
PHOT 110: Introduction to programming
LECTURE 01

Michaël Barbier, Spring semester (2024-2025)

COURSE INFORMATION

Instructor

Dr. Michaël Barbier
e-mail: michaelbarbier@iyte.edu.tr
Office – door on the right of Z5
Office hours – Friday 11:00-13:00
 (or via appointment)

Teaching Assistants

Dr. Hazan Özkan
e-mail: hazanozkan@iyte.edu.tr
Office: Z9B
Office hours: TBD

Ozan Baran Orhan
e-mail: ozanorhan@iyte.edu.tr
Office: Z9B
Office hours: TBD

Course Schedule
Tuesday 10:45 – 12:30 Ali Küçük Lab (computer lab on the 1st floor)
Tuesday 13:30 – 15:15 Ali Küçük Lab

14.02.2025 Lecture 01: Computers & Algorithms 2

CONTENTS OF THE COURSE

• How computers perform calculations

• How to program in Python

• Implementing numerical methods

• Handling input/output data, plotting graphs, tables

• Debugging, testing, and benchmarking your code

14.02.2025 Lecture 01: Computers & Algorithms 3

COURSE MATERIALS

Course book

H.P. Langtangen, A primer on
scientific programming with
Python, Springer

Supporting slides and materials
http://hplgit.github.io/scipro-
primer/slides/index.html

14.02.2025 Lecture 01: Computers & Algorithms 4

http://hplgit.github.io/scipro-primer/slides/index.html
http://hplgit.github.io/scipro-primer/slides/index.html

OVERVIEW OF THE COURSE
week topic Chapter

Week 1 Computers and Python basics: interpreter, IDE, running a script 1

Week 2 Expressions, variables, variable types 1

Week 3 Program control flow: while-loop, for-loop, lists, and ranges 2

Week 4
Program control flow (ctu’d): conditional execution. Further data
types: nested lists, Tuples, Arrays

3

Week 5 Functions, variable scope 3

Week 6 Input/output and error handling 4

Week 7 Modules and script documentation 4

Week 8 Midterm exam (Tuesday, April 8)

Week 9 Vectors, Arrays, implementation of numerical algorithms 5

Week 10 Plotting graphs using Matplotlib 5

Week 11 Dictionaries, Strings, tables with Pandas 6

Week 12 Object Oriented Programming 7

Week 13 Object Oriented Programming ctu’d 9

Week 14 Unit tests, integrated testing performance, benchmarking, profiling App. F

Week 15-16 Finals

14.02.2025 Lecture 01: Computers & Algorithms 5

COURSE SYLLABUS AND CLASS WORKFLOW

Homework/projects

• One project on an applied topic (20%)

• Working together on solutions allowed

• But .. individual written reports and code

Exams

• Midterm exam (10%) & final exam (70%)

• Solve problems on the computer by writing scripts

Most course materials on webpage:
https://web.iyte.edu.tr/michaelbarbier/education_phot110.html

14.02.2025 Lecture 01: Computers & Algorithms 6

https://web.iyte.edu.tr/michaelbarbier/education_phot110.html

SO, LET’S GET STARTED !

14.02.2025 Lecture 01: Computers & Algorithms 7

PROBLEM SOLVING

14.02.2025 Lecture 01: Computers & Algorithms 8

PROBLEM SOLVING

Problem solving concerns the design/development of algorithms
to solve given problems

What is an algorithm?
1. Sequence of obvious, logical steps or instructions

2. Solves a target problem

3. Has a definition of when to stop

• Algorithms define for every given input an output

• An algorithm can be represented as a “function”

914.02.2025 Lecture 01: Computers & Algorithms

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1014.02.2025 Lecture 01: Computers & Algorithms

area

width

height

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1114.02.2025 Lecture 01: Computers & Algorithms

area

width

height

Are the steps obvious ?
Is the solution correct ?
Does the algorithm stop ?

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1214.02.2025 Lecture 01: Computers & Algorithms

area

width

height

After step width height area

step 1 6 ? ?

