Topics

• Evolution mechanisms through mutations
 – Population genetics
 – Nucleic acid sequence evolution
 • Evolutionary distance vs. sequence distance
 • Jukes-Cantor model
Population Genetics

• Evolution:
 – Changes in the frequency as well as the sequence of genes in a population observed across time
 – Heritable changes in a population over many generations
 – …

• Two essential components:
 – Error-prone self replication produces genetic variants
 – Different variants incur varying levels of success at self replication through selection
 • Molecular evolution involves natural selection; selection carried out by nature
 • Unnatural selection; or artificial selection by humans forms the basis of agriculture
 – juicier and sweeter fruits
 – bigger and disease resistant crops
 – dogs and other animals bred selectively to fulfill different tasks
Case in Point: Dogs and Birds

- Dogs differ widely in their size and appearance, but belong to the same species
 - many years of selective breeding is responsible for all dog varieties
- Birds of prey look very similar but belong to different species

Source: http://www.dogbreedslist.info/all-dog-breeds/
Source: https://www.thespruce.com/types-of-birds-of-prey-387307
Nucleic Acid Sequences and Evolutionary History

- Organisms with common evolutionary ancestors share similar genetic sequences
 - At the time of genetic bifurcation, the two daughter species embark on different evolutionary paths
 - These different paths are characterized by the accumulation of different mutations
- The differences between their genetic sequences observed at the present time are related to the time of the bifurcation from the common ancestor
 - The earlier the separation, the higher the number of accumulated differences
 - The fraction of differences between sequences related to the evolutionary distances through mutation models
› Estimation of the evolutionary relationship among a given set of genetic sequences from different organisms
Spread of Mutations

- **An organism’s fitness**: The ability to leave descendants in future generations
 - The greater the number of descendants, the higher the fitness
 - Has little to do with the health or the general well being of an organism
 - Has more to do with how beneficial its traits are in the organism’s specific environment to leave descendants
- **Mutations can have three types of effects on the fitness**:
 - Advantageous: Increase the chance of leaving descendants
 - Neutral: No perceivable change in fitness
 - Deleterious: Decrease the chance of leaving descendants
Genetic Variation Between Species

• Evolution traces out **ancestors** and **descendants**
 – Common ancestors of different species from which they have diverged some time in the distant past
 – Some evolutionary tracts lead to survival
 – Other tracts disappear into extinction
 • Evolution is competition between alternative genetic configurations
 • Species that get outcompeted by others die out
Tree of Life

Source: http://biologicalphysics.iop.org/cws/article/lectures/47042
Genetic Divergence Mechanism

- Changing environmental conditions work on the genetic variations within an ancestral species to create and shape the descendants
 - The descendants start off in the same species with slightly different genetic makeup
 - Time enhances the differences that allow exploiting different environmental niches
 - Eventually different species become “discernable”
Mutation Models on Nucleic Acid Sequences

• Genetic variations are characterized by differences in the gene sequences
 – Identical genes imply nearly identical organisms (up to chance effects from the environment)
 – Differences between organisms and species imply differences in their genes
• Quantification of these differences require stochastic models of nucleic acid sequence evolution
• These models also link sequence differences to evolutionary distances in units of evolutionary time
 – in terms of the nearest common ancestor in the evolutionary past
Modeling Nucleic Acid Substitutions

- **Objective**: to derive the relationship between the observed substitutions on different sequences and their evolutionary correspondence
 - Evolutionary correspondence refers to the amount of time in which the sequences went down independent evolutionary paths

- **Premises**:
 - Substitutions occur randomly
 - Fixation is assumed to have been…
 - achieved when comparing sequences of different species
 - not achieved when comparing sequences across individuals
 - Rates of substitution are constant for the sequences involved during the corresponding time period

- **Approach**:
 - Establish a functional relationship between a sequence distance and the corresponding evolutionary distance

\[
\text{evolutionary distance (in time units)} = \mathcal{F}(\text{sequence distance})
\]
Modeling Nucleic Acid Substitutions

• **Sequence difference** D:
 – Measured by the *fraction of nucleotides that are different* between two nucleic acid sequence fragments
 – Correlates linearly with the evolutionary time span for small time periods, but varies nonlinearly for large time periods
 – Can be measured quantitatively for any given two sequences simply by counting the number of sites where the sequences do not match
 • Hamming distance in coding theory

