EE430
Introduction to Systems Biology

Week 4 Course Notes

Instructor: Bilge Karaşalı, PhD
Topics

• Regulation of gene transcription
 – Regulation in a biomolecular network
 – Primary regulation mechanisms
 • Autoregulation
 • Feed-forward loops
Regulation in a Biomolecular Network

- **Selection promotes**
 - efficiency
 - Cells operate in an environment with limited resources
 - The resources must be spent on supplying the mechanisms that are of higher priority than others
 - adaptability
 - The extracellular environment and the conditions it imposes on the cells change in time
 - The cells must be able to respond to these changes by adjusting their priorities
 - rapid response
 - The quicker the cells adapt to the changing conditions the better for maintaining efficiency
 - robustness
 - At the same time, the cellular operations must also be shielded from random fluctuations in the environmental conditions
Regulation in a Biomolecular Network

• Tightly controlled regulation of gene transcription is a result of natural selection
 – Genetic variability produces diverse organisms with slightly different regulatory skills
 – The organisms possessing the regulatory skills that endow them with a higher fitness undergo positive selection

• Several primary regulatory mechanisms for gene transcription are present “conspicuously” across different species
 – Autoregulation
 – Feed-forward loop
Autoregulation

- Regulation of a gene Y by another gene X is indicated by an edge in the network graph between the nodes X and Y
 - If the regulation is activation, the edge is an arrow
 \[X \rightarrow Y \]
 - Conversely if X represses Y, the edge ends with a line stop
 \[X \rightarrow\!
 \]
- In autogenous regulation, a gene’s product acts as its own transcription factor
 - Such cases are indicated by a self-edge
 - The edge can be activation or repression as any other edge in the regulatory network
Production Rates of Autogenously Regulated Genes

• Positive autoregulation
 – This situation refers to the case where the gene’s own protein product acts as a transcription factor activating its expression
 – The input function governing a positively autoregulated gene X is given by the usual Hill function
 \[
 \text{rate of production of } X = f([X^*]) = \frac{\beta [X^*]^n}{\kappa^n + [X^*]^n}
 \]
• Negative autoregulation
 – The gene’s product represses its expression
 – The input function is given by
 \[
 \text{rate of production of } X = f([X^*]) = \frac{\beta}{1 + ([X^*]/\kappa)^n}
 \]
• Note that these functions do not characterize a static system
 – By definition, a positive production rate increases $[X]$
 – Since we assume that the signal S_X is always present, all $[X]$ is readily transformed into the active state $[X^*]$
 – Thus, the graph does not remain on the initial value of $[X^*]$
• Instead, they represent instantaneous production rates
Transients of Autoregulation

• Dynamic response in negative autoregulation
 – The equation governing the temporal variation of a gene product is
 \[\frac{d([X])}{dt} = f([X^*]) - \alpha [X] \]
 where the production rate follows the relationship
 \[f([X^*]) = \frac{\beta}{1 + ([X^*/\kappa]^n)} \].
 – Combining the equations above with \([X^*] = [X] (S_X \text{ always present})\) produces
 \[\frac{d([X])}{dt} = \frac{\beta}{1 + ([X]/\kappa)^n} - \alpha [X] \].
 – For manual analysis, the logic function approximation provides
 \[\frac{d([X])}{dt} \approx \beta \ 1([X] < \kappa) - \alpha [X] \]
 • For \([X] < \kappa\), \([X]\) is simply regulated with \(\frac{d([X])}{dt} = \beta - \alpha [X]\) resulting in an exponential rise towards the \(\frac{\beta}{\alpha}\) with \(T_{1/2} = \frac{\log(2)}{\alpha}\)
 • For \([X] > \kappa\), the production ceases and exponential decay starts
 \(\Rightarrow\) stability around \([X] = \kappa\)
Dynamic Response in Negative Autoregulation

\[[X] \]

\[\kappa \]

- blue: negative autoregulation
- red: logic approximation
- dotted blue: simple regulation

[diagram showing the response over time]
Dynamic Response in Negative Autoregulation

