PHOT 110: Introduction to programming

Final exam questions & solutions, version A

Michaél Barbier, Spring semester (2024-2025)

Questions/problems and solutions

We first show the question, then the solution and then how the points are counted. The points
of each question are first normalized to 100/7. We then add these for the 7 questions to get a
total score on 100. If question ¢ has M, points and one obtained m;/M, points, then the total
score S is:

7
S =S"120 x m,;/M,]
=1

)

In the score calculation of the solutions to the questions, we appoint different amount of
points. However, every question has the same weight (100/7), due to the above mentioned
normalization of the points.

Remark that there is a minimal amount of comments used in the problem solutions. This is
to keep the code listings within this document more compact. In real scripts I would advice
to put more comments to document your code.

Question 1: Loops
Write a script that prompts the user to input a word and then print every character of the

reversed word on a separate line to the console. Use a loop (e.g. for or while) structure to
perform this task. The output should look similar to:

Please provide a word or sentence: Computer
r

e
t
u

Q o B O

Save your solution as a script with file name: solution_1.py.

Q1: Solution

word = input(f"Please provide a word or sentence: ")

for a in reversed(word):
print(a)

Q1: Score calculation

6 points to be obtained:

Allowing for user input (1 point)

Having multiple lines (1 point)

Printing all the characters (1 point)

Automatically reversing the order of the characters (1 point)
Using a loop structure to print one character per line (1 point)
Script runs without or with only trivial errors (1 point)

S Gt W=

Question 2: Tables of multiplication

Create a script that repeatedly provides the user with a simple calculus question such as 5 x
7 = 7 to train the tables of multiplication, and verifies his/her answer. Generate the numbers
(between 1 and 10), at random as exemplified in the following code:

import random

a = random.randint (1, 10)
print(a)

e Whenever the user provides a correct answer, provide a next question,

o When the user provides a wrong answer or gives invalid input, let him/her try again the
same question.
e If the user writes the word stop, stop the program.

Tables of multiplication (write "stop" to stop exercising).
3x5=7:3b

Correct!

6 x 3 ="7: blah

The provided answer is not valid! Please try again.
6 x3="7:18

Correct!

1x8=7:1

This answer is wrong!

1x8=7:8

Correct!

4 x2=7: stop

Goodbye!

Save your solution as a script with file name: solution_2.py.

Q2: Solution

import random
print('Tables of multiplication (write "stop" to stop exercising).')

correct = True
while True:
try:
if correct:
a = random.randint(1, 10)
b = random.randint(1, 10)
answer = input(f"{a} x {b} =7 : ")

if answer == "stop":
break
correct = int(answer) == a * b

if correct:
print ("Correct!")

else:
print("This answer is wrong!")
except:
correct = False
print("The provided answer is not valid! Please try again.")

print ("Goodbye!")

Q2: Score calculation

7 points to be obtained:

Prompt the user for input (1 point)

Convert to an integer (1 point)

Verify whether the answer is correct (1 point)

Allow the user to try again if input is not valid (1 point)
Repeatedly prompt the user for exercises (1 point)

Stop when the user types stop as input (1 point)

Script runs without or with only trivial errors (1 point)

RN o e

Question 3: Correct a Python script
Open the script with name: script_with_errors.py and correct the errors. Save the cor-
rected script with file name solution_3.py.

The corrected script should plot the “Witch of Agnesi” curve together with the corresponding
circle:

8a?

vy= 2 + 402

The curve is plotted for various radii a = 0.2,0.4,0.6,0.8,1. This graph is then saved as a
png-file with file name output_script_with_errors.png to the hard disk.

The output graph should look as the plot below:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

> 1

File of question 3

This script contains errors and doesn't run.
Correct the errors so that it gives the intended output.

