
PHOT 110: Introduction to programming
Final exam questions, retake

Michaël Barbier, Spring semester (2023-2024)

Before you start

The final exam counts for 50% of your total grade of the course. You will get 3 hours to
complete your exam. The exam is performed on the computer, and you do not need to provide
any answers on paper. There is one question (the third question) which asks to correct a script
which contains various errors, other questions require you to write Python scripts.

During our final exam, there will be a very short (about 5 minutes) oral part. This part is
only about the projects, and impacts only the grade of your projects. You will be asked a
couple of short questions about the project: the code you wrote and/or the accompanying
report. If required you can prepare the answer on paper (there will be paper available), you
also will have a print-out version of your report. In principle, you do not need to prepare for
this oral part, the questions’ only purpose is to see whether you understood what you did in
the project.

Take the following points into account before you start the exam.

• For those who use their own computer/laptop: you do not need internet, we will ask you
to switch of your WiFi before the exam starts. The exam files are distributed via USB
drive. Copy all files from the USB drive to your computer before you start:

– The questions: phot110_exam_questions_x.pdf
– The script with errors for question 3: script_with_errors.py
– Three cheat-sheets: for Python, Numpy, and Matplotlib.

• For those who work on the desktop computers in the lab: all the required files should be
found on the Desktop.

• Make sure that the Numpy and Matplotlib libraries are installed already (we will test
this together before the exam starts).

• At the end of the exam we will go around with USB drives to collect the exams: put
your solutions (and output files) in a folder which has both your name and your student
number in the folder name, for example “Michael_Barbier_30029034”.

1

• Let us know if during the exam there is any issue with the computer, PyCharm, or
libraries. We will try to verify this up front, but please inform us in case of any issues.

You will be asked to save plots to your folder, this can be done using the savefig method, see
the following example (the output of this example is a simple line plot):

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
x = [1, 4, 3, 0]
y = [2, 2, 5, 4]
ax.plot(x, y)
fig.savefig("output_plot_example.png")

Questions

Please solve all of the following 7 questions. Each question is worth an equal amount of points
(out of 100).

Question 1:

Write a script that prints the characters of a word (string) each on a separate line and adds a
growing number of space symbols in front. Use a loop (e.g. for or while) structure to perform
this automatically. For the example string: Good morning, a correct script should have output
similar to:

G
o
o
d

m
o
r
n
i
n
g

Save your solution as a script with file name: solution_1.py.

2

Question 2: Walking distance counter

Make a script that prompts a user repeatedly to give his/her daily walked distance in kilometers
(as a positive integer). Stop the program when the user provides “stop” instead of a number.
Every time print the total kilometers walked so far. This is example output of a correct
script:

Walking tool: Provide positive integers to add a walking distance, or stop to exit.

Please provide the distance you walked today: 4
Total walking distance so far: 4 km

Please provide the distance you walked today: five km
This is not a valid amount please try again!

Please provide the distance you walked today: 6
Total walking distance so far: 10 km

Please provide the distance you walked today: stop
Total walking distance so far: 10 km

Save your solution as a script with file name: solution_2.py.

Question 3: Correct a Python script

Open the script with name: script_with_errors.py and correct the errors. Save the cor-
rected script with file name solution_3.py.

The corrected script should plot sinusoidal curves with different frequencies 𝑓𝑖 =
1, 1.5, 2, 2.5, … , 4 Hz. The y-coordinates of the curves are given by:

𝑦 = sin(2𝜋 𝑓𝑖 𝑥)

The different curves are colored according to their frequency (using the “jet” colormap). The
graph is then saved as a png-file with file name output_script_with_errors.png to the hard
disk.

The output graph should look as the plot below:

3

0.0 0.1 0.2 0.3 0.4 0.5
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

Question 4: 2D density plot

Plot 𝑧(𝑥, 𝑦) given by the following formula:

𝑧(𝑥, 𝑦) = 1
1 + 2|𝑥||𝑦| + 𝑥2

𝑦2

whereby you can use the function abs() of Numpy. Plot the resulting function 𝑧(𝑥, 𝑦) as
a density plot. Remember that you can make a density plot (with a colorbar) using the
commands:

fig, ax = plt.subplots()
pc = ax.pcolormesh(xx, yy, zz, rasterized=True)
fig.colorbar(pc, ax=ax)