- Negative autoregulation alters the response time of gene activation
 - The time to half steady state (around kappa) is given by
 \[\kappa/2 = \beta/\alpha (1 - \exp(-\alpha T_{1/2})) \]
 \[\{ \kappa < \beta/\alpha \} \]
 \[\Rightarrow T_{1/2} = \log(2\beta/(2\beta - \kappa\alpha))/\alpha \]
 (For \(\kappa << \beta/\alpha \), \(T_{1/2} \approx \kappa/2\beta \).)
 - Compare that to \(\log(2)/\alpha \) in a simple regulation alternative with
 \[\beta' = \kappa \alpha \]
 that achieves the same steady state level
Dynamic Response in Negative Autoregulation

\[\kappa = \frac{\beta_0}{\alpha}, \quad \beta_1 \gg \beta_0 \]

- Simple regulation (\(\beta = \beta_0 \))
- Negative autoregulation (\(\beta = \beta_1 \))
Dynamic Response in Negative Autoregulation

• In addition to a faster rise, negative autoregulation provides robustness in gene expression against random fluctuations in the production rate β
 – Twin bacterial cells show variations in their respective production rates
 • Differences in capacity leads to variations from a few percents to tens
 – The production rate also varies in time due to random effects
 – The steady state level in simple regulation is directly affected by the production rate fluctuations
 • Note that the steady state level is given by β/α
 – The threshold κ on the other hand is a biochemical property of the input function, and is much more stable across individuals and in time

\Rightarrow The steady state expression level in negative autoregulation is stable even though the production rate may fluctuate
Dynamic Response in Positive Autoregulation

• In positive autoregulation, a gene product improves the expression rate of its own gene
 – Using the Hill function and positive autoregulation transient equation provides
 \[\frac{d([X])}{dt} = \frac{\beta [X]^n}{\kappa^n + [X]^n} - \alpha [X] \]
 – The logic function approximation leads to
 \[\frac{d([X])}{dt} = \beta \mathbf{1}([X] > \kappa) - \alpha [X] \]
 – This suggests that
 • If [X] is low, it stays low
 • If [X] is high (at the steady state level), it stays high
 \(\Rightarrow \) Bi-stability in gene expression
Dynamic Response in Positive Autoregulation

\[\frac{\beta}{\alpha} \]

\[\frac{\beta}{2\alpha} \]
Dynamic Response in Positive Autoregulation

• Bi-stability represents permanent decision making
 – Once a gene is activated, it remains active
 – Such decisions are frequently made in the early stages of development
 • In cellular differentiation, identical stem cells are set to grow into different tissues and organs
 – The state of positively autoregulated genes thus represents a bar-code for the cell’s identity
 • This set would naturally include the genes that are governed by positive autoregulation cascades

• Delay represents timing priorities
 – The genes that produce proteins required at a specific stage of a process are delayed to wait for the completion of the preceding stages
Another common regulation mechanism in gene transcription networks is the feed-forward loop

- Consists of three nodes
 - First node regulates the other two
 - The second is regulated by the first and regulates the third
 - The third is regulated jointly by the first two
- The regulatory mechanism consists of the effects of the signals to the first two nodes onto the expression of the third
The Feed-Forward Loop

- Depending on the functionality on the edges, the regulatory function of the feed-forward loop changes
 - Coherent type: The regulatory effects of both paths are the same
 - Incoherent type: The regulatory effects conflict with each other

- An additional control mechanism is in the integration of the regulatory inputs from both paths at the third node
 - AND or OR (SUM is not particularly interesting and will not be considered)
Coherent Type-1 Feed Forward Loop with AND Integration

- Characteristics of the regulatory mechanism:
 - All regulatory edges are activations
 - $X \rightarrow Y$ with κ_{XY}
 - $X \rightarrow Z$ with κ_{XZ}
 - $Y \rightarrow Z$ with κ_{YZ}
 - Two alternate paths with the same regulatory function on gene Z
 - Activation signals from both paths are required to express Z
 - AND integration
Coherent Type-1 Feed Forward Loop with AND Integration

- **Kinetic model**
 - **Premises:**
 - S_Y is present, S_X becomes present at time $t = 0$
 - $[X]$ is constant at steady state, $[Y]$ is initially zero