• **Evolutionary distance** d:
 – Measured by the *average number of substitutions* that have occurred per site between the two sequences during the time span of independent evolution
 – Correlates linearly with the time span of independent evolution for all time ranges, small AND large
 – Cannot be measured directly but can be inferred from D using a stochastic model
Modeling Nucleic Acid Substitutions

- **Visible substitutions:**
 - One sequence remains the same and the other incurs a substitution, or
 - Both sequences incur substitutions into different nucleotides

- **Invisible substitutions:**
 - Neither sequence incurs a substitution (i.e., the original nucleotide remains preserved/conserved in both sequences), or
 - Both sequences incur substitutions into the same nucleotide

- **Annulled substitutions:**
 - Successive substitutions in both sequences result in the same nucleotide

\[D = \frac{4}{20} \]

Example:*

- **Original Sequence:** CCACGAGTCCACCGCAGCAC
- **Modified Sequence:** CCACGAGTCCACCGCAGC

Both sequences incur substitutions into the same nucleotide.
The Jukes-Cantor Model

- The substitution phenomenon is modeled by a Markov chain.
- In the Jukes-Cantor model, the rate of substitution from one base to any other is denoted by α, in number of substitutions per unit time.
 - Thus, the net rate of change of a base is 3α.
 - $\alpha \ll 1$
- The corresponding state transition rate matrix is given by:

$$Q = \begin{bmatrix}
-3\alpha & \alpha & \alpha & \alpha \\
\alpha & -3\alpha & \alpha & \alpha \\
\alpha & \alpha & -3\alpha & \alpha \\
\alpha & \alpha & \alpha & -3\alpha
\end{bmatrix}$$
The Jukes-Cantor Model

- The resulting transition probability matrix is

\[
P(t) = e^{Qt} = \begin{bmatrix}
\frac{1}{4} + \frac{3}{4} e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} \\
\frac{1}{4} & \frac{1}{4} + \frac{3}{4} e^{-4\alpha t} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4} e^{-4\alpha t} & \frac{1}{4} & \frac{1}{4} + \frac{3}{4} e^{-4\alpha t}
\end{bmatrix}
\]

or, more simply,

\[
P_{i,j}(t) = \begin{cases}
\frac{1}{4} + \frac{3}{4} e^{-4\alpha t} \quad & \text{if } i = j \\
\frac{1}{4} - \frac{1}{4} e^{-4\alpha t} \quad & \text{otherwise}
\end{cases}
\]
The Jukes-Cantor Model

• Note that $P_{i,j}(t)$ represents the probability with which the i’th nucleotide occupying a specific site on the original DNA sequence will be replaced by the j’th nucleotide in t units of time.

• This allows calculating the average sequence difference between the original sequence and the evolving sequence as the expected value

$$D(t) = \sum_{i,j} 1(i \neq j)P_{i,j}(t)\pi_i$$

• Assuming an equal rate of nucleotides across the DNA, i.e. $\pi_i = 1/4$ for all $i = 1,2,3,4$, we get

$$D(t) = 12 \left(\frac{1}{4} - \frac{1}{4} e^{-4\alpha t} \right) \frac{1}{4} = \frac{3}{4} - \frac{3}{4} e^{-4\alpha t}$$

• In addition, the incurred evolutionary distance by the evolving sequence to the original sequence is given by

$$d(t) = \sum_{i,j} 1(i \neq j)Q_{i,j}t\pi_i = 3\alpha t$$
The Jukes-Cantor Model

• To relate the observed sequence distance D between two evolved sequences to the evolutionary distance d between them:
 – the first sequence incurs $3\alpha t$ from the original
 – the second sequence incurs another $3\alpha t$ from the original, independent of the substitutions of the first one
 – this implies a total evolutionary distance of
 $$d(t) = 6\alpha t$$
 between the independently evolving sequences
 – furthermore, a combined evolution time of $2t$ produces a sequence distance of
 $$D(t) = \frac{3}{4} - \frac{3}{4} e^{-8\alpha t}$$
 – solving for the two in terms of αt, we get
 $$D = \frac{3}{4} - \frac{3}{4} e^{-\frac{4}{3}d} \quad \text{or} \quad d = -\frac{3}{4} \log \left(1 - \frac{4}{3}D \right)$$
The Jukes-Cantor Model

