
PHOT 110: Introduction to programming
LECTURE 02

Michaël Barbier, Spring semester (2023-2024)

1Lecture 02: Python basics



PYTHON BASICS & SYNTAX

3Lecture 02: Python basics



TOWARDS PYTHON IMPLEMENTATIONS

4Lecture 02: Python basics



TOWARDS PYTHON IMPLEMENTATIONS

5Lecture 02: Python basics



TOWARDS PYTHON IMPLEMENTATIONS

6Lecture 02: Python basics



PYTHON PROGRAM STRUCTURE
A Python script is a sequence of statements (algorithm steps), and
definitions (functions, classes, …)

Definitions are evaluated

Statements are executed

Executing a program:

Execute statements one by one in the Python Console

Statements stored as a sequence in a script file

7Lecture 02: Python basics



THE PYTHON CONSOLE
Execute statements one by one in the Python Console

Useful for:

quick calculations

testing the working of commands

>>> print(6)1
62
>>> a = 103
>>>4

8Lecture 02: Python basics



PYTHON SCRIPTS
Statements stored in a script file

Useful for:

running a program multiple times

incorrect lines can easily be found and corrected

larger programs

a = 101
b = 252
prod = a * b3
print(f"{a} times {b} = {prod}")4

10 times 25 = 250

9Lecture 02: Python basics



DATA OBJECTS
In Python everything is a data object: numbers, text, functions,
class instances, etc.

Statements perform actions on data objects

Data objects can be scalar:

Type Description (Example) values

bool Boolean value True, False

int Integer numbers .. , -2, -1, 0, -1, -2, ..

float Floating point 3.56, 23e-3, 0.0079

NoneType Indicates no
object

None

10Lecture 02: Python basics



OBJECT TYPE
Every object has a type

Possible to convert between certain types: type casting

print(type(6.22e23))1

<class 'float'>

it_is_raining = True1
print(type(it_is_raining))2
an_integer = int(it_is_raining)3
print(type(an_integer))4

<class 'bool'>
<class 'int'>

11Lecture 02: Python basics



OBJECT TYPE
automatic type casting in some cases
float <= int * float
float <= int + float
float <= int / int

a = 41
b = 0.3572
print( f"Type of (a * b) = {type(a * b)}" )3
print( f"Type of (a / b) = {type(a / b)}" )4
print( f"Type of (a + b) = {type(a + b)}" )5
print( f"Type of (a / 25) = {type(a / 25)}" )6

Type of (a * b) = <class 'float'>
Type of (a / b) = <class 'float'>
Type of (a + b) = <class 'float'>
Type of (a / 25) = <class 'float'>

12Lecture 02: Python basics



VARIABLES
A variable is a name bound to an object:

the object is assigned to the variable

In pseudo code indicated by 

In python assignment operator is the “=” sign:

The variable can be re-assigned another value or object:

←

a_variable_name = 4.51

v = 41
v = v + 2                         # v becomes 62
v = "Now v is assigned text"      # v has type str3

13Lecture 02: Python basics



EXPRESSIONS & OPERATORS
Objects can be combined by operators in expressions
Most used arithmetic operators:

symbol description example

** Power 3**2 = 9

/ Division 5 / 4 = 1.25

* Multiplication 3 * 4 = 12

+ Addition 5 + 7 = 12

- Subtraction 6 - 9 = -3

% modulo 34 % 6 = 4

14Lecture 02: Python basics



EXPRESSIONS & OPERATORS
Most used logic operators:

symbol description example

<, > smaller/larger than 5 > 4  True

== is equal to 3 == 6  False

<=, >= smaller/larger or equal 5 <= 5  True

and boolean AND True and False 
False

or boolean OR True or False 
True

not boolean NOT not True  False

→

→

→

→

→

→

15Lecture 02: Python basics



EXPRESSIONS
An expression can be built with following rules:

<expression>  <object> (an object is an expression)

<expression>  <operator> <expression>

<expression>  <expression> <operator> <expression>

Expressions result into values and can be assigned to variables:

=
def

=
def

=
def

x = 41
y = 2*x**2 + 3*x - 52
print(f"The value of y = {y}")3

The value of y = 39

16Lecture 02: Python basics



OPERATOR PRECEDENCE AND BRACKETS
Precedence of operators is similar to mathematics.
List of precedence of operators can be found on the python.org
website: https://docs.python.org/3/reference/expressions.html#operato
precedence

Round brackets can be used to give priority
x = 21
y = (12 - x) / 10 2
print(f"The value of y = {y}")3

The value of y = 1.0

17Lecture 02: Python basics



TEXT OBJECTS
Text objects are called strings: the type is str A string is defined by
using single or double quotes:

Strings can also cover multiple lines, for that we use triple quotes:

Also triple single quotes work as well.

