
PHOT 110: Introduction to programming
Midterm exam questions & solutions, version C

Michaël Barbier, Spring semester (2024-2025)

Questions/problems and solutions

We first show the question, then the solution and then how the points are counted. The points
of each question are first normalized to 20 = 100/5 (where we round up to the next integer).
We then add these for the 5 questions to get a total score on 100. If question 𝑖 has 𝑀𝑖 points
and one obtained 𝑚𝑖/𝑀𝑖 points, then the total score S is:

𝑆 =
5

∑
𝑖=1

[20 × 𝑚𝑖/𝑀𝑖]

In the score calculation of the solutions to the questions, we appoint different amount of
points. However, every question has the same weight (20/100), due to the above mentioned
normalization of the points.

Remark that there is a minimal amount of comments used in the problem solutions. This is
to keep the code listings within this document more compact. In real scripts I would advice
to put more comments to document your code.

Question 1: Print numbers series

Write a script that prints the series √𝑛(𝑛 + 3) for numbers 𝑛 = 1, … , 𝑁 , that is, for a given
𝑁 (you can take 𝑁 as a parameter of your script) prints the numbers:

1,
√

4,
√

10,
√

18, … , √𝑁(𝑁 + 3)

where each number is printed on a separate line. If you set N = 5, then the output should
look similar to:

1

2.0
3.1622776601683795
4.242640687119285
5.291502622129181
6.324555320336759

Save your solution as a script with file name: solution_1.py.

Q1: Solution

from math import sqrt
N = 5
for n in range(1, N+1):

print(sqrt(n*(n+3)))

Q1: Score calculation

6 points to be obtained:

1. Using the correct expression to calculate the values (1 point)
2. Apply the expression on multiple numbers (1 point)
3. Having the correct range of starting numbers: 1, .., 𝑁 (1 point)
4. Printing the resulting values to the console (1 point)
5. Using a loop structure to print one value per line (1 point)
6. Script runs without or with only trivial errors (1 point)

Question 2:

Create a script that prompts the user to input a sentence with a minimum of 5 words. If the
sentence contains less than 5 words, allow the user to try again until he/she provides a long
enough sentence. You can check the number of words e.g. by counting spaces.

Save your solution as a script with file name: solution_2.py. This is the output of a correct
working script:

Please provide a sentence (min. 5 words): It is sunny weather.
This sentence has not enough words, please try again.
Please provide a sentence (min. 5 words): The apples.
This sentence has not enough words, please try again.

2

Please provide a sentence (min. 5 words): This book is very nice.
Thank you for your input.

Q2: Solution

min_words = 5
while True:

sentence = input("Please provide a sentence (min. 5 words): ")
if len(sentence.split(" ")) >= min_words:

break
else:

print("This sentence has not enough words, please try again.")

print("Thank you for your input.")

Q2: Score calculation

5 points to be obtained:

1. Prompting the user for input (1 point)
2. Correct extraction of the number of words in the sentence (1 point)
3. Repeatedly allowing the user to provide a sentence until it is long enough (1 point)
4. Having the correct print output (1 point)
5. Script runs without or with only trivial errors (1 point)

Question 3: Correct a Python script

Open the script with name: script_with_errors_c.py and correct the errors.

The correct script plots a series of circles at random positions and with random radii. It then
saves the plot as a PNG-file under the name: output_script_with_errors_c.png.

3

0 2 4 6 8 10
0

2

4

6

8

10

File of question 3

1 # This script contains errors and doesn't run.
2 # Correct the errors so that it gives the intended output.
3

4 import random
5 from numpy import cos, sin, pi, linspace
6 import matplotlib.pyplot as plt
7

8 fig, ax = plt.subplots()
9 t = numpylinspace(0, 2 * pi)

10 colors = "green", "purple"]
11

12 for i in range(10):
13 x0 = random.uniform(0, 10)
14 y0 = random.uniform(0, 10)
15 r = random.uniform(0.2, 1)
16 xx = x0 + rr * cos(t)
17 yy = y0 + r * sin(t)
18 ax.plot(xx, yy, color=colors[i % 2])
19

20 ax.set_aspect("equal")
21 ax.set_xlim([0, "10"])

4

22 ax set_ylim([0, 10])
23 fig.savefig("output_script_with_errors_c.png")

Q3: Solution

Procedure to reach to the solution:

• On line 9: Change numpylinspace to linspace.
• On line 10: Add left [square bracket before "green".
• On line 16: Change rr to r.
• On line 18: Remove the indentation/space at the beginning of the line.
• On line 21: Change string "10" into integer 10
• On line 22: Add the missing dot, i.e. change ax set_ylim to ax.set_ylim

