
PHOT 110: Introduction to programming
Lecture 10: supporting materials

Michaël Barbier, Spring semester (2023-2024)

Exercises on functions

We will exercise creating functions and use them within problems similar to the ones we encoun-
tered before during recitation. Remember the different elements of the function definition:

Figure 1: Function definition elements

At the beginning of the script you should first import the required libraries (numpy and
matplotlib):

1

Import numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("WebAgg")

Exercise 1: Calculate the factorial of a number

Calculate the value of the factorial of a number by defining a new function: factorial(n).
Use the following script as basis:

input parameter
n = 5

calculate the factorial
f = 1
for i in range(2, n+1):

f = i * f

print the factorial
print(f"The value of {n}! = {f}")

The value of 5! = 120

Exercise 2: Calculate the number of combinations

The number of combinations of k items out of a set of n objects is defined in statistics as

𝒞𝑛
𝑘 = (𝑛

𝑘) = 𝑛!
(𝑛 − 𝑘)! 𝑘!

where 𝑘 ≤ 𝑛.

• Use the function factorial(n) which you created in previous exercise 1 to calculate the
number of combinations 𝒞5

3.
• Afterwards create a function combinations(n, k) to compute the combinations.

2

Exercise 3: Intersection of two lines

Find the intersection point 𝑝 = (𝑥𝑝, 𝑦𝑝) between two lines with equations

{𝑦 = 𝑚1 𝑥 + 𝑐1
𝑦 = 𝑚2 𝑥 + 𝑐2

To find the intersection we extract the x-value by making use of the fact that at the intersection
the y-values should be equal.

𝑚2 𝑥𝑝 + 𝑐2 = 𝑚1 𝑥𝑝 + 𝑐1
⇒ (𝑚2 − 𝑚1) 𝑥𝑝 = 𝑐1 − 𝑐2

⇒ 𝑥𝑝 = − 𝑐2 − 𝑐1
𝑚2 − 𝑚1

then we substitute the found 𝑥𝑝 coordinate into one of the equations of the system to obtain
the 𝑦𝑝 coordinate:

𝑦𝑝 = 𝑚1 𝑥𝑝 + 𝑐1

As example parameters of the lines: pick 𝑚1 = 1/5 and 𝑚2 = 7 as the direction coefficients,
and 𝑐1 = 2 and 𝑐2 = −3 the off-sets at 𝑥 = 0.

Convert the code to calculate the intersection point in following script into a function:
calc_intersection(m1, c1, m2, c2) which returns xp, yp. Afterwards use your new
function within this script.

Parameters of the lines
m1 = 0.2; c1 = 2
m2 = 7; c2 = -3

Calculate the intersection point
(convert the next couple of lines into a function)
xp = -(c2 - c1) / (m2 - m1)
yp = m1 * xp + c1

Calculate the coordinates for the lines to plot
x = np.linspace(-7, 7, 100)
y1 = m1 * x + c1
y2 = m2 * x + c2

Plot the lines and the intersection point
fig, ax = plt.subplots()
ax.plot(x, y1)
ax.plot(x, y2)

3

ax.plot(xp, yp, marker="x")
ax.set_xlim([-7, 7])
ax.set_ylim([-5, 5])
ax.set_aspect("equal")
plt.show()

6 4 2 0 2 4 6

4

2

0

2

4

Exercise 4: Intersection of many lines

Use the function that you created in exercise 3 to calculate the intersection of a line with a
list of other lines defined by:

Parameters of the single line:
m1 = -0.1
c1 = 2

Parameters of the other lines:
m_list = [-3, 2, -1.5, 3, -1, 10];
c_list = [3, 1, -1, -2, -1, 0]

The output plot should look as follows:

4

6 4 2 0 2 4 6

4

2

0

2

4

5

	Exercises on functions
	Exercise 1: Calculate the factorial of a number
	Exercise 2: Calculate the number of combinations
	Exercise 3: Intersection of two lines
	Exercise 4: Intersection of many lines