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1314.02.2025 Lecture 01: Computers & Algorithms

area

width

height

After step width height area

step 1 6 ? ?

step 2 6 3 ?

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1414.02.2025 Lecture 01: Computers & Algorithms

area

width

height

After step width height area

step 1 6 ? ?

step 2 6 3 ?

step 3 6 3 18

PROBLEM EXAMPLE: CALCULATE AREA

Problem: calculate the area of a rectangle (for any width and
height)

Steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

1514.02.2025 Lecture 01: Computers & Algorithms

area

width

height

After step width height area

step 1 6 ? ?

step 2 6 3 ?

step 3 6 3 18

step 4 6 3 18

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. while 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁

4. output 𝑓

1614.02.2025 Lecture 01: Computers & Algorithms

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. while 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁

4. output 𝑓

1714.02.2025 Lecture 01: Computers & Algorithms

Are the steps obvious ?
Is the solution correct ?
Does the algorithm stop ?

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. while 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁

4. output 𝑓

1814.02.2025 Lecture 01: Computers & Algorithms

Are the steps obvious ?
Is the solution correct ?
Does the algorithm stop ?

Let’s check !

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

1914.02.2025 Lecture 01: Computers & Algorithms

Are the steps obvious ?
Is the solution correct ?
Does the algorithm stop ?

Let’s check !

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2014.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2114.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

step 2 𝑓 ← 𝑁 4 4

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2214.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

step 2 𝑓 ← 𝑁 4 4

step 3 (1.) 𝑁 ← 𝑁 − 1 3 4

step 3 (1.) 𝑓 ← 𝑓 × 𝑁 3 12

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2314.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

step 2 𝑓 ← 𝑁 4 4

step 3 (1.) 𝑁 ← 𝑁 − 1 3 4

step 3 (1.) 𝑓 ← 𝑓 × 𝑁 3 12

step 3 (2.) 𝑁 ← 𝑁 − 1 2 12

step 3 (2.) 𝑓 ← 𝑓 × 𝑁 2 24

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2414.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

step 2 𝑓 ← 𝑁 4 4

step 3 (1.) 𝑁 ← 𝑁 − 1 3 4

step 3 (1.) 𝑓 ← 𝑓 × 𝑁 3 12

step 3 (2.) 𝑁 ← 𝑁 − 1 2 12

step 3 (2.) 𝑓 ← 𝑓 × 𝑁 2 24

step 3 (3.) 𝑁 ← 𝑁 − 1 1 24

step 3 (3.) 𝑓 ← 𝑓 × 𝑁 1 24

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2514.02.2025 Lecture 01: Computers & Algorithms

After step Process line 𝑁 𝑓

step 1 𝑁 ← 4 4 ?

step 2 𝑓 ← 𝑁 4 4

step 3 (1.) 𝑁 ← 𝑁 − 1 3 4

step 3 (1.) 𝑓 ← 𝑓 × 𝑁 3 12

step 3 (2.) 𝑁 ← 𝑁 − 1 2 12

step 3 (2.) 𝑓 ← 𝑓 × 𝑁 2 24

step 3 (3.) 𝑁 ← 𝑁 − 1 1 24

step 3 (3.) 𝑓 ← 𝑓 × 𝑁 1 24

step 3 (4.) Output 𝑓 1 24

PROBLEM EXAMPLE: CALCULATE FACTORIAL N!

Problem: calculate the factorial

 𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

Steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. if 𝑁 > 2:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁
 go to step 3
else
 output 𝑓

2614.02.2025 Lecture 01: Computers & Algorithms

Last (4th) time is unnecessary

ALGORITHM PSEUDO CODE

What is pseudo code?

• A more formal way of writing the steps of an algorithm

• Independent from programming language

• Our algorithm steps could be considered pseudo code !

Let’s look again:

2714.02.2025 Lecture 01: Computers & Algorithms

ALGORITHM PSEUDO CODE

What is pseudo code?

• A more formal way of writing the steps of an algorithm

• Independent from programming language

• Our algorithm steps could be considered pseudo code !