\(\alpha_1 < \alpha_2 < \alpha_3 \)
Example: Slow Evolution of a Single Sequence
Example: Fast Evolution of a Single Sequence
Example: Simultaneous Evolution of Two Sequences
Alternative Models

Jukes-Cantor

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>α</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>G</td>
<td>α</td>
<td>*</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>C</td>
<td>α</td>
<td>α</td>
<td>*</td>
<td>α</td>
</tr>
<tr>
<td>T</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>*</td>
</tr>
</tbody>
</table>

HKY

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>απ_G</td>
<td>βπ_C</td>
<td>βπ_T</td>
</tr>
<tr>
<td>G</td>
<td>απ_A</td>
<td>*</td>
<td>βπ_C</td>
<td>βπ_T</td>
</tr>
<tr>
<td>C</td>
<td>βπ_A</td>
<td>βπ_G</td>
<td>*</td>
<td>απ_T</td>
</tr>
<tr>
<td>T</td>
<td>βπ_A</td>
<td>βπ_G</td>
<td>απ_C</td>
<td>*</td>
</tr>
</tbody>
</table>

Kimura 2-parameter

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>α</td>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>G</td>
<td>α</td>
<td>*</td>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>C</td>
<td>β</td>
<td>β</td>
<td>*</td>
<td>α</td>
</tr>
<tr>
<td>T</td>
<td>β</td>
<td>β</td>
<td>α</td>
<td>*</td>
</tr>
</tbody>
</table>

General Reversible

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>α_{A→G}</td>
<td>α_{A→C}</td>
<td>α_{A→T}</td>
</tr>
<tr>
<td>G</td>
<td>α_{G→A}</td>
<td>*</td>
<td>α_{G→C}</td>
<td>α_{G→T}</td>
</tr>
<tr>
<td>C</td>
<td>α_{C→A}</td>
<td>α_{C→G}</td>
<td>*</td>
<td>α_{C→T}</td>
</tr>
<tr>
<td>T</td>
<td>α_{T→A}</td>
<td>α_{T→G}</td>
<td>α_{T→C}</td>
<td>*</td>
</tr>
</tbody>
</table>
Variable Substitution Rates

• The Jukes-Cantor model as well as the more sophisticated ones assume that all sites along the DNA are equally prone to base substitutions
 – $P_{i,j}(t)$ is assumed to be the same regardless of the position of the nucleotide on the sequence
• This assumption simplifies the analysis, but does not exactly hold in reality
 – Some sites are structurally or functionally important, and evolve more slowly
 • Due to strong selective pressure
 • Some very important sites are practically invariant
Variable Substitution Rates

- Relaxing this assumption requires incorporating site-specific variation in observed differences
 - Jukes-Cantor model with a fixed fraction q of invariable sites:
 \[
 d = -\frac{3}{4} (1 - q) \log \left(1 - \frac{4D}{3 - 3q} \right)
 \]
 - Jukes-Cantor model where the variability of sites is governed by a gamma distribution:
 \[
 d = \frac{3}{4} a \left(\left(1 - \frac{4}{3} D \right)^{-1/a} - 1 \right)
 \]
 where a is the shape parameter of the gamma distribution governing the probability of a site being subject to a substitution rate of r, described by the probability density function
 \[
 f_R(r; a) = Z r a^{-1} e^{-ar}
 \]
Example: Evolutionary Siblinghood

• Data
 – A random “original” nucleic acid sequence SQ of length $N = 100$ nucleotides undergoing point mutations according to a Jukes-Cantor model
 – Molecular evolution carried out in silico for 1000 epochs
 • $SQ^{(k)}$: The evolved sequence at the k’th epoch
 • $SQ^{(0)} = SQ$ (the original sequence)
 • $SQ_0 = SQ^{(1000)}$
 – A total of 5 sibling sequences, SQ_1, SQ_2, SQ_3, SQ_4 and SQ_5 identified as
 • $SQ_1^{(0)} = SQ^{(0)}$, $SQ_1^{(1000)} = SQ_1$
 • $SQ_2^{(0)} = SQ^{(200)}$, $SQ_2^{(800)} = SQ_2$
 • $SQ_3^{(0)} = SQ^{(400)}$, $SQ_3^{(600)} = SQ_3$
 • $SQ_4^{(0)} = SQ^{(600)}$, $SQ_4^{(400)} = SQ_4$
 • $SQ_5^{(0)} = SQ^{(800)}$, $SQ_5^{(200)} = SQ_5$
 evolved independently through the remaining epochs.

