
PHOT 110: Introduction to programming
Lecture 07: supporting materials

Michaël Barbier, Spring semester (2023-2024)

Visualizing functions or numerical data with line plots

Installing required Python packages

The Matplotlib and Numpy packages need to be installed

• Matplotlib: provides functions for plotting data
• Numpy: fast numerical functions (vectors, matrices, …)
• tornado: a web server currently used for showing plots

To use package functions in a script we import them:

Import statements
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("WebAgg") # requires the "tornado" package

Currently there is a small issue with using Matplotlib on the computers in the computer lab.
There is a missing library (tkinter) on Ubuntu, which is normally used by Matplotlib to show
a window on the screen (used as “backend”). As a temporary solution we will use another
available backend: “WebAgg”.

(1) Install the “tornado” package (a web-server), and select the “WebAgg” backend option
in your script, similar to above import example:

import matplotlib
matplotlib.use("WebAgg")

(2) Further, to have all plots of the script within one browser tab we will use the command
“plt.show()” only at the end, after defining all plots.

1

(3) To plot a figure, you can use the following:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(xs, ys) # xs and ys are lists or arrays of coordinates

This is slightly different than the plt.plot() command we used before, and allows us to plot
different plots within one browser-tab. This is more convenient when using the “WebAgg”
backend.

Making a plot

Plotting a function is often done by approximating the function by piece-wise straight lines. For
this we divide the interval that we want to plot in small pieces and generate (x, y)-coordinates.
Suppose we want to plot the function 𝑦 = 𝑥2 over interval 𝑥 ∈ [𝐴, 𝐵], then first we would
create the x-coordinates:

𝑥𝑖 = 𝐴 + 𝑖 ⋅ 𝐵 − 𝐴
𝑁 = 𝐴 + 𝑖 ⋅ 𝛿𝑥 with 𝑖 ∈ {0, 1, .., 𝑁}

with 𝛿𝑥 = (𝐵 − 𝐴)/𝑁 the distance between the x-coordinates.

Figure 1: Interval divided in 𝑁 pieces, i.e. a regularly spaced interval.

Afterwards we calculate the y-coordinates from the x-coordinates: 𝑦𝑖 = 𝑥2
𝑖 . Now that we have

both coordinates we can plot the points with a line plot, which will connect the points with
line pieces. The following code plots the curve 𝑦 = 𝑥2 within interval [−1, 2]

2

Import statements
import numpy as np
import matplotlib.pyplot as plt

Generating the x-coordinates with a list comprehension
N = 10
A = -1; B = 2
xs = [A + i*(B-A)/N for i in range(N+1)]

Calculating the y coordinates from the x coordinates
ys = [x**2 for x in xs]

Creating a Matplotlib figure
fig, ax = plt.subplots()
Plotting the coordinates
ax.plot(xs, ys, marker='.')

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Within this example we used a low number of points, 𝑁 = 10, which is too small to obtain a
smooth realistic curve. Normally we plot curves with 𝑁 = 100 or larger. I added dots on the
curve (provided by the option marker='.' in the plot command) to indicate where the points
are.

3

Different ways to generate the x-values

To create the 𝑁 +1 coordinates 𝑥𝑖 in interval [𝐴, 𝐵] there are various methods available. First
I will list the methods not using the Numpy package:

(1) Using a while loop (not optimal when you know the number of divisions):

N = 10; A = -1; B = 2;
xs = []
i = 0
while i <= N:

x = A + i*(B-A)/N
xs.append(x)
i = i + 1

(2) Using a for loop and a range:

N = 10; A = -1; B = 2;
xs = []
for i in range(N+1):

x = A + i*(B-A)/N
xs.append(x)

(3) Using list comprehension:

N = 10; A = -1; B = 2;
xs = [A + i*(B-A)/N for i in range(N+1)]

Different ways to generate the x-values: with Numpy

Numpy is designed for numerical computations so it has built-in functions for the generation
of coordinates within intervals (see also https://numpy.org/doc/stable/user/how-to-partition.
html#how-to-partition). Numpy functions arange() and linspace() create regularly spaced
coordinates within 1D intervals:

import numpy as np
Numpy: suppress scientific notation for small numbers and use 3 digits
np.set_printoptions(precision=3, suppress=True)

N = 10; A = -1; B = 2; dx = 0.25
x1 = np.arange(A, B, dx) # x1 = points in interval [A, B[with step dx
print(f"x1 = {x1}")

4

https://numpy.org/doc/stable/user/how-to-partition.html#how-to-partition
https://numpy.org/doc/stable/user/how-to-partition.html#how-to-partition

x2 = np.linspace(A, B, N+1) # x2 = N points in interval [A, B]
print(f"x2 = {x2}")

x1 = [-1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75]
x2 = [-1. -0.7 -0.4 -0.1 0.2 0.5 0.8 1.1 1.4 1.7 2.]