Let’s look again:

2814.02.2025 Lecture 01: Computers & Algorithms

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. while 𝑁 > 2:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁

4. output 𝑓

1. width ← ask input width
2. height ← ask input height
3. area ← width x height
4. output area

Area of a rectangle

Factorial 𝑁!

ALGORITHM FLOW CHART

• Visual representation of the steps

• Different blocks

• Terminals

• Flow lines connect blocks

• Input/output

• Decisions according to certain
conditions

• Operations on data (processes)

2914.02.2025 Lecture 01: Computers & Algorithms

START or END

INPUT or
OUTPUT

condition

Process

ALGORITHM FLOW CHART

• Visual representation of the steps

Pseudo code steps:

1. width ← ask input width

2. height ← ask input height

3. area ← width x height

4. output area

3014.02.2025 Lecture 01: Computers & Algorithms

START

INPUT width

area = width x height

INPUT height

OUTPUT area

END

area

width

height

ALGORITHM FLOW CHART

• Visual representation of the steps

Pseudo code steps:

1. 𝑁 ← input from user

2. 𝑓 ← 𝑁

3. while 𝑁 > 1:
 𝑁 ← 𝑁 − 1
 𝑓 ← 𝑓 × 𝑁

4. output 𝑓

3114.02.2025 Lecture 01: Computers & Algorithms

START

INPUT 𝑁

𝑁 ← 𝑁 − 1

OUTPUT 𝑓

END

𝑁 > 1

𝑓 ← 𝑁

𝑓 ← 𝑓 × 𝑁

True

False

While loop

𝑁! = 𝑁 × 𝑁 − 1 × … × 2 × 1

NONDETERMINISTIC ALGORITHMS

Problem: escape from a classical wall maze (T-junctions and dead ends)

Steps:

1. Take a step along the road

2. if at a dead end OR at start:
 Turn back

3. if at a T-junction:
 Turn to random arm {left, right}

4. if at exit:
 END
else:
 go to step 1

3214.02.2025 Lecture 01: Computers & Algorithms

EXITDead end

Dead end

T

T

START

AMBIGUOUS OR NONLOGICAL STEPS

Problem: escape from a classical wall maze (T-junctions and dead ends)

Steps:

1. Take a step along the road

2. if at a dead end OR at start:
 Turn back

3. if at a T-junction:
 Turn to random arm {left, right}

4. if at exit:
 END
else:
 go to step 1

3314.02.2025 Lecture 01: Computers & Algorithms

EXITDead end

Dead end

T

T

START

?

?

PROBLEM EXAMPLE: SORT BOOKS ALPHABETICALLY

Not all problems are math or riddles:

3414.02.2025 Lecture 01: Computers & Algorithms

1. Good Omens
2. The Color of Magic
3. Dodger
4. Monstrous Regiment
5. The Rincewind Trilogy
6. Nanny Ogg's Cookbook

1. Dodger
2. Good Omens
3. The Color of Magic
4. The Rincewind Trilogy
5. Monstrous Regiment
6. Nanny Ogg's Cookbook

Unsorted books Alphabetically sorted

SUMMARY OF PROBLEM SOLVING

• Algorithms
• Recipe to solve a problem

• Step-wise implementation of a function

• Obvious logical steps

• Pseudo-code
• Representation in code of an algorithm

• Independent of “real” programming language

• Flow-charts
• Visual representation of an algorithm

• Blocks for input/output, decisions, and “calculations”

3514.02.2025 Lecture 01: Computers & Algorithms

THE COMPUTER & PROGRAMS

14.02.2025 Lecture 01: Computers & Algorithms 36

PROGRAMS

Program = algorithm executed on a machine
• Steps are arithmetic and logical instructions

• Control flow is defined by instructions

• Stopping mechanism when program finishes

The machine:
• A “calculator” if the program is fixed

• A stored program “computer” if the instructions are stored on the
machine

3714.02.2025 Lecture 01: Computers & Algorithms

PROGRAMS

Program = algorithm executed on a machine
• Steps are arithmetic and logical instructions