Load libraries

import numpy as np

from numpy import pi, cos, sin
import matplotlib.pyplot as plt

t = np.linspace(0, 2 * pi, 200)
x = linspace(-4, 4, 200)
radii = [0.2, 0.4, 0.6, 0.8, 1]]

fig, ax = plt.subplots()

for a in radii:
plot the circle
xc = a * \cos(t)
yc = a * sin(t) + a
ax.plot(xc, ycc, color="gray")

plot the curve
y = 8 x ax*x3 / (x**2 + 4 * a*x*2)
ax.plot(x, y, color="blue")

ax.set_aspect("equal")
ax.set_xlabel ("x"
ax.set_ylabel(y)
ax.set_xlim([-4, 4])

29
30 # Save the resulting plot
a1 fig.savefig("output_script_with_errors.png")

Q3: Solution

Procedure to reach to the solution:

e On line 10: Change linspace() into np.linspace().

e On line 11: Remove extra “]” bracket at the end of the line.

e On line 17: remove \ before cosine function (cos).

e On line 19: Change ycc into yc.

e On line 22: Remove the extra space at the beginning of the line (single “tab” is required).
e On line 27: Change y into string "y".

e On line 28: Remove the extra space/indentation at the beginning of the line.

1 # This 1s the corrected script.

4+ # Load libraries

5 import numpy as np

¢ from numpy import pi, cos, sin, sqrt
7 import matplotlib.pyplot as plt

9 t = np.linspace(0, 2 * pi, 200)
10 x = np.linspace(-4, 4, 200)

11 radii = [0.2, 0.4, 0.6, 0.8, 1]
12

13 fig, ax = plt.subplots()

14
15 for a in radii:
16 # plot the circle

17 xc = axcos(t)
18 yc = axsin(t) + a
19 ax.plot(xc, yc, color="gray")

20 # plot the curve

21 y = 8 * ax*3 / (x**2 + 4 * ax*2)
22 ax.plot(x, y, color="blue")

23

21 ax.set_aspect("equal")

25 ax.set_xlabel("x"

26 ax.set_ylabel("y")

27

28

29

30

ax.set_x1im([-4, 4])

Save the resulting plot
fig.savefig("output_script_with_errors.png")

Q3: Score calculation

7 points to be obtained:

Allowing for multiple radii (1 point)

Having the correct axis labels (1 point)

Having the correct axis limits, and equal aspect ratio (1 point)
Plotting of the circles of correct size and color (1 point)
Plotting the correct curves and colors (1 point)

Saving the output to a file (1 point)

Script runs without or with only trivial errors (1 point)

NN o

Question 4: 2D density plot

Plot the intensity I(z,y) of a diffraction pattern from a rectangular aperture with using the
formula:

I(z,y) = sinc® (gjéy> sinc? (yéy)
s 7r

whereby you can use the Sinc function of Numpy called sinc(x) available in Numpy. Take
parameters dy = 1 and Jy = 2. Plot the resulting function I(z,y) as a density plot. Remember
that you can make a density plot (with a colorbar) using the commands:

fig, ax = plt.subplots()
pc = ax.pcolormesh(xx, yy, zz, rasterized=True, vmax=0.001, cmap='"gray")
fig.colorbar(pc, ax=ax)

Seeting the arguments vmax=0.001 and cmap="gray" gives the same z-limit and colormap as
in the output plot shown below.

For each of the functions you can use the same (z,y)-values within an 2D interval/domain
with x € [—20,20] and y € [—20, 20] (take a sufficiently fine grid of (z,y) coordinates to obtain
a smooth density plot). Save the plot under the file name: output_plot_sinc.png. Save
your solution as a script with file name: solution_4.py. The output of the script should look
as in the plot below:

— 0.0010

- 0.0008

- 0.0006

0.0004

0.0002

0.0000

Q4: Solution

import numpy as np

from numpy import pi, sinc, log
import matplotlib.pyplot as plt
import matplotlib as mpl

I0 =1
dx = 1
dy = 2
X = np.linspace(-20, 20, 1000)
y =X

XX, yy = np.meshgrid(x, y)
Ir = XX ¥*% 2 + yy ** 2
zz = I0 #* 2 * sinc(xx*dx/pi) ** 2 * sinc(yy*dy/pi) ** 2

fig, ax = plt.subplots()

pc = ax.pcolormesh(xx, yy, zz, rasterized=True, vmax=0.001, cmap="gray")
ax.set_aspect("equal")

ax.set_xlabel("x")

ax.set_ylabel("y")

fig.colorbar(pc, ax=ax)

Save the resulting plot
fig.savefig("output_plot_sinc.png")

Q4: Score calculation

7 points to be obtained:

1. Creating multiple x and y values within the intervals forming the domain (1 point)

2. Creating 2D arrays of coordinates within the domain (1 point)

3. Implementing the correct formula and obtaining correct z-values from chosen (x, y)-
coordinates (1 point)

Having a smooth plot (1 point)