"This is a string, single 'quotes' can be used here"1
'Here we can use double "quotes" inside it'2

""" This string runs over multiple lines.1
Another line starts here.2
And another one.3
"""4

18Lecture 02: Python basics



OPERATORS WORKING ON TEXT OBJECTS
Appending one string to another with the “+” operator:

Multiplying strings:

Casting a string to a number and vice versa:

a_verb = "flies"1
print("The balloon" + a_verb)2
print("The balloon" + " " + a_verb)3

The balloonflies
The balloon flies

print(5 * "balloon ")1

balloon balloon balloon balloon balloon 

print(5 * int("100"))1
print(10 * str(50))2

19Lecture 02: Python basics



FORMATTING STRINGS AND NUMBERS
A formatted string is a string with prefix f or F:

More complex formatting:

the_radius = 251
formatted_str = f"A circle with radius {the_radius} m"2
print(formatted_str)3

A circle with radius 25 m

a = 1/6; b = 0.0145; c = 23e-61
print(f"The product {a} x {b} = {a * b}")2
# Use format {variable:No_space.No_sign_digits}3
print(f"{a:8.2} x {b:8.2} = {a * b:8.2}")4
print(f"{a:8.2} x {c:8.2} = {a * c:8.2}")5

The product 0.16666666666666666 x 0.0145 = 
0.002416666666666667
    0.17 x    0.015 =   0.0024
    0.17 x  2.3e-05 =  3.8e-06 20Lecture 02: Python basics



PYTHON RESERVED WORDS OR KEYWORDS
A list of words reserved for Python

You cannot name variables (or functions/classes) similar

# List of keywords can be found in the keyword package1
import keyword2

3
print(keyword.kw_list)4

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 
'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 
'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 
'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

21Lecture 02: Python basics



INPUT & OUTPUT (NOT IN INTERACTIVE MODE)
input() can be used to ask user text input

print() can be used to output text

# parameters1
pizza_price = 2002
extra_cheese_price = 203

4
# input accepts a string parameter5
n_pizza = input("How many pizza's do you want: ")6
extra_cheese = input("""Do you want extra cheese?\n 7
    For yes press [1]\n8
    For no press [0]\n9
Enter your choice""")10

11
# Output to the user12
print("Total cost: {int(n_pizza * (pizza_price + extra_cheese)}"13

22Lecture 02: Python basics



INDENTATION
Is the amount of space preceding statements

Indentation should be the same within a code block

Spaces and Tabs are different

Following code will give an IndentationError: unexpected 
indent

a = 41
b = 22
 c = 33
y = a * (b + c)4

IndentationError: unexpected indent (3759259151.py, line 3)

23Lecture 02: Python basics



IMPORT STATEMENTS
Python packages can be imported in multiple ways

# import the package with its name1
import math2

3
area = 3**2 * math.pi4
print(f"Area of a circle with radius 3 = {area}")5

6
# import functions of the package separately7
from math import sin, cos, pi, sqrt8

9
angle = 23/180*pi10
formula = sqrt(2/3) * sin(angle) + cos(angle)11

12
# import packages or functions and rename them13
from math import sqrt as sr14

24Lecture 02: Python basics



TIDY AND DOCUMENTED CODE

26Lecture 02: Python basics



TIDY WRITING STYLE
Writing readable code

Clear and not too long variable names

Use spaces in a consistent manner

Use a Python code formatter such as Black:
https://github.com/psf/black

Document code both with comments and docstrings

27Lecture 02: Python basics



COMMENT LINES
Text of a line a�er a hash symbol is ignored

The hash symbol can be in the beginning of the line:

Comments can explain the next line of code

Or the comment can start a�er a statement

# A comment on a single line1

# Convert Matlab-indices to zero-based1
ind = m_index - 12

y = 12 + x  # An inline comment: #-symbol after 2 spaces1

28Lecture 02: Python basics



MULTI-LINE COMMENTS
Multi-line strings can be used as comments, but

they are not meant as comments (not ignored)

they can become docstrings (documentation-strings)

1
''' 2
This multi-line string is not assigned to a 3
variable, therefore doesn't influence your code directly4
'''5

6
""" 7
Docstrings consist of multi-line strings8
but always use triple double quotes.9
"""10

29Lecture 02: Python basics



DOCSTRINGS
Docstrings are multi-line strings providing documentation

They populate the __doc__ variable

The help() function uses the __doc__ variable

import math1
print(math.__doc__)2

This module provides access to the mathematical functions
defined by the C standard.

30Lecture 02: Python basics



DOCSTRINGS
Docstrings are multi-line strings providing documentation

They populate the __doc__ variable

The help() function uses the __doc__ variable

We will revisit Docstrings for functions and classes later

import math1
help(math.sin)2

Help on built-in function sin in module math:

sin(x, /)
    Return the sine of x (measured in radians).

31Lecture 02: Python basics



PROGRAM ERRORS

33Lecture 02: Python basics



DIFFERENT ERROR-TYPES
Different types of errors can be encountered

Syntax errors: code inconsistent with the Python language, the
code will not run (i.e. not start).

Runtime errors: exceptions occurring while the program runs, the
code will crash.