• Control flow is defined by instructions

• Stopping mechanism when program finishes

The machine:
• A “calculator” if the program is fixed

• A stored program “computer” if the instructions are stored on the
machine

3814.02.2025 Lecture 01: Computers & Algorithms

𝑨 = 𝟏𝟎 × 𝑩 + 𝟐𝟑

𝑩 < 𝑪 ?
True or false

(1) 𝑩 = input value
(2) 𝑨 = 𝟏𝟎 × 𝑩 − 𝟏𝟎𝟎
(3) if 𝑨 < 𝑩 then 𝑨 = 𝑨 + 𝟓
(4) output value = 𝑨

COMPUTERS OF ALL KINDS

14.02.2025 Lecture 01: Computers & Algorithms 39

PC / Desktop

Laptop

Smartphone

Smartwatch

Mainframe/cluster

ELEMENTS OF A MODERN COMPUTER

14.02.2025 Lecture 01: Computers & Algorithms 40

Everything connects to the
motherboard

• Hard disk / solid state drives

• DVD player

• Memory

• CPU

• USB/sound peripheral
connection sockets

• Video cards / ethernet cards

…

ELEMENTS OF A MODERN COMPUTER

14.02.2025 Lecture 01: Computers & Algorithms 41

Peripherals:
• Microphone/speakers
• Keyboard/mouse
• Network
• Screen (onboard)

SATA: HDD, SSD, …

CPU

Memory
(RAM)

PCI Express slots:
- video card, …

Motherboard

ELEMENTS ARE CONNECTED & CPU CONTROLS

14.02.2025 Lecture 01: Computers & Algorithms 42

Peripheral devices Video card Memory Hard disk …

Central Processing Unit (CPU)

BUS

BACK TO THE VON NEUMANN ARCHITECTURE

• Model to design computers

• Defines four parts
• Memory

• ALU – Arithmetic/Logic Unit

• CU – Control Unit

• Input/Output

• Both data & program
instructions stored in
memory

• Program instructions
executed sequentially

14.02.2025 Lecture 01: Computers & Algorithms 43

Memory

CU
Control Unit

ALU
Arithmetic/Logic Unit

CPU (Central Processing Unit)

Input/Output

BUS

BACK TO THE VON NEUMANN ARCHITECTURE

• Model to design computers

• Defines four parts
• Memory

• ALU – Arithmetic/Logic Unit

• CU – Control Unit

• Input/Output

• Both data & program
instructions stored in
memory

• Program instructions
executed sequentially

14.02.2025 Lecture 01: Computers & Algorithms 44

Memory

CU
Control Unit

ALU
Arithmetic/Logic Unit

CPU (Central Processing Unit)

Input/Output

BUS

Operations
A = B - C
A < B ?
A OR B ?

Executes
program

Data + instructionskeyboard, screen, …

MEMORY

• Random Access Memory (RAM)

• Long array of bits

• Address per Byte

• Largest possible address depend on n-bits
addressing:

 16-bits address: 216-1 = 65,535 ≈ 64 kB
 32−bits address: 232−1 = 4,294,967,295 ≈ 4 GB

• Defines maximum usable memory
(if no trick/segmentation applied)

14.02.2025 Lecture 01: Computers & Algorithms 45

0100 1110

0111 1000

0000 0010

…

Byte
address

0
1
2
3
4
5

.

.

.

2n-1

MACHINE INSTRUCTIONS

• Defined by the Instruction Set Architecture (ISA)

• Translates into digital signal voltages

• Instructions
• OP-CODE: ADD, MOV, etc.

• 0, 1, 2, or 3 operands

• variable length of bits !