Style of the plot looks like the example (1 point)

Enabling saving the plot (1 point)

Script runs without or with only trivial errors (1 point)

N ook

Question 5: Creating and using modules

Create a module (a separate script file) with file name module_shapes.py which helps to
calculate areas of various geometrical shapes. The module should contain three functions:

o surf_sphere(r): Calculates the surface area A of a sphere with radius r: A = 4mr?

e surf_cone(r, h): Calculates the surface area of a cone with radius r and height h:
A=qr?+qarvh2+r?

e surf_cylinder(r, h): Calculates the surface area of a cylinder with radius r and height
h: 2mr? + 27rh

Afterwards, import and use this module in a script (with file name: solution_5.py) that
plots the surface area of a sphere, cone, and cylinder as function of the radius r in meter
(putting the height A = 1 meter), by using the surf_sphere(r), surf_cone(r, h), and
surf_cylinder(r, h) function from the module. Save the plot as a png-file with file name
output_plot_shapes.png to the hard disk.

The output graph should look as the plot below:

507 — sphere
cylinder
_. 404 —— cone
E
c
~ 30_
©
o
©
Y 20 A
©
t
=}
0
10 A
0_
0.25 050 0.75 1.00 1.25 150 1.75 2.00
r (in m)
Q5: Solution

The solution exists out of two files:

e module_shapes.py: the module providing functionality to calculate the surface areas.
e solution_ 5.py: the main script which plots the surface area as function of radius.

Remark: In the code listings I removed the underscores of the file names as I had a problem
with rendering them in this pdf-file.

Listing 1 moduleshapes.py

from numpy import pi, sqrt

def surf_sphere(r):
return 4 * pi * r*x*2

def surf_cylinder(r, h):
return 2 * pi * r**2 + 2%pixrxh

def surf comne(r, h):
return pixr**2 + pikr*sqrt(h**2 + r**2)

10

Listing 2 scriptsolution5.py

#| output: false
import matplotlib.pyplot as plt
import numpy as np

from module_shapes import surf_sphere, surf_cylinder, surf_cone

h=1
rr = np.linspace(0.2, 2, 1000)

Calculate surface areas
y_sphere = surf_sphere(rr)
y_cylinder = surf_cylinder(rr, h)
y_cone = surf_cone(rr, h)

Plot

fig, ax = plt.subplots()

ax.plot(rr, y_sphere)

ax.plot(rr, y_cylinder)

ax.plot(rr, y_cone)

ax.set_xlabel("r (in m)")

ax.set_ylabel (r"surface area (in m$~2$%)")
ax.legend(["sphere", "cylinder", "cone"])
fig.savefig("output_plot_shapes.png")

Qb5: Score calculation

10 points to be obtained:

Creation of a separate module file (1 point)

Implementing the correct expressions for the surface areas (1 point)

Function definitions implementing the different surface area calculations (1 point)
Importing the module (1 point)

Creating x coordinates within the correct interval (1 point)

Calling the different functions from the module (1 point)

Having a smooth plot (1 point)

Enabling a similar output plot as in the question (1 point)

Saving the output plot to a file (1 point)

Script runs without or with only trivial errors (1 point)

© XN O WD

hﬂ
e

11

Question 6: Dictionaries

Define the following dictionary with costs of four friends: Jack, An, Boris, and Nancy, who
went on a trip (“Nancy” didn’t pay anything yet). Use the following code in your script:

costs = [
{"cost": "dinner", "who": "Jack", "amount": 360},
{"cost": "train", "who": "An", "amount": 1240},
{"cost": "supermarket", "who": "Jack", "amount": 400},

{"cost": "hotel", "who": "Boris", "amount": 4800},

Then let the script automatically calculate the total cost of the trip and the amount of money
(in turkish lira) that each person still has to pay to (or should get from) the others. That is,
the amount they already paid minus the total cost divided by four.

The output of a correct script should be the following:

Balance sheet:
- Jack: -940.0 TL.
- An: -460.0 TL.
- Boris: 3100.0 TL.
- Nancy: -1700.0 TL.

Save your script under the name solution_6.py.

