
PHOT 110: Introduction to programming
Practical 6: Arrays

Michaël Barbier, Spring semester (2024-2025)

1. Create Numpy arrays

Unlike lists, arrays have a fixed length of elements, and all elements must have the same type (the
elements of the array can be changed). We will use the Numpy package for arrays, Numpy arrays
are much faster to access than lists.

You can create Numpy arrays in various ways:

import numpy as np

a1 = np.array([4, 2, 1]) # a1 = array created from a "2D" list
print(f"a1 = {a1}")
a2 = np.zeros((3, 1)) # a2 = 3x1 array (row-vector) with zeros
print(f"a2 = {a2}")
a3 = np.ones((4, 2)) # a3 = 4x2 array filled with ones
print(f"a3 = {a3}")
a4 = np.eye(2) # a4 = 2x2 Identity matrix
print(f"a4 = {a4}")

• Convert the list: [1, 2, 3] to an array using the np.array() method.
• Create an 3 × 2 array filled with zeros using np.zeros(n, m), print the array.
• Create an 1 × 5 array filled with ones using np.ones(n, m), print the array.

2. Access elements in Numpy arrays

Accessing elements of arrays is done in the same manner.

Get the 1th element of the array
i = 0
element = a1[i]
print(f"The element with index {i} = {element}")

The element with index 0 = 4

• Create a 3 × 3 array and fill the last column with numbers 1, 2, 3
• Extract the first row using the colon operator similar to lists
• Print the diagonal numbers using a loop

1

3. Different ways to generate the x-values: with Numpy

Numpy is designed for numerical computations so it has built-in functions for the generation of co-
ordinates within intervals (see also https://numpy.org/doc/stable/user/how-to-partition.html#how-
to-partition). Numpy functions arange() and linspace() create regularly spaced coordinates within
1D intervals:

import numpy as np
Numpy: suppress scientific notation for small numbers and use 3 digits
np.set_printoptions(precision=3, suppress=True)

N = 10; A = -1; B = 2; dx = 0.25
x1 = np.arange(A, B, dx) # x1 = points in interval [A, B[with step dx
print(f"x1 = {x1}")
x2 = np.linspace(A, B, N+1) # x2 = N points in interval [A, B]
print(f"x2 = {x2}")

x1 = [-1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75]
x2 = [-1. -0.7 -0.4 -0.1 0.2 0.5 0.8 1.1 1.4 1.7 2.]

The created coordinates are in Numpy arrays (not lists). Remember that Numpy arrays are much
faster to access than lists.

• Create an array containing: [1, 2, 3, 4, 5]
• Create an array using np.linspace(start, stop, step) with 20 elements equally spaced in

the interval [−2, 1]
• Create an array using np.arange(start, stop, step) with inter-element distance of 0.5 for

the same interval [−2, 1]

4. Element-wise operations with Numpy arrays

Numpy also provides element-wise operations on Numpy arrays. We can use this to generate for
example y-coordinates:

Numpy arrays provide element-wise operations
y = x1**2 # y contains squared array elements
print(f"y = {y}")
z = 5 * x1 + 3 # z contains elements of x multiplied by 5 and increased with 3
print(f"z = {z}")

y = [1. 0.562 0.25 0.062 0. 0.062 0.25 0.562 1. 1.562 2.25 3.062]
z = [-2. -0.75 0.5 1.75 3. 4.25 5.5 6.75 8. 9.25 10.5 11.75]

Numpy also provides functions on Numpy arrays:

res = np.exp(a1)
print(res)
a_degrees = np.array([45, 60, 30, 180, 90])
rads = np.deg2rad(a_degrees)
y = np.cos(rads)
print(y)

2

https://numpy.org/doc/stable/user/how-to-partition.html#how-to-partition
https://numpy.org/doc/stable/user/how-to-partition.html#how-to-partition

[54.598 7.389 2.718]
[0.707 0.5 0.866 -1. 0.]

• Create x and y coordinates for the expressions (take as interval [−2, 2]):

𝑦 = 𝑥3

𝑦 = sin(𝜋𝑥)
𝑦 = √(𝑥 + 2)

𝑦 = sin(𝜋𝑥)
𝑥

3

	1. Create Numpy arrays
	2. Access elements in Numpy arrays
	3. Different ways to generate the x-values: with Numpy
	4. Element-wise operations with Numpy arrays