• Operands can refer to
• “Immediate” numbers/characters

• A register itself

• The memory addresses in a register

14.02.2025 Lecture 01: Computers & Algorithms 46

OP-codeOperand 1

24 23 048

16-bit number memory address

8 7

Operand 2

addition

Example instruction

CPU - CENTRAL PROCESSING UNIT

• Executes sequence of instructions
(loaded from memory)
• FDE – Fetch, Decode, Execute

• Clock-speed – #FDE per clock-cycle

• Pipeline: queue of instructions

• Instruction Set Architecture (ISA)
(= Computer Architecture)

• Control flow & Arithmetic & logic

• Load/store data from/on memory

• Few (e.g. 16) registers
• Fast but small in size: e.g. 32-bit

14.02.2025 Lecture 01: Computers & Algorithms 47

Control Unit Arithmetic /
Logic Unit

Memory

Fetch Store

Decode Execute

Instruction cycle

CPU - CENTRAL PROCESSING UNIT

• Executes sequence of instructions
(loaded from memory)
• FDE – Fetch, Decode, Execute

• Clock-speed – #FDE per clock-cycle

• Pipeline: queue of instructions

• Instruction Set Architecture (ISA)
(= Computer Architecture)

• Control flow & Arithmetic & logic

• Load/store data from/on memory

• Few (e.g. 16) registers
• Fast but small in size: e.g. 32-bit

14.02.2025 Lecture 01: Computers & Algorithms 48

PROGRAM LEVELS

Control signals
signals as binary instructions

14.02.2025 Lecture 01: Computers & Algorithms 49

Machine code
sequences of instructions as 0 and 1

High level programming
C, C++, Fortran, java, Python

Assembly language
Readable mapping of machine code

Decoding
step

Assembler

Compiler
y0 = 2
for x in x_values:
 y = x**2 / 2 + y0
 print(“y-value = ” + y)

MOV EAX, [EBX]
ADD AX, 8
CMP AL, AH
JNE LABEL

10001100|010111 … |00101 …
00000100|011010 … |01100 …
00010100|111000 … |11100 …
00100110|000011 …

0,1 electric signals
switch lines on or off
loading data into registers

PROGRAM LEVELS

14.02.2025 Lecture 01: Computers & Algorithms 50

Machine code
sequences of instructions as 0 and 1

10001100|010111 … |00101 …
00000100|011010 … |01100 …
00010100|111000 … |11100 …
00100110|000011 …

• Very hard to read/write

• Only exact instructions

• Depends on the ISA
(Instruction Set Architecture)

PROGRAM LEVELS

14.02.2025 Lecture 01: Computers & Algorithms 51

Assembly language
Readable mapping of machine code

Assembler

• Human readable

• Exact or Low-level
instructions

• Depends on the ISA
(Instruction Set Architecture)

MOV AX, [BX] ; move data
ADD AX, 8 ; add 8
CMP AL, AH ; compare
JNE label ; jump to

PROGRAM LEVELS

14.02.2025 Lecture 01: Computers & Algorithms 52

High level programming
C, C++, Fortran, java, Python

Compiler

• Easy to read/write

• Often high-level
instructions

• ISA independent
(Instruction Set Architecture)

y0 = 2
for x in x_values:
 y = x**2 / 2 + y0
 print(“y-value = ” + y)

COMPILATION OR INTERPRETATION

Compilation (C++, Fortran, …)
• Translates high-level programs to assembly / machine code

• Instruction Set Architecture (ISA) specific

• Compiling takes time, required for each ISA

• Can optimize high-level instructions –> for faster execution

Interpretation (Python, MATLAB, …)
• Immediately executable

• Interpreter executes programs “line-by-line”

• Less optimization possible, often slower

• You need the interpreter on your computer

14.02.2025 Lecture 01: Computers & Algorithms 53

SUMMARY OF COMPUTERS

• Computers
• CPUs

• Load machine code programs from memory
• Execute instructions

• Assembly
• Readable machine code - translates “… 10101 …” into ADD
• Dependent to the Instruction Set Architecture (ISA)

• x86, x64, PowerPC, ARM

• Higher programming languages
• Python, C/C++, Java, …
• Programs can be compiled or interpreted
• Independent of the processor architecture and ISA