The created coordinates are in Numpy arrays (not lists). Numpy arrays are much faster
to access than lists. But lists can change their size easily and contain mixed object types.

Numpy also provides operations and functions on Numpy arrays. We can use this to generate
for example the y-coordinates:

Numpy arrays provide element-wise operations
y = x1**2 # y contains squared array elements
print(f"y = {y}")
z = 5 * x1 + 3 # z contains elements of x multiplied by 5 and increased with 3
print(f"z = {z}")

y = [1. 0.562 0.25 0.062 0. 0.062 0.25 0.562 1. 1.562 2.25 3.062]
z = [-2. -0.75 0.5 1.75 3. 4.25 5.5 6.75 8. 9.25 10.5 11.75]

When to use which method ?

It seems that Numpy is much easier for creating regularly spaced points within an in-
terval, especially when using the values afterwards within a calculation, so why would we
use anything else? There are some details to it though, I tried to summarize the PRO’s and
CON’s in the following table:

type PRO’s CON’s Use-case
while loop versatile, only option

when number of
iterations is unknown

cumbersome Unknown number of
iterations

for loop Lower memory
footprint if used with
range(), lazy
evaluation

Cumbersome large number of
iterations,
performing a direct
action each iteration

list comprehension Clear, easy Less convenient than
Numpy arange()

When using Numpy
is not
desired/possible

5

type PRO’s CON’s Use-case
Numpy arange Easiest method for

fixed step, Numpy
provides array
operations and
functions

End of interval is
exclusive, no lazy
evaluation, slower
than Python built-in
Array

Regularly spaced
intervals (fixed step)
for computational
purposes

Numpy linspace Easiest method for
fixed number of
points, Numpy
provides array
operations and
functions

No lazy evaluation,
slower than Python
built-in Array

Regularly spaced
interval (fixed
number of points) for
computational
purposes

Basically, if you need to create a regularly spaced interval:

• Use a while loop when you don’t know the number of iterations up front.
• Use a for loop for huge number of iterations which cannot fit into memory, so that the

lazy evaluation of range can help you there. In this case you would not create the actual
list, but take an action at each iteration (e.g. save the result to a file).

• Use list comprehension if you don’t want to use Numpy (or it is not available)
• Use Numpy’s arange or linspace for numerical computations and plotting.

Note that this comparison is specifically for regularly spaced intervals. When iterating over
lists of objects, using a for loop or list comprehension is more appropriate.

Exercises:

EX 1: 𝑥2 in [−2, 2] interval using a for loop to generate coordinates.

EX 2: Plot the same curve but use list comprehension to generate the coordinates

EX 3: Plot the same curve but use arrays and Numpy np.linspace()

EX 4: plot a cosine curve [0, 2𝜋] interval using arrays and Numpy np.linspace() and
np.cos() functions

Syntax for loop
for i in range(start, stop, step):
<statements> ...

Plotting:
plt.plot(xs, ys)

6

ax = plt.gca()
ax.set_xlabel("x (in m)")
plt.show()

List comprehension
<list> = [x**2 for x in <sequence>]

Numpy array xs
xs = np.linspace(start, stop, n_el)

Output plot of exercises 1 - 3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x (in a.u.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y
(in

 a
.u

.)

Exercise 5: Lissajoux figures

Lissajoux figures: sinusoidal signals in x and y.

𝑥 = sin(𝑓𝑥𝑡 + 𝛿𝜙)
𝑦 = sin(𝑓𝑦𝑡)

• Traversed coordinates in time t form shapes
• Signal frequencies fx and fy

7

• Phase difference dphi

Lissajoux figures are typically encountered on an oscilloscope (see the figure below). In an
oscilloscope electric signals are connected to the vertical and horizontal

Use following parameters
fx = 3; fy = fx - 1; dphi = pi/2 # or dphi = pi/4

Hint: Use np.linspace(), np.pi, np.sin()
take time in interval [0, 2*pi], e.g.:
t = np.linspace(0, 2*np.pi, 1000)

Figure 2: An oscilloscope allows to see the correlation between two electric signals, by plotting
one signal horizontally and the second vertically.