1 # This is the corrected script
2

3

4 import random
5 from numpy import cos, sin, sqrt, pi, linspace
6 import matplotlib.pyplot as plt
7

8 fig, ax = plt.subplots()
9 t = linspace(0, 2*pi)

10 colors = ["green", "purple"]
11

12 for i in range(10):
13 x0 = random.uniform(0, 10)
14 y0 = random.uniform(0, 10)
15 r = random.uniform(0.2, 1)
16 xx = x0 + r*cos(t)
17 yy = y0 + r*sin(t)
18 ax.plot(xx, yy, color=colors[i % 2])
19

20 ax.set_aspect("equal")
21 ax.set_xlim([0, 10])
22 ax.set_ylim([0, 10])
23

24 plt.savefig("output_script_with_errors_c.png")

5

Q3: Score calculation

7 points to be obtained:

1. Having a parameter t with sufficient points (1 point)
2. Creating the correct number of random (x, y)-coordinates for the circles (1 point)
3. Creating the correct number of random radii for the circles (1 point)
4. Being able to plot circles (1 point)
5. Plotting the circles with correct colors (1 point)
6. Saving the output to a file (1 point)
7. Script runs without or with only trivial errors (1 point)

Question 4: Repeated input

Prompt the user to input an integer number 𝑁 between 100 and 200. Repeatedly divide the
number by 2 or if not possible by 3 and print the result. If it cannot divided by 2 and cannot
divided by 3 stop the program and print the resulting number.

Example:

Give an integer in interval [100, 200]: 120
120 / 2 = 60
60 / 2 = 30
30 / 2 = 15
15 / 3 = 5
The result is: 5

Save your solution as a script with file name: solution_4.py.

Q4: Solution

n_str = input("Give an integer in interval [100, 200]: ")
n = int(n_str)

while True:
if n % 2 == 0:

print(f"{n} / 2 = {n / 2}")
n = n / 2

elif n % 3 == 0:
print(f"{n} / 3 = {n / 3}")
n = n / 3

6

else:
break

print(f"The result is: {n}")

Q4: Score calculation

6 points to be obtained:

1. Prompt the user for input (1 point)
2. Convert to an integer (1 point)
3. Verify whether the number is divisible by 2 or 3 (1 point)
4. Print the division in correct output format (1 point)
5. Check the validity of the number or range of the number (for an extra point)
6. Repeat the division in a correctly working for loop (1 point)
7. Script runs without or with only trivial errors (1 point)

Question 5: Plot functions

Plot a graph with the following sigmoid functions (in interval [−3, 3]):

𝑓1(𝑥) = 𝑥√
1 + 𝑥2

𝑓2(𝑥) = 𝑥
1 + |𝑥|

𝑓3(𝑥) = tanh(𝑥)

You can make use of the functions in the numpy library: sqrt(), tanh(), abs(). Take a
sufficiently high number of 𝑥 values so the curve looks smooth, you can use the numpy function
linspace(). Save the plot under the file name: output_plot_math.png. Save your
solution as a script with file name: solution_5.py.

7

3 2 1 0 1 2 3
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

x

1 + x2

x
1 + |x|

tanh(x)

Q5: Solution

import numpy as np
from numpy import sqrt, abs, tanh
import matplotlib.pyplot as plt

x = np.linspace(-3, 3, 100)
f1 = x / sqrt(1 + x**2)
f2 = x / (1 + abs(x))
f3 = tanh(x)

fig, ax = plt.subplots()
ax.plot(x, f1)
ax.plot(x, f2)
ax.plot(x, f3)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.legend([r"$\frac{x}{\sqrt{1+x^2}}$", r"$\frac{x}{1 + |x|}$", r"$\tanh(x)$"])

plt.savefig("output_plot_math.png")

8

Q5: Score calculation

9 points to be obtained:

1. Obtaining the correct expressions for the three functions (1 point)
2. Creating multiple x-values within the interval (1 point)
3. Having the correct interval (1 point)
4. Obtaining the correct y-values from chosen x-values for at least one of the curves (1

point)
5. Having all curves (1 point)
6. Having smooth plots (1 point)
7. Style of the plot looks like the example (1 point)
8. Enabling saving the plot (1 point)
9. Script runs without or with only trivial errors (1 point)

9

	Questions/problems and solutions
	Question 1: Print numbers series
	Q1: Solution
	Q1: Score calculation

	Question 2:
	Q2: Solution
	Q2: Score calculation

	Question 3: Correct a Python script
	File of question 3
	Q3: Solution
	Q3: Score calculation

	Question 4: Repeated input
	Q4: Solution
	Q4: Score calculation

	Question 5: Plot functions
	Q5: Solution
	Q5: Score calculation