Q6: Solution

cost dictionary copied from question description

costs = [
{"cost": "dinner", "who": "Jack", "amount": 3607},
{"cost": "train", "who": "An", "amount": 1240},
{"cost": "supermarket", "who": "Jack", "amount": 400},

{"cost": "hotel", "who": "Boris", "amount": 4800},

Calculate total cost and individual costs

total_cost = O

individual_paid = {"Jack": 0, "An": 0, "Boris": 0, "Nancy": O}
n_people = len(individual_paid)

12

for cost in costs:
total cost += cost["amount'"]
individual_paid[cost["who"]] += cost["amount"]

Print balance sheet
print(f"Balance sheet:")
for k, v in individual_paid.items():
print(f" - {k}: {v - total_cost/n_people} TL.")

Q6: Score calculation

9 points to be obtained:

Understanding how a dictionary is written (1 point)

Having a dictionary similar to the one of the task description (1 point)
Using a loop to iterate over all costs in the list (1 point)

Automatically calculate the total cost (1 point)

Automatically calculate the individual paid costs (1 point)

Printing of the balance sheet with separate names on separate lines (1 point)
Printing each person’s name together with his/her balance (1 point)
Enabling similar output to the example (1 point)

Script runs without or with only trivial errors (1 point)

© 0N oo W

Question 7: Classes

Create a class named Spectroscope which has two attributes:

e mname: the name or identifier of the device, e.g. “spectro1l000xb” or “heatsensor-ST23”,
e data: contains the measurement data (once loaded in). Initially it is None.

Give the class a constructor that accepts one argument (in addition to the mandatory self ar-
gument), the name (name) of the device: __init__(self, name). Further create the following
two methods:

e load_data(self, data_file): which loads the spectroscopy data. The data is
saved as a “txt” file containing tab-separated values, organized in two columns
(wavenumber and absorbance). This data can be loaded into a Numpy array using the
loadtxt(data_file) function of Numpy.

e plot(self): which visualizes the data by plotting the spectrograph (see the example
output below).

13

Then use the class in your script to make a Spectroscope object with identifier “sx100”, load,
and plot the provided data (FTIR spectrum of virgin olive oil: “FTIR_ olive oil.txt”) using
the following code:

spectro = Spectroscope("sx100")

spectro.load_data("FTIR_olive_oil.txt")
spectro.plot()

The (correctly working) script should give the following output figure:

1.6
1.4 4
1.2 4
1.0
0.8
0.6 1

absorbance units

0.4 A

0.2 A

0.0 A

800 1000 1200 1400 1600 1800
wavenumber k (in cm™1)

Save your script under the name solution_7.py.

Q7: Solution
import numpy as np
import matplotlib.pyplot as plt
class Spectroscope():
def __init__(self, name):

self .name = name
self.data = None

14

def load_data(self, data_file):

self.data = np.loadtxt(data_file)

def plot(self):

x = self.datal:, 0]

y = self.datal:, 1]

plt.plot(x, y)

plt.gca() .set_xlabel(r"wavenumber k (in cm$~{-1}$)")
plt.gca() .set_ylabel("absorbance units")

plt.show()

Script part copied from question description
spectro = Spectroscope("sx100")
spectro.load_data("FTIR_olive_oil.txt")
spectro.plot()

Q7:

Score calculation

10 points to be obtained:

CUps N

© 0N

10.

Creating a class (1 point)

Having all required class attributes (1 point)

Having a constructor which allows giving the device name (1 point)

Having the method load_data(self, data_file) which loads the data (1 point)
The load_data(self, data_file) method correctly loads the data into self.data
attribute (1 point)

Having the plot(self) method (1 point)

The plot(self) method gives a correct plot (1 point)

Succesfully creating an object and applying the methods in the script part (1 point)
Enabling similar output to the example (1 point)

Script runs without or with only trivial errors (1 point)

15

	Questions/problems and solutions
	Question 1: Loops
	Q1: Solution
	Q1: Score calculation

	Question 2: Tables of multiplication
	Q2: Solution
	Q2: Score calculation

	Question 3: Correct a Python script
	File of question 3
	Q3: Solution
	Q3: Score calculation

	Question 4: 2D density plot
	Q4: Solution
	Q4: Score calculation

	Question 5: Creating and using modules
	Q5: Solution
	Q5: Score calculation

	Question 6: Dictionaries
	Q6: Solution
	Q6: Score calculation

	Question 7: Classes
	Q7: Solution
	Q7: Score calculation