 $([X])(0^-) = [X]_{st}$, $([Y])(0^-) = 0$

 - **$X \rightarrow Y$:**
 - Simply regulated
 - The expression of Y begins at time $t = 0$ when $[X]$ is activated into $[X^*]$
 - The dynamics are governed by

 $d([Y])/dt = \beta_Y - \alpha_Y([Y])(t)$

 - **X AND $Y \rightarrow Z$:**
 - Both are simply regulated as well
 - The expression of Z begins after ($[X]$ crosses the threshold κ_{XZ} and) $[Y]$ crosses the threshold κ_{YZ}

 production rate of $Z = \beta_Z [Y]^{nYZ}/(\kappa_{YZ}^{nYZ} + [Y]^{nYZ})$
 - The dynamics are thus governed by

 $d([Z])/dt = \beta_Z ([Y])^{nYZ(t)}/(\kappa_{YZ}^{nYZ} + ([Y])^{nYZ(t)}) - \alpha_Z([Z])(t)$
Coherent Type-1 Feed Forward Loop with AND Integration

- Dynamic evaluation:
 - The expression of Y is turned on when S_X is switched on at time $t = 0$
 - The activated transcription factor X^* binds the promoters of Y and Z
 - [Y] (and hence [Y^*]) starts to build up toward its steady state value following an exponential rise
 - As activated [Y] crosses the threshold κ_{YZ}, it starts binding the promoter of Z in large amounts, initiating the transcription of Z
Coherent Type-1 Feed Forward Loop with AND Integration

\[s_x 1 \]
\[s_y 1 \]
\[\beta_Y/\alpha_Y \]
\[\kappa_{YZ} \]
\[\beta_Z/\alpha_Z \]

\[0 - \log(1 - \kappa_{YZ} \alpha_Y / \beta_Y) / \alpha_Y \]

\(t \)
Coherent Type-1 Feed Forward Loop with AND Integration

• The coherent type-1 FFL network element with AND integration acts as a sign-sensitive delay element
 – A delay of $-\log(1-\kappa_{YZ}\alpha_{\gamma}/\beta_{\gamma})/\alpha_{\gamma}$ is present at the initiation of the Z transcription
 – No such delay exists when either S_X or S_Y is turned off

• This mechanism protects the gene transcription against spurious activations
 – Spurious activations cause the cell both energy and raw materials
 • Hence, there is no reason to start Z transcription unless it really is required
 – In C1-FFL w/ AND, the Z transcription is activated only when the signal S_X persists for a sufficiently long time
 • Indicating that Z transcription really is required
Coherent Type-1 Feed Forward Loop with OR Integration

- **Premises:**
 - S_Y is present
 - S_X becomes present at time $t = 0$
 - $[X]$ is constant at steady state, $[Y]$ is initially zero
 \[
 ([X])(0^-) = [X]_{st}, \ ([Y])(0^-) = 0
 \]

- **Dynamic evaluation:**
 - As soon as S_X becomes present at time $t = 0$, the transcriptions of both Y and Z begin
 - Only one of X or Y is sufficient to initiate Z transcription
 - When S_X is turned off again, the transcription of Y ceases and the $[Y]$ level drop exponentially
 - The transcription of Z ceases only when the $[Y]$ level is below κ_{YZ}
Coherent Type-1 Feed Forward Loop with OR Integration

\[S_X \]
\[S_Y \]
\[\beta_Y/\alpha_Y \]
\[\kappa_{YZ} \]
\[\beta_Z/\alpha_Z \]
\[t \]
Coherent Type-1 Feed Forward Loop with OR Integration

• The coherent type-1 FFL network element with OR integration also acts as a sign-sensitive delay element
• However, in contrast with the same element with AND integration, the delay is observed at the cessation of the gene transcription
• This mechanism thus protects the transcription of gene Z against spurious loss of signal S_X
 – The process requiring Z should not be shut off accidentally due to a noise in S_X
 • Accidental shut off’s are costly
Incoherent Type-1 Feed Forward Loop with AND Integration

