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PYTHON BASICS & SYNTAX
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TOWARDS PYTHON IMPLEMENTATIONS
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TOWARDS PYTHON IMPLEMENTATIONS
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TOWARDS PYTHON IMPLEMENTATIONS
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PYTHON PROGRAM STRUCTURE
A Python script is a sequence of statements (algorithm steps), and
definitions (functions, classes, …)

Definitions are evaluated

Statements are executed

Executing a program:

Execute statements one by one in the Python Console

Statements stored as a sequence in a script file
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THE PYTHON CONSOLE
Execute statements one by one in the Python Console

Useful for:

quick calculations

testing the working of commands

>>> print(6)1
62
>>> a = 103
>>>4
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PYTHON SCRIPTS
Statements stored in a script file

Useful for:

running a program multiple times

incorrect lines can easily be found and corrected

larger programs

a = 101
b = 252
prod = a * b3
print(f"{a} times {b} = {prod}")4

10 times 25 = 250
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DATA OBJECTS
In Python everything is a data object: numbers, text, functions,
class instances, etc.

Statements perform actions on data objects

Data objects can be scalar:

Type Description (Example) values

bool Boolean value True, False

int Integer numbers .. , -2, -1, 0, -1, -2, ..

float Floating point 3.56, 23e-3, 0.0079

NoneType Indicates no
object

None
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OBJECT TYPE
Every object has a type

Possible to convert between certain types: type casting

print(type(6.22e23))1

<class 'float'>

it_is_raining = True1
print(type(it_is_raining))2
an_integer = int(it_is_raining)3
print(type(an_integer))4

<class 'bool'>
<class 'int'>
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OBJECT TYPE
automatic type casting in some cases
float <= int * float
float <= int + float
float <= int / int

a = 41
b = 0.3572
print( f"Type of (a * b) = {type(a * b)}" )3
print( f"Type of (a / b) = {type(a / b)}" )4
print( f"Type of (a + b) = {type(a + b)}" )5
print( f"Type of (a / 25) = {type(a / 25)}" )6

Type of (a * b) = <class 'float'>
Type of (a / b) = <class 'float'>
Type of (a + b) = <class 'float'>
Type of (a / 25) = <class 'float'>
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VARIABLES
A variable is a name bound to an object:

the object is assigned to the variable

In pseudo code indicated by 

In python assignment operator is the “=” sign:

The variable can be re-assigned another value or object:

←

a_variable_name = 4.51

v = 41
v = v + 2                         # v becomes 62
v = "Now v is assigned text"      # v has type str3
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EXPRESSIONS & OPERATORS
Objects can be combined by operators in expressions
Most used arithmetic operators:

symbol description example

** Power 3**2 = 9

/ Division 5 / 4 = 1.25

* Multiplication 3 * 4 = 12

+ Addition 5 + 7 = 12

- Subtraction 6 - 9 = -3

% modulo 34 % 6 = 4
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EXPRESSIONS & OPERATORS
Most used logic operators:

symbol description example

<, > smaller/larger than 5 > 4  True

== is equal to 3 == 6  False

<=, >= smaller/larger or equal 5 <= 5  True

and boolean AND True and False 
False

or boolean OR True or False 
True

not boolean NOT not True  False

→

→

→

→

→

→
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EXPRESSIONS
An expression can be built with following rules:

<expression>  <object> (an object is an expression)

<expression>  <operator> <expression>

<expression>  <expression> <operator> <expression>

Expressions result into values and can be assigned to variables:

=
def

=
def

=
def

x = 41
y = 2*x**2 + 3*x - 52
print(f"The value of y = {y}")3

The value of y = 39
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OPERATOR PRECEDENCE AND BRACKETS
Precedence of operators is similar to mathematics.
List of precedence of operators can be found on the python.org
website: https://docs.python.org/3/reference/expressions.html#operato
precedence

Round brackets can be used to give priority
x = 21
y = (12 - x) / 10 2
print(f"The value of y = {y}")3

The value of y = 1.0
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TEXT OBJECTS
Text objects are called strings: the type is str A string is defined by
using single or double quotes:

Strings can also cover multiple lines, for that we use triple quotes:

Also triple single quotes work as well.