Semantic errors: the code does not what was intended

34Lecture 02: Python basics



SYNTAX ERROR EXAMPLES
Usage of unknown identifiers (variable, function, class)

Misaligned indentation

Mistaken symbol “:” instead of “;”

positive_number = uint(45)1

NameError: name 'uint' is not defined

a = 341
 b = 52
print(f"The sum is {a+b}")3

IndentationError: unexpected indent (3752930843.py, line 2)

a = 3: b = 51

SyntaxError: invalid syntax (173182802.py, line 1)
35Lecture 02: Python basics



RUNTIME ERROR EXAMPLES
Division by zero

Type mismatch

fraction = 1 / 01

ZeroDivisionError: division by zero

netto_price = 230.501
kdv_ratio = 0.212
print("Price: " + netto_price + " + " + kdv_ratio + " kdv3

TypeError: can only concatenate str (not "float") to str

36Lecture 02: Python basics



SUMMARY OF PYTHON BASICS
Structure of a program in Python

Statements, expressions

Python syntax

Known words

Proper indentation

Commenting code

Error types: Syntax, Runtime, and logical errors

37Lecture 02: Python basics



SCIENTIFIC ALGORITHM: AN
EXAMPLE

39Lecture 02: Python basics



TRAJECTORY OF A BALL

Gravitation:  m/s

Air resistance: ignore for a slow heavy ball

horizontal velocity is constant

g = 9.81 2

40Lecture 02: Python basics



HOW TO COMPUTE THE TRAJECTORY ?
The trajectory is a parabola (no air):

The ball will hit the ground at time :

x

y

= + tx0 vx,0

= + t − gy0 vy,0
1
2

t2

te

= =te,±
−b ± − 4acb2

− −−−−−−√
2a

∓vy,0 + 2gv2y,0 y0
− −−−−−−−−
√

g

41Lecture 02: Python basics



TIME THAT THE BALL HITS THE GROUND
# Loading packages for sin, cos, pi, sqrt1
import math2

3
# Parameters of the trajectory4
y0 = 1.20; x0 = 05
v0 = 86
alpha0 = 37 * (math.pi / 180)  # Angle 7
g = 9.818

9
# compute the time that the ball will hit the ground10
vy0 = v0 * math.sin(alpha0) 11
vx0 = v0 * math.cos(alpha0) 12
te = (vy0 + math.sqrt(vy0**2 + 2*g*y0)) / g13

14

The ball falls at time: 1.1875623706903884 s

42Lecture 02: Python basics



HOW TO COMPUTE THE TRAJECTORY ?
The trajectory is a parabola (no air):

The equation for the parabola can be found by substitution. If 
then  and we obtain:

x

y

= + tx0 vx,0

= + t − gy0 vy,0
1
2

t2

= 0x0
t = x/ = x/( cos(α))vx,0 v0

y = + tan(α) x −y0
1
2

g x2

(α)v20 cos
2

43Lecture 02: Python basics



HOW FAR CAN WE THROW THE BALL ?
Let’s start from the equation of the parabola:

When solving this quadratic equation for  we find:

Where the largest root is the throwing distance.

y = + tan(α) x −y0
1
2

g x2

(α)v20 cos
2

x

= =xe,±
−b ± − 4acb2

− −−−−−−√
2a

tanα ∓ α + 2g /( cosαtan2 y0 v0 )2
− −−−−−−−−−−−−−−−−−−−
√

g/( cosαv0 )2

44Lecture 02: Python basics



HOW FAR CAN WE THROW THE BALL ?
# Loading packages for sin, cos, pi, sqrt1
from math import sin, cos, pi, sqrt, tan2

3
# Parameters of the trajectory4
y0 = 1.20; x0 = 05
v0 = 86
alpha0 = 37 * (pi / 180)  # Angle in radians 7
g = 9.818

9
# compute the time that the ball will hit the ground10
vy0 = v0 * sin(alpha0) 11
vx0 = v0 * cos(alpha0) 12
xe_num = (tan(alpha0) + sqrt(tan(alpha0)**2 + 2*g*y0 / (v13
xe_den = (g / (v0 * cos(alpha0))**2)14

The ball falls at x: 7.587435837034325 m

45Lecture 02: Python basics



TRAJECTORY OF A BALL
# Loading packages for plotting and numeric calc.1
import matplotlib2
import matplotlib.pyplot as plt3
import numpy as np4

5
# Computing x and y coordinates for the trajectory6
ts = np.linspace(0, te, 10)7
xs = vx0 * ts8
ys = y0 + (vy0 * ts) - (g*ts**2)/29

10
# Plotting the trajectory of the ball11
matplotlib.rcParams.update({'font.size': 20})12
plt.plot(xs, ys, "-", color="red")13
plt.plot(xs, ys, ".", color="blue")14

46Lecture 02: Python basics



TRAJECTORY OF A BALL

47Lecture 02: Python basics



Lecture 02: Python basics