5414.02.2025 Lecture 01: Computers & Algorithms

DATA REPRESENTATION

14.02.2025 Lecture 01: Computers & Algorithms 55

BINARY, HEXADECIMAL, AND DECIMAL

14.02.2025 Lecture 01: Computers & Algorithms 56

• Digital computers only have 0 and 1 (low and high voltage)

• Binary digit or bit has value 0 or 1

• Binary number representation:

• A Byte = 8 bits can hold a value of 28 = 256 states

• Possible decimal values in [0 . . 255] where 255 = 28 − 1

10012 = 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 10

 = 8 + 1
 = 910

100001002 = 128 + 4 = 13210

BINARY, HEXADECIMAL, AND DECIMAL

14.02.2025 Lecture 01: Computers & Algorithms 57

• Binary numbers use 2 digits: {0, 1}

• Hexadecimal numbers use 16 digits: {0, 1, .. , 9, A, B, C, D, E, F}

• A hexadecimal digit bundles 4 binary digits

• Alternative writing 𝐷916 = 0x00D9 for 16-bits

1𝐵𝐴16 = 1 ⋅ 162 + 𝐵 ⋅ 161 + 𝐴 ⋅ 160

 = 256 + 176 + 10
 = 34210

𝐷916 = 1101 10012

BINARY NUMBERS & OPERATIONS

14.02.2025 Lecture 01: Computers & Algorithms 58

• Highest (max. representable) number in 8, 16, 32, or 64 bits ?

• Negative numbers ?

• What with real numbers and very large/small numbers ?

• Complex numbers ?

• How to perform additions, logic comparisons between numbers ?

MAXIMUM REPRESENTABLE INTEGER IN N-BIT

14.02.2025 Lecture 01: Computers & Algorithms 59

• Highest (max. representable) number in 8, 16, 32, or 64 bits ?

• For N bits the maximum number is 𝑀 = 2𝑁 − 1

𝑀8bit = 255
𝑀16bit = 65,535
𝑀32bit = 4,294,967,295
𝑀64bit = 1.84467440737 × 1019

• Use more bits for larger numbers

NEGATIVE INTEGERS

14.02.2025 Lecture 01: Computers & Algorithms 60

• How to represent negative numbers ?

• One bit to express sign of the number

• Most used representation: 2’s complement

• Negative number -i = NOT(i) + 1

8-bit example
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

-3 = NOT(3) + 1
 = NOT(00112) + 1
 = 11002 + 1
 = 11012

FLOATING POINT NUMBERS

14.02.2025 Lecture 01: Computers & Algorithms 61

• How to represent real numbers ? in scientific notation !

• More parts:
S = sign-bit, 1 bit

E = exponent, 8 bits

M = mantissa, 23 bits

• Formula to calculate real number 𝑥:

• Smallest positive nonzero number is 2−127 ≈ 5.88 × 10−39

• Largest number approx. ±2.85 × 1045

𝑥 = −1 𝑆 × 𝑀 × 2𝐸−127

8 bits 23 bits

22 031 30

sign exp. mantissa

CHARACTER REPRESENTATION: ASCII TABLE

6214.02.2025 Lecture 01: Computers & Algorithms

SUMMARY OF DATA REPRESENTATION

• Numbers
• Boolean

• (un)signed integers

• floating point, scientific notation

• Text
• Characters

• String is an array of characters

• datatype mapping to binary numbers

6314.02.2025 Lecture 01: Computers & Algorithms

HISTORY OF THE COMPUTER

6414.02.2025 Lecture 01: Computers & Algorithms

HISTORY OF THE COMPUTER: MECHANICAL

Pascaline by Blaise Pascal in 1642
• Calculator

• Addition and subtraction

14.02.2025 Lecture 01: Computers & Algorithms 65

HISTORY OF THE COMPUTER: MECHANICAL

Difference Engine #1 of Charles
Babbage in 1832

• Calculation of tables of squares,
cubes, logarithms

14.02.2025 Lecture 01: Computers & Algorithms 66

HISTORY OF THE COMPUTER: MECHANICAL

Difference Engine #2
of Charles Babbage in
1857

• Built unfinished

• Built afterwards at
museum

Analytical Engine

• Only in design (1842)