"This is a string, single 'quotes' can be used here"1
'Here we can use double "quotes" inside it'2

""" This string runs over multiple lines.1
Another line starts here.2
And another one.3
"""4
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OPERATORS WORKING ON TEXT OBJECTS
Appending one string to another with the “+” operator:

Multiplying strings:

Casting a string to a number and vice versa:

a_verb = "flies"1
print("The balloon" + a_verb)2
print("The balloon" + " " + a_verb)3

The balloonflies
The balloon flies

print(5 * "balloon ")1

balloon balloon balloon balloon balloon 

print(5 * int("100"))1
print(10 * str(50))2

19Lecture 02: Python basics



FORMATTING STRINGS AND NUMBERS
A formatted string is a string with prefix f or F:

More complex formatting:

the_radius = 251
formatted_str = f"A circle with radius {the_radius} m"2
print(formatted_str)3

A circle with radius 25 m

a = 1/6; b = 0.0145; c = 23e-61
print(f"The product {a} x {b} = {a * b}")2
# Use format {variable:No_space.No_sign_digits}3
print(f"{a:8.2} x {b:8.2} = {a * b:8.2}")4
print(f"{a:8.2} x {c:8.2} = {a * c:8.2}")5

The product 0.16666666666666666 x 0.0145 = 
0.002416666666666667
    0.17 x    0.015 =   0.0024
    0.17 x  2.3e-05 =  3.8e-06 20Lecture 02: Python basics



PYTHON RESERVED WORDS OR KEYWORDS
A list of words reserved for Python

You cannot name variables (or functions/classes) similar

# List of keywords can be found in the keyword package1
import keyword2

3
print(keyword.kw_list)4

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 
'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 
'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 
'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']
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INPUT & OUTPUT (NOT IN INTERACTIVE MODE)
input() can be used to ask user text input

print() can be used to output text

# parameters1
pizza_price = 2002
extra_cheese_price = 203

4
# input accepts a string parameter5
n_pizza = input("How many pizza's do you want: ")6
extra_cheese = input("""Do you want extra cheese?\n 7
    For yes press [1]\n8
    For no press [0]\n9
Enter your choice""")10

11
# Output to the user12
print("Total cost: {int(n_pizza * (pizza_price + extra_cheese)}"13
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INDENTATION
Is the amount of space preceding statements

Indentation should be the same within a code block

Spaces and Tabs are different

Following code will give an IndentationError: unexpected 
indent

a = 41
b = 22
 c = 33
y = a * (b + c)4

IndentationError: unexpected indent (3759259151.py, line 3)
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IMPORT STATEMENTS
Python packages can be imported in multiple ways

# import the package with its name1
import math2

3
area = 3**2 * math.pi4
print(f"Area of a circle with radius 3 = {area}")5

6
# import functions of the package separately7
from math import sin, cos, pi, sqrt8

9
angle = 23/180*pi10
formula = sqrt(2/3) * sin(angle) + cos(angle)11

12
# import packages or functions and rename them13
from math import sqrt as sr14
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TIDY AND DOCUMENTED CODE
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TIDY WRITING STYLE
Writing readable code

Clear and not too long variable names

Use spaces in a consistent manner

Use a Python code formatter such as Black:
https://github.com/psf/black

Document code both with comments and docstrings
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COMMENT LINES
Text of a line a�er a hash symbol is ignored

The hash symbol can be in the beginning of the line:

Comments can explain the next line of code

Or the comment can start a�er a statement

# A comment on a single line1

# Convert Matlab-indices to zero-based1
ind = m_index - 12

y = 12 + x  # An inline comment: #-symbol after 2 spaces1
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MULTI-LINE COMMENTS
Multi-line strings can be used as comments, but

they are not meant as comments (not ignored)

they can become docstrings (documentation-strings)

1
''' 2
This multi-line string is not assigned to a 3
variable, therefore doesn't influence your code directly4
'''5

6
""" 7
Docstrings consist of multi-line strings8
but always use triple double quotes.9
"""10

29Lecture 02: Python basics



DOCSTRINGS
Docstrings are multi-line strings providing documentation

They populate the __doc__ variable

The help() function uses the __doc__ variable

import math1
print(math.__doc__)2

This module provides access to the mathematical functions
defined by the C standard.
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DOCSTRINGS
Docstrings are multi-line strings providing documentation

They populate the __doc__ variable

The help() function uses the __doc__ variable

We will revisit Docstrings for functions and classes later

import math1
help(math.sin)2

Help on built-in function sin in module math:

sin(x, /)
    Return the sine of x (measured in radians).
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PROGRAM ERRORS

33Lecture 02: Python basics



DIFFERENT ERROR-TYPES
Different types of errors can be encountered

Syntax errors: code inconsistent with the Python language, the
code will not run (i.e. not start).

Runtime errors: exceptions occurring while the program runs, the
code will crash.

