
PHOT 110: Introduction to programming
Lecture 08: supporting materials

Michaël Barbier, Spring semester (2023-2024)

Exercises on creating plots with Matplotlib

We will summarize the method to generate simple line plots using Matplotlib, and elaborate
on the styling of the plot. I put two Matplotlib cheat-sheets/hand-outs on teams which can
also be found on the Matplotlib website (I put the hand-outs for beginner and intermediate
users on teams).

At the beginning of the script you should first import the required libraries (numpy and
matplotlib):

Import numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("WebAgg")

Exercise 1: Refraction at a glass interface

Plot the refracted angle 𝜃2 (using Snell’s law) of a ray of light incident at a glass medium, as
function of the incoming angle: use the incoming angle 𝜃1 ∈ [−90, 90] degrees medium 1 has
𝑛1 = 1, medium 2 has 𝑛2 = 1.55.

Snell’s law is given by:
𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2)

If refraction indices 𝑛1 and 𝑛2 are known, the refracted angle can be calculated as follows:

𝜃2 = arcsin (𝑛2
𝑛1

sin(𝜃2))

1

https://matplotlib.org/

Figure 1: Snell’s law

Hint: Use Numpy arrays for the angles (np.linspace()), and Numpy functions: np.sin(),
np.arcsin() (convert to radians by multiplying by a factor pi/180) or use the functions
np.rad2deg and np.deg2rad to convert between the two.

The output of your code should be similar to following plot:

0 20 40 60 80
0

5

10

15

20

25

30

35

40

2

Exercise 2: Adapt previous plot to include axis labels, etc.

• Add labels to your axes using the set_xlabel and set_ylabel methods. Put $-symbols
around mathematical/Greek letters and double-escaped Greek letters such as theta (the
escape symbol is “\”). For example:

ax.set_xlabel("$\\theta_1$ (in degrees)")

• Add a title to your plot (e.g. “Refraction angles”) by using the method: ax.set_title()
• Set the intervals to be plotted between 0 and 90 degrees, and set the aspect ratio of the

axes equal to one:

ax.set_xlim([0, 90])
ax.set_ylim([0, 90])
ax.set_aspect('equal', 'box')

• Save the figure using fig.savefig() as a png figure, for example:

fig.savefig("./ex2_figure.png")

The output of exercise two should give you a similar plot to the one below:

0 20 40 60 80
1 (in degrees)

0

10

20

30

40

50

60

70

80

90

2 (
in

 d
eg

re
es

)

Refraction at a glass medium

3

Exercise 3: Extend previous script to show multiple incident angles

Plot the previous plot but now with multiple values for 𝑛2 ∈ [1, 1.8]

• use the arange function of Numpy to create values for 𝑛2 within the interval, for example
each value separated by 𝛿𝑛 = 0.1

n2s = np.arange(1, 1.85, 0.1)

• Plot in the same axis when looping over the values (but initialize the fig, ax only once
before the loop)

• add a legend using plt.legend(n2s)
• to remove the extra decimals due to rounding errors, use plt.legend(np.round(n2s,

decimals=2)) to round the numbers before showing the legend.

The output of exercise 3 should give the below plot:

0 20 40 60 80
1 (in degrees)

0

10

20

30

40

50

60

70

80

90

2 (
in

 d
eg

re
es

)

Refraction at a glass medium
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Exercise 4: Plot ellipses with various parameters

Plot ellipses as parametric plots with parameter 𝑡 ∈ [0, 2 ∗ 𝜋] and where the (x, y)-curve is
given by:

𝑥 = 𝑎 cos(𝑡)
𝑦 = 𝑏 sin(𝑡)

4

Plot multiple ellipses with different values of 𝑎 and 𝑏:

• take parameter 𝑎 ∈ [1, 2] and choose a small (e.g. 8) curves using np.linspace(), after-
wards calculate corresponding value for parameter 𝑏 from 𝑎 by using 𝑏 = 1/𝑎

• give every ellipse a different color and choose the color palette Matplotlib uses by using
e.g.:

colors = plt.cm.jet(np.linspace(0, 1, n_curves))

Then afterwards define the line color:
ax.plot(xs, ys, color=colors[i])

• use: ax.set_aspect('equal', 'box') to set the aspect ratio of the x and y axis equal

The output of the script should give the following plot:

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Exercise 5: Plot Poinsot’s spiral (2nd form),

Poinsot’s spiral is defined in polar coordinates as:

𝑟 = 1
cosh(𝑛𝜃)

plot with 𝜃 in interval [−10∗𝑝𝑖, 10∗𝑝𝑖] and convert from polar coordinates to (x,y)-coordinates
by

𝑥 = 𝑟 cos(𝑡)
𝑦 = 𝑟 sin(𝑡)

5

- Take the parameter 𝑛 for example 𝑛 = 1/3 to have a typical curve

The output plot should look as below:

0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Random numbers in Numpy

Exercise 1: Plot a Gaussian distribution

Generate 10000 random numbers with a normal distribution and plot the histogram - First
initialize the random number generator

rng = np.random.default_rng(1)

• use the random number generator we created to generate 10000 random numbers from
the standard normal distribution using:

xs = rng.standard_normal(size=10000)

• plot a histogram using ax.hist(x_uniform, 100)

The resulting plot should be:

6

4 3 2 1 0 1 2 3 4
0

50

100

150

200

250

300

350

Exercise 2: Make a scatter plot of a Gaussian distribution in 2D

• use the random number generator we created to generate 1000 random numbers for both
x and y coordinates,

• Use the normal distribution
• fill in loc(=mean), and scale(=sigma) as extra parameters:

xs = rng.normal(loc=4, scale=0.9, size=1000)
ys = rng.normal(loc=-2, scale=1.5, size=1000)

• plot them in a scatter plot using: ax.scatter(xs, ys)

The resulting output should look as below:

7

1 2 3 4 5 6 7
6

4

2

0

2

Exercise 3: Adapt the scatter plot of exercise 2 by specifying the size and color
of the dots

ax.scatter(xs, ys, sz, colors, cmap=matplotlib.colormaps["jet"])

where both sz and colors can be arrays of the same size as the coordinates or scalars

• for the size use for example 10
• for the colors create an array containing the distance of the coordinates to the center of

the distribution
• the cmap argument allows us to set the colormap used

The resulting scatter plot should look as below:

8

2 4 6

6

4

2

0

2

9

	Exercises on creating plots with Matplotlib
	Exercise 1: Refraction at a glass interface
	Exercise 2: Adapt previous plot to include axis labels, etc.
	Exercise 3: Extend previous script to show multiple incident angles
	Exercise 4: Plot ellipses with various parameters
	Exercise 5: Plot Poinsot's spiral (2nd form),

	Random numbers in Numpy
	Exercise 1: Plot a Gaussian distribution
	Exercise 2: Make a scatter plot of a Gaussian distribution in 2D
	Exercise 3: Adapt the scatter plot of exercise 2 by specifying the size and color of the dots