• General purpose
computer

14.02.2025 Lecture 01: Computers & Algorithms 67

Difference Engine #2 design (overview)

HISTORY OF THE COMPUTER: MECHANICAL

Difference Engine #2
of Charles Babbage in
1857

• Built unfinished

• Built afterwards at
museum

Analytical Engine

• Only in design (1842)

• General purpose
computer

14.02.2025 Lecture 01: Computers & Algorithms 68

Difference Engine #2 (addition and carry)

HISTORY OF THE COMPUTER: MECHANICAL

Difference Engine #2
of Charles Babbage in
1857

• Built unfinished

• Built afterwards at
museum

Analytical Engine

• Only in design (1842)

• General purpose
computer

14.02.2025 Lecture 01: Computers & Algorithms 69

Difference Engine #2

HISTORY OF THE COMPUTER: MECHANICAL

Note on the Analytical
Engine by Ada Lovelace
(1843)

• Program (to calculate
Bernoulli numbers)

• Shows its general-
purpose design

14.02.2025 Lecture 01: Computers & Algorithms 70

HISTORY OF THE COMPUTER: MECHANICAL

Mechanical computers

• by in 1642

14.02.2025 Lecture 01: Computers & Algorithms 71

HISTORY OF THE COMPUTER: MECHANICAL

Curta by Curt Herzstark

• Designed in 1943

14.02.2025 Lecture 01: Computers & Algorithms 72

Adv. (1963)

HISTORY OF THE COMPUTER: ELECTRO-MECHANICAL

Harvard Mark I in 1944

• Based or relay switches, slower than vacuum tubes

14.02.2025 Lecture 01: Computers & Algorithms 73

HISTORY OF THE COMPUTER: ELECTRONIC

ENIAC in 1943

• Vacuum tubes as electronic switches

• Manually programming by rewiring

14.02.2025 Lecture 01: Computers & Algorithms 74

heater

anode

cathode

grid

e- e- e-

+

-

HISTORY OF THE COMPUTER: ELECTRONIC

Colossus in 1944

• Vacuum tubes

• Code decryption
during WW2

14.02.2025 Lecture 01: Computers & Algorithms 75

HISTORY OF THE COMPUTER: ELECTRONIC

Bull Gamma 3 in 1952

• Vacuum tubes

• Commercial

14.02.2025 Lecture 01: Computers & Algorithms 76

HISTORY OF THE COMPUTER: ELECTRONIC

PDP-1 in 1959

• Transistors

• User-friendly

14.02.2025 Lecture 01: Computers & Algorithms 77

HISTORY OF THE COMPUTER: ELECTRONIC

PDP-1 in 1959

• “Modern” computer design

• Assembly programming

• Electronic typewriter input

14.02.2025 Lecture 01: Computers & Algorithms 78

HISTORY OF THE COMPUTER: ELECTRONIC

8800 minicomputer-kit in 1974

• Early personal computer

• No screen/keyboard – LEDs/switches

14.02.2025 Lecture 01: Computers & Algorithms 79

HISTORY OF THE COMPUTER: ELECTRONIC

APPLE II in 1977

• Color graphics

• Modern keyboard

• Easy to extend with screen,
cassette deck, …

• Programming in Basic

14.02.2025 Lecture 01: Computers & Algorithms 80

HISTORY OF THE COMPUTER: ELECTRONIC

IBM 5150 PC in 1981

• Focused on business usage

14.02.2025 Lecture 01: Computers & Algorithms 81

HISTORY OF THE COMPUTER: ELECTRONIC

Commodore 64 in 1982

• Graphics: Color sprites

• Sound: free waveform

• MOS transistors (5 micron)

• 8-bit processor, 64 kB RAM

• Programming in Basic

14.02.2025 Lecture 01: Computers & Algorithms 82

SUMMARY OF COMPUTER HISTORY

• Calculators vs. computers
• Sequences of operations (data memory)
• Programs stored in memory ?