Use (𝑥, 𝑦)-values within an 2D interval/domain with 𝑥 ∈ [−2, 2] and 𝑦 ∈ [−2, 2] (take a
sufficiently fine grid of (𝑥, 𝑦) coordinates to obtain a smooth density plot). Avoid choosing
coordinates with 𝑦 = 0, to prevent divisions by zero. Save the plot under the file name:
output_plot_cross.png. Save your solution as a script with file name: solution_4.py. The
output of the script should look as in the plot below:

4

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

0.2

0.4

0.6

0.8

Question 5: Creating and using modules

Create a module (a separate script file) with file name module_overlap.py which helps to
verify whether there is any overlap between two circles with radii 𝑅1 and 𝑅2 that are separated
by distance 𝐷 (between their center coordinates). The module should contain two functions:

• circle_overlap(R1, R2, D): verifies whether there is overlap between two circles with
radii 𝑅1 and 𝑅2 which centers are distance 𝐷 apart:

𝐷 ≤ 𝑅1 + 𝑅2

• distance(x1, y1, x2, y2): calculates the distance 𝐷 between two points with coordi-
nates (𝑥1, 𝑦1) and (𝑥2, 𝑦2):

𝐷 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

Afterwards, import and use this module in a script (with file name: solution_5.py) that
defines three circles by following lists of x coordinates, y coordinates, and radii:

xs = [1, 3, 2]
ys = [2, 5, -2]
Rs = [1, 3, 1]

5

and verifies whether any circles are overlapping (pairwise) using the circle_overlap(R1,
R2, D) function together with the distance(x1, y1, x2, y2) function from the module.
Afterwards, print out the results: the output should look as follows:

Circles:
- circle 1: x = 1, y = 2, radius = 1
- circle 2: x = 3, y = 5, radius = 3
- circle 3: x = 2, y = -2, radius = 1

--
circles 1 and 2 do overlap!
circles 1 and 3 do not overlap.
circles 2 and 3 do not overlap.
--

Question 6: Dictionaries

Define the following dictionary with timings (in seconds) of a 100 meter sprint contest with
different categories according to age in your script:

sprint_times = {
"seniors": [10.6, 11.3, 12.0, 10.4, 11.8, 10.9],
"juniors": [12.0, 12.6, 13.4, 12.7],
"kids": [15.2, 16.1, 13.8, 14.9, 15.4],

}

Then let the script automatically print out the average time per age category (loop over the
categories). You can use the mean() function of Numpy to find the average (after casting the
list to a Numpy array). The output of a correct script should be the following:

The average times per age category are:
seniors: 11.17 seconds.
juniors: 12.68 seconds.
kids: 15.08 seconds.

Save your script under the name solution_6.py.

6

Question 7: Classes

Create a class named ChessPlayer which has three attributes

• name: the name of the player,
• rating: the current rating of the player

The ChessPlayer object represents a chess player in a tournament that plays matches against
other chess players. Give the class a constructor that accepts two arguments (in addition
to the mandatory self argument), the player’s name and his/her rating: __init__(self,
name, rating).

Then add the following method:

• update_rating(self, score, rating_opponent): which calculates the player’s new
rating 𝑅𝑛𝑒𝑤 after a match against an opponent. The method updates the rating at-
tribute of the player. The new rating of a player 𝑅𝑛𝑒𝑤 after a match depends on the
outcome score 𝑆 of the match (won: 𝑆 = 1, draw: 𝑆 = 1/2, lost: 𝑆 = 0), and the rating
𝑅 of the player and the rating 𝑅𝑜𝑝𝑝 of its opponent according to the following formula:

𝑅𝑛𝑒𝑤 = 𝑅 + 40 × (𝑆 − 𝐸), with 𝐸 = 10𝑅/400

10𝑅/400 + 10𝑅𝑜𝑝𝑝/400

Then use the class in your script to make two ChessPlayer objects for chess players “Ivan” and
“Mehmet”. Give Ivan a rating of 1184 and Mehmet a rating of 1310. Then update their rating
after they play a game which is won by Mehmet. Use the following code to update both their
ratings:

player_mehmet.update_rating(1, player_ivan.rating)
player_ivan.update_rating(0, player_mehmet.rating)

Print their ratings before and after they played the game. This is example output of a correctly
working script:

Before the game:
The rating of Mehmet = 1310
The rating of Ivan = 1184

After the game:
The rating of Mehmet = 1323
The rating of Ivan = 1171

Save your script under the name solution_7.py.

7

	Before you start
	Questions
	Question 1:
	Question 2: Walking distance counter
	Question 3: Correct a Python script
	Question 4: 2D density plot
	Question 5: Creating and using modules
	Question 6: Dictionaries
	Question 7: Classes