- In this feed forward loop, the two paths are antagonistic
 - X directly activates Z
 - X also represses Z indirectly through Y

- Dynamic evaluation:
 - Premises:
 - S_Y is present
 - S_X becomes present at time $t = 0$
 - $[X]$ is constant at steady state, $[Y]$ is initially zero
 - Immediately as S_X is turned on at time $t = 0$, the transcriptions of both Y and Z begin following the exponential curve
 - Gradually as $[Y]$ builds up, it crosses the threshold κ_{YZ}, causing Y to repress Z
 - As Z is repressed, $[Z]$ decays
Incoherent Type-1 Feed Forward Loop with AND Integration

- **Kinetic model:**
 - With the activation of $X \rightarrow X^*$ at time $t = 0$ ($S_X(t) = u(t)$), $[Y]$ increases via
 \[
 \frac{d([Y])}{dt} = \beta_Y - \alpha_Y([Y])(t)
 \]
 toward its steady state level $[Y]_{st} = \beta_Y/\alpha_Y$
 - The transcription of Z follows the transient equation
 \[
 \frac{d([Z])}{dt} = \frac{\beta_Z}{1+([Y](t)/\kappa_{YZ})^n} - \alpha_Z([Z])(t)
 \]
 - Initially, $[Z]$ rises according to the exponential curve of simple regulation towards $[Z]_{st} = \beta_Z/\alpha_Z$
 - Around time $t \approx -\log(1 - \kappa_{YZ}\alpha_Y/\beta_Y)/\alpha_Y$, increasing $[Y]$ starts to repress the Z transcription
 - Eventually, $[Y]$ attains its steady state level $[Y]_{st}$, and $[Z]$ decays toward a different steady state level $[Z]_{st}'$
 \[
 [Z]_{st}' = \frac{\beta_Z}{\alpha_Z(1+([Y]_{st}/\kappa_{YZ})^n)}
 \]
 - The repression coefficient F is defined as the ratio of the two levels:
 \[
 F = \frac{[Z]}{[Z]_{st}' = (1+([Y]_{st}/\kappa_{YZ})^n)}
 \]
Incoherent Type-1 Feed Forward Loop with AND Integration

\[
\begin{align*}
S_X &= 1 \\
S_Y &= 1 \\
\beta_Y/\alpha_Y &= -\log(1 - \kappa_{YZ} \alpha_Y / \beta_Y) / \alpha_Y \\
\kappa_{YZ} &= 0 \\
\beta_Z/\alpha_Z &= -\log(1 - \kappa_{YZ} \alpha_Y / \beta_Y) / \alpha_Y \\
\end{align*}
\]
Incoherent Type-1 Feed Forward Loop with AND Integration
Incoherent Type-1 Feed Forward Loop with AND Integration

• The incoherent type-1 feed forward loop with AND integration acts as a pulse generator
 – In the absence of repression from Y, Z undergoes an exponential rise towards $[Z]_{st}$
 – Eventually $[Y]$ rises sufficiently, and represses $[Z]$
 – Under repression, $[Z]$ declines toward $[Z]'_{st}$

• The response time of $[Z]$ is dramatically improved as well (assuming $[Z]'_{st}$ is the desired steady-state level)
 – Instead of rising towards $[Z]'_{st}$ via simple regulation, $[Z]$ is shot up towards $[Z]_{st} \gg [Z]'_{st}$ and brought down to $[Z]'_{st}$ later
 – Rise towards $[Z]_{st}$ is much faster than towards $[Z]'_{st}$ via simple regulation and crosses the $[Z]'_{st}$ level much sooner
Summary

• Gene transcription networks are endowed with specific network elements that carry out critical functions
 – Autoregulation
 • Negative autoregulation: Rapid response
 • Positive autoregulation: Delayed response and bistability
 – Feed-forward loop
 • C1-FFL: Sign-sensitive delay protection against spurious signals (with AND integration) and signal losses (with OR integration)
 • I1-FFL: Pulse generation and rapid response
• Such critical network elements are observed “abundantly” in gene transcription networks
• The statistical significance of this “abundance” is crucial to derive a functional understanding of gene transcription regulation