")5
print(a_list)6
print(f"The length of the adapted list = {len(a_list)}")7

['First', False, 34, 23.4]
The length of the list = 4
['First', False, 34, 23.4, 'extra_element']
The length of the adapted list = 5

22Lecture 03: while, for, lists, and iterators

MORE METHODS OF LIST
We use the dot-notation: the_list.append(the_element)

This notation is to call a method on an object

We will see how to make our own methods (and classes) later in the
chapter on object oriented programming

There are more methods we can make use of, see
https://docs.python.org/3/tutorial/datastructures.html#more-on-
lists

a_list = ["First", False, 34, 5, 34] # Define the list1
a_list.remove(34) # Remove first 342
a_list.insert(3, "inserted_string") # Insert str3
print(a_list) # Print the list4

['First', False, 5, 'inserted_string', 34]
23Lecture 03: while, for, lists, and iterators

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

SELECTING ELEMENTS IN A LIST
Select an element of a list by its index

syntax for indexing: a_list[element_index]

index is zero-based

negative index starts from the end of the list

Printing the first and then the second element1
a_list = ["First", False, 34, 23.4]2
print(a_list[0])3
print(a_list[1])4

First
False

24Lecture 03: while, for, lists, and iterators

SELECTING ELEMENTS IN A LIST
Select an element of a list by its index

syntax for indexing: a_list[element_index]

index is zero-based

negative index starts from the end of the list

Using negative indexing1
a_list = ["First", False, 34, 23.4]2
print(a_list[-1])3

23.4

25Lecture 03: while, for, lists, and iterators

SLICING A LIST
Selecting multiple elements is called slicing

syntax for slicing: a_list[start:stop_exclusive]

A list with mixed object types1
a_list = [23, 45, 65, 78, 92, 100, 102, 105]2
print(a_list[2:5])3

[65, 78, 92]

26Lecture 03: while, for, lists, and iterators

SLICING A LIST
Selecting multiple elements is called slicing

syntax for slicing: a_list[start:stop_exclusive]

An empty start_index starts from the first index1
a_list = [23, 45, 65, 78, 92, 100, 102, 105]2
print(a_list[:5])3

[23, 45, 65, 78, 92]

An empty end_index end at the last index1
a_list = [23, 45, 65, 78, 92, 100, 102, 105]2
print(a_list[3:])3

[78, 92, 100, 102, 105]

27Lecture 03: while, for, lists, and iterators

SLICING A LIST
Selecting multiple elements is called slicing

syntax for slicing: a_list[start:stop_exclusive]

Additional step parameter:
a_list[start:stop_exclusive:step]

Take every second element by stepping1
a_list = [23, 45, 65, 78, 92, 100, 102, 105]2
print(a_list[1::2])3

[45, 78, 100, 105]

28Lecture 03: while, for, lists, and iterators

THE FOR LOOP

30Lecture 03: while, for, lists, and iterators

THE FOR LOOP
To iterate: to repeat a process

A for loop can be used when:

the number of iterations is known, or

we iterate over a list of elements

for <element> in <list>:1
 <statement>2
 <statement>3
 ...4
 <statement>5

31Lecture 03: while, for, lists, and iterators

THE FOR LOOP
To iterate: to repeat a process

A for loop can be used when:

the number of iterations is known, or

we iterate over a list of elements

Print all elements of a list1
days = ["Mon", "Tue", "Wed", "Thu", "Fri"]2
for el in days:3
 print(el)4

Mon
Tue
Wed
Thu
Fri

32Lecture 03: while, for, lists, and iterators

INTERMEZZO: USING RANGE()
A range is a sequence type (like list) for integer numbers

Construct it using: range(start, stop_exclusive, step)

It is convenient for for loop

See also: https://docs.python.org/3/library/stdtypes.html#range

A list with mixed object types1
a_range = range(1, 10, 2) # Construct a range2
print(a_range) # Lazy evaluated3
print(list(a_range)) # Converted to a list4

range(1, 10, 2)
[1, 3, 5, 7, 9]

33Lecture 03: while, for, lists, and iterators

https://docs.python.org/3/library/stdtypes.html#range

THE FOR LOOP
To iterate: to repeat a process

A for loop can be used when:

the number of iterations is known, or

we iterate over a list of elements

Use the range function to get a sequence of numbers1
for i in range(1,10,2):2
 print(i)3

1
3
5
7
9

34Lecture 03: while, for, lists, and iterators

THE FOR LOOP
To iterate: to repeat a process

A for loop can be used when:

the number of iterations is known, or

we iterate over a list of elements

Use the range function to get indices1
days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]2
for i in range(0,len(days),2):3
 print(days[i])4

Mon
Wed
Fri
Sun

35Lecture 03: while, for, lists, and iterators

EXAMPLE SCIENTIFIC ALGORITHM

37Lecture 03: while, for, lists, and iterators

NUMERICAL APPROX. OF THE TRAJECTORY OF A BALL

Gravitation: m/s

Air resistance: ignore for a slow heavy ball

horizontal velocity is constant

g = 9.81 2

38Lecture 03: while, for, lists, and iterators

TRAJECTORY OF A BALL
Load library for sine and cosine1
import math2

3
Algorithm parameters in MKS units4
v0 = 65
angle_in_degrees = 376
g = 9.817
x = 0; y = 1.20; t = 08

9
Calculate initial velocity in x 10
and y directions11
angle = angle_in_degrees * math.pi/18012
vx = v0 * math.cos(angle)13
vy = v0 * math.sin(angle)14

39Lecture 03: while, for, lists, and iterators

TRAJECTORY OF A BALL
t = 0.10: (0.48,1.46)
t = 0.20: (0.96,1.63)
t = 0.30: (1.44,1.69)
t = 0.40: (1.92,1.66)
t = 0.50: (2.40,1.53)
t = 0.60: (2.88,1.31)
t = 0.70: (3.35,0.98)
t = 0.80: (3.83,0.56)
t = 0.90: (4.31,0.04)
t = 1.00: (4.79,-0.58)

40Lecture 03: while, for, lists, and iterators

NUMERICAL APPROXIMATION ERRORS
Comparison with exact trajectory obtained before

41Lecture 03: while, for, lists, and iterators

SUMMARY
Control flow exists of

Branching if/else

while/for loops

Allows implementing complex algorithms

Lists are versatile data structures

The for loop: iterating over list elements

More complex scientific algorithms:

Iterative methods

Stopping criteria

42Lecture 03: while, for, lists, and iterators

Lecture 03: while, for, lists, and iterators