• Basic technique
• Mechanical
• Relays, vacuum tubes, or transistors as switch
• Memory: Magnetic drums

• Manual rewiring, machine code, or assembly available

• Input: switches, typewriters, punched cards/paper

• Output: light indicators, screen, …

8314.02.2025 Lecture 01: Computers & Algorithms

	Slide 1: PHOT 110: Introduction to programming LECTURE 01
	Slide 2: Course information
	Slide 3: Contents of the Course
	Slide 4: Course materials
	Slide 5: Overview of the course
	Slide 6: Course syllabus and class workflow
	Slide 7: So, let’s get started !
	Slide 8: Problem solving
	Slide 9: Problem solving
	Slide 10: Problem example: calculate area
	Slide 11: Problem example: calculate area
	Slide 12: Problem example: calculate area
	Slide 13: Problem example: calculate area
	Slide 14: Problem example: calculate area
	Slide 15: Problem example: calculate area
	Slide 16: Problem example: calculate factorial n!
	Slide 17: Problem example: calculate factorial n!
	Slide 18: Problem example: calculate factorial n!
	Slide 19: Problem example: calculate factorial n!
	Slide 20: Problem example: calculate factorial n!
	Slide 21: Problem example: calculate factorial n!
	Slide 22: Problem example: calculate factorial n!
	Slide 23: Problem example: calculate factorial n!
	Slide 24: Problem example: calculate factorial n!
	Slide 25: Problem example: calculate factorial n!
	Slide 26: Problem example: calculate factorial n!
	Slide 27: Algorithm pseudo code
	Slide 28: Algorithm pseudo code
	Slide 29: Algorithm flow chart
	Slide 30: Algorithm flow chart
	Slide 31: Algorithm flow chart
	Slide 32: Nondeterministic algorithms
	Slide 33: Ambiguous or nonlogical steps
	Slide 34: Problem example: sort books alphabetically
	Slide 35: Summary of problem solving
	Slide 36: the Computer & programs
	Slide 37: Programs
	Slide 38: Programs
	Slide 39: Computers of all kinds
	Slide 40: Elements of a modern Computer
	Slide 41: Elements of a modern Computer
	Slide 42: Elements are connected & cpu controls
	Slide 43: Back to the von neumann architecture
	Slide 44: Back to the von neumann architecture
	Slide 45: memory
	Slide 46: Machine Instructions
	Slide 47: Cpu - central processing unit
	Slide 48: Cpu - central processing unit
	Slide 49: Program levels
	Slide 50: Program levels
	Slide 51: Program levels
	Slide 52: Program levels
	Slide 53: Compilation or Interpretation
	Slide 54: Summary of computers
	Slide 55: Data representation
	Slide 56: binary, hexadecimal, and decimal
	Slide 57: binary, hexadecimal, and decimal
	Slide 58: Binary numbers & operations
	Slide 59: Maximum representable integer in N-bit
	Slide 60: Negative integers
	Slide 61: Floating point numbers
	Slide 62: character representation: ascii table
	Slide 63: Summary of data representation
	Slide 64: History of the computer
	Slide 65: History of the Computer: mechanical
	Slide 66: History of the Computer: mechanical
	Slide 67: History of the Computer: mechanical
	Slide 68: History of the Computer: mechanical
	Slide 69: History of the Computer: mechanical
	Slide 70: History of the Computer: mechanical
	Slide 71: History of the Computer: mechanical
	Slide 72: History of the Computer: mechanical
	Slide 73: History of the Computer: electro-mechanical
	Slide 74: History of the Computer: electronic
	Slide 75: History of the Computer: electronic
	Slide 76: History of the Computer: electronic
	Slide 77: History of the Computer: electronic
	Slide 78: History of the Computer: electronic
	Slide 79: History of the Computer: electronic
	Slide 80: History of the Computer: electronic
	Slide 81: History of the Computer: electronic
	Slide 82: History of the Computer: electronic
	Slide 83: Summary of computer history