Semantic errors: the code does not what was intended
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SYNTAX ERROR EXAMPLES
Usage of unknown identifiers (variable, function, class)

Misaligned indentation

Mistaken symbol “:” instead of “;”

positive_number = uint(45)1

NameError: name 'uint' is not defined

a = 341
 b = 52
print(f"The sum is {a+b}")3

IndentationError: unexpected indent (3752930843.py, line 2)

a = 3: b = 51

SyntaxError: invalid syntax (173182802.py, line 1)
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RUNTIME ERROR EXAMPLES
Division by zero

Type mismatch

fraction = 1 / 01

ZeroDivisionError: division by zero

netto_price = 230.501
kdv_ratio = 0.212
print("Price: " + netto_price + " + " + kdv_ratio + " kdv3

TypeError: can only concatenate str (not "float") to str
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SUMMARY OF PYTHON BASICS
Structure of a program in Python

Statements, expressions

Python syntax

Known words

Proper indentation

Commenting code

Error types: Syntax, Runtime, and logical errors
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SCIENTIFIC ALGORITHM: AN
EXAMPLE
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TRAJECTORY OF A BALL

Gravitation:  m/s

Air resistance: ignore for a slow heavy ball

horizontal velocity is constant

g = 9.81 2

40Lecture 02: Python basics



HOW TO COMPUTE THE TRAJECTORY ?
The trajectory is a parabola (no air):

The ball will hit the ground at time :

x

y

= + tx0 vx,0

= + t − gy0 vy,0
1
2

t2

te

= =te,±
−b ± − 4acb2

− −−−−−−√
2a

∓vy,0 + 2gv2y,0 y0
− −−−−−−−−
√

g
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TIME THAT THE BALL HITS THE GROUND
# Loading packages for sin, cos, pi, sqrt1
import math2

3
# Parameters of the trajectory4
y0 = 1.20; x0 = 05
v0 = 86
alpha0 = 37 * (math.pi / 180)  # Angle 7
g = 9.818

9
# compute the time that the ball will hit the ground10
vy0 = v0 * math.sin(alpha0) 11
vx0 = v0 * math.cos(alpha0) 12
te = (vy0 + math.sqrt(vy0**2 + 2*g*y0)) / g13

14

The ball falls at time: 1.1875623706903884 s
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HOW TO COMPUTE THE TRAJECTORY ?
The trajectory is a parabola (no air):

The equation for the parabola can be found by substitution. If 
then  and we obtain:

x

y

= + tx0 vx,0

= + t − gy0 vy,0
1
2

t2

= 0x0
t = x/ = x/( cos(α))vx,0 v0

y = + tan(α) x −y0
1
2

g x2

(α)v20 cos
2
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HOW FAR CAN WE THROW THE BALL ?
Let’s start from the equation of the parabola:

When solving this quadratic equation for  we find:

Where the largest root is the throwing distance.

y = + tan(α) x −y0
1
2

g x2

(α)v20 cos
2

x

= =xe,±
−b ± − 4acb2

− −−−−−−√
2a

tanα ∓ α + 2g /( cosαtan2 y0 v0 )2
− −−−−−−−−−−−−−−−−−−−
√

g/( cosαv0 )2
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HOW FAR CAN WE THROW THE BALL ?
# Loading packages for sin, cos, pi, sqrt1
from math import sin, cos, pi, sqrt, tan2

3
# Parameters of the trajectory4
y0 = 1.20; x0 = 05
v0 = 86
alpha0 = 37 * (pi / 180)  # Angle in radians 7
g = 9.818

9
# compute the time that the ball will hit the ground10
vy0 = v0 * sin(alpha0) 11
vx0 = v0 * cos(alpha0) 12
xe_num = (tan(alpha0) + sqrt(tan(alpha0)**2 + 2*g*y0 / (v13
xe_den = (g / (v0 * cos(alpha0))**2)14

The ball falls at x: 7.587435837034325 m
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TRAJECTORY OF A BALL
# Loading packages for plotting and numeric calc.1
import matplotlib2
import matplotlib.pyplot as plt3
import numpy as np4

5
# Computing x and y coordinates for the trajectory6
ts = np.linspace(0, te, 10)7
xs = vx0 * ts8
ys = y0 + (vy0 * ts) - (g*ts**2)/29

10
# Plotting the trajectory of the ball11
matplotlib.rcParams.update({'font.size': 20})12
plt.plot(xs, ys, "-", color="red")13
plt.plot(xs, ys, ".", color="blue")14
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TRAJECTORY OF A BALL
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