8

Output plot example

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
fx = 3, fy = 2

Exercise 6: Compute an integral numerically

Numerically integrate the following integral

∫
2

0
dx (𝑥3 − 𝑥/3)

(1) As a first approximation try to use the rectangular approximation (Riemann sum). There-
fore, divide the interval [0, 2] in 𝑁 parts and approximate the area surrounding each point
by a thin rectangle. The sum of all rectangle areas then approximates the total area un-
der the curve (see the figure below), i.e. the integral. For a general interval [𝐴, 𝐵] and
function 𝑦 = 𝑓(𝑥) we can numerically calculate the integral using:

∫
𝐵

𝐴
dx 𝑓(𝑥) ≈

𝑁
∑
𝑖=1

𝑓(𝑥𝑖)𝛿𝑥

With 𝑥𝑖 = 𝐴 + (𝑖 − 1/2) × 𝛿𝑥, and 𝛿𝑥 = (𝐵 − 𝐴)/𝑁 . This sum is also called Riemann
sum. In principle, we should take the limit 𝑁 → ∞ to obtain the analytic result or
actual Riemann integral, but as an approximation we take 𝑁 a finite (large number).

9

Figure 3: Numerical integration of a definite integral over interval [𝐴, 𝐵] interval. The left
panel illustrates the Riemann sum, where the area under the curve is approximated
by rectangles. On the right the Trapezium rule is illustrated where the area is
approximated by trapeziums instead of rectangles, increasing the accuracy.

(2) Compare the result with the analytic result:

[𝑥4/4 − 𝑥2/6]20 = 10/3

(3) Then use the trapezium rule, see the figure above, in which instead of rectangles we
use trapeziums, following the curve more accurately. The area of a trapezium with two
vertical sides and one horizontal bottom side is given the width times the average length
of the vertical sides.

∫
𝐵

𝐴
d𝑥 𝑓(𝑥) ≈

𝑁
∑
𝑖=1

𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)
2 𝛿𝑥

With 𝑥𝑖 = 𝐴 + 𝑖 × 𝛿𝑥, and 𝛿𝑥 = (𝐵 − 𝐴)/𝑁 . This sum should more accurately reflect the area
under the curve (the integral) than the Riemann sum.

(4) This formula is used so often that Numpy has a function for it: np.trapz(y, x). Com-
pare your result with the result of this function.

10

Exercise 7: Compute derivatives numerically

The derivative of a function in a point can be numerically approximated by finite difference
methods. The following formula gives us the forward finite difference:

d𝑓(𝑥)
d𝑥 ≈ 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

𝛿𝑥
If we would take the limit of 𝛿𝑥 → 0 then we would obtain the actual derivative. Here
however we will approximate the derivative with a finite-sized 𝛿𝑥. We we want to calculate
the derivative over an interval we will as we did for the integral divide the interval in 𝑁 pieces
and set 𝛿𝑥 = (𝐵 − 𝐴)/𝑁 . Thereby we can plot the derivative over the whole interval [𝐴, 𝐵]
(except of the last point at B, for which we can’t compute the forward derivative). Similarly,
the backward finite difference is defined as:

d𝑓(𝑥)
d𝑥 ≈ 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

𝛿𝑥
And the mean of the two becomes the central difference:

d𝑓(𝑥)
d𝑥 ≈ 1

2 (𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)
𝛿𝑥 + 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

𝛿𝑥) = 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)
2𝛿𝑥

Figure 4: Numerical derivatives. The central difference allows the most accurate derivative and
can be considered as the mean derivative of the forward and the backward difference
approximation.

(1) Numerically compute and plot the forward derivative of 𝑓(𝑥) = sin(5𝜋𝑥)/(1+𝑥2) within
interval [−3, 3]. Ignore the issue at the last point.

(2) Do the same for the central difference, do you find any difference for small values of 𝑁?

11

	Visualizing functions or numerical data with line plots
	Installing required Python packages
	Making a plot
	Different ways to generate the x-values
	Different ways to generate the x-values: with Numpy
	When to use which method ?
	Exercises:
	Output plot of exercises 1 - 3
	Exercise 5: Lissajoux figures
	Output plot example
	Exercise 6: Compute an integral numerically
	Exercise 7: Compute derivatives numerically