• Procedure:
 – Compute the sequence distances $D_{0,j}$ between SQ_0 and SQ_1, SQ_2, SQ_3, SQ_4 and SQ_5
 – Calculate the evolutionary distances $d_{0,j}$ from $D_{0,j}$ using the Jukes-Cantor model
Example: Sequence Data

s_0, s_1, s_2, s_3, s_4, s_5
Example: Sequence Data

\[SQ_0 \]
AGTACCCGGGCGCATCGAAG...

\[SQ_1 \]
ATTTCGGGCTCGAGATCGAAT...

\[SQ \]
ATTACCCGGTTCGAGGGAAG...

\[SQ_2 \]
ATTACCCGGTCGATCGATG...

\[SQ_3 \]
AGTACACGGCAATCGAGG...

\[SQ_4 \]
AGCAACCGTGCCCATCGAAG...

\[SQ_5 \]
AGTACCTGCGGCCCATCGAAG...
Example: Evolutionary Distances

- **Sequence distances:**
 - \(D_{0,1} = 0.4900 \Rightarrow d_{0,1} = 0.7945 \)
 - AGTACC GGGGG CGATCGAAG...
 - 1 1 11 11 1...
 - ATTT CCCG TCGAG ATCGAAT...
 - \(D_{0,2} = 0.3400 \Rightarrow d_{0,2} = 0.4529 \)
 - AGTACCC GGGGC CATCGAAG...
 - 1 11 11 1...
 - ATTA CCCG TGGCGA AGGGAAG...
 - \(D_{0,3} = 0.2300 \Rightarrow d_{0,3} = 0.2747 \)
 - AGTACCC GGGCC ATCGAAG...
 - 1 1 1 1 1...
 - AGTACAC GTGCA ATCGAAG...
 - \(D_{0,4} = 0.1700 \Rightarrow d_{0,4} = 0.1928 \)
 - AGTACC CCGGG CGATCGAAG...
 - 1 1 1 1 1...
 - AGCA ACGT GCCGATCGAAG...
 - \(D_{0,5} = 0.0900 \Rightarrow d_{0,5} = 0.0959 \)
 - AGTACCC GGGGC CATCGAAG...
 - 1 1 1...
 - AGTACCT GCGGG CGATCGAAG...
Repeat Example: Sequence Data

sq
Repeat Example: Evolutionary Distances

- Distances:
 \[D_{0,1} = 0.4400 \Rightarrow d_{0,1} = 0.6626 \]
 \[D_{0,2} = 0.3000 \Rightarrow d_{0,2} = 0.3831 \]
 \[D_{0,3} = 0.3000 \Rightarrow d_{0,3} = 0.3831 \]
 \[D_{0,4} = 0.1500 \Rightarrow d_{0,4} = 0.1674 \]
 \[D_{0,5} = 0.0800 \Rightarrow d_{0,5} = 0.0846 \]

- Remark:
 - Even though the experiment setup is exactly the same, the distances vary
 - Sequence evolution is a stochastic process
 - The variation even produces a rather strange and quite disagreeable result:
 \[D_{0,2} = D_{0,3} \text{ providing } d_{0,2} = d_{0,3} !!! \]
Example: Variability in Computed Evolutionary Distances

![Histograms of d_{01} to d_{05}](image)

Each histogram represents the distribution of evolutionary distances for different comparisons.
Remarks

• Models of nucleic acid sequence evolution links the sequence differences to evolutionary distances
• The parameters of these models are fitted to the available data to capture reality as much as possible
 – More sophisticated models better fit the available data
 – With better fits, the risk of losing general validity increases
• The viability of these models depends on the validity of the premises on the given application data
 – Assumptions may not hold
• The estimated evolutionary distances, however, are subject to estimation errors
 – These errors may switch the order of evolutionary siblinghood
• The extent of errors are directly proportional to the expected evolutionary distances
 – For sequences that are similar, the expected error is small
 – For sequences that are significantly different, the errors are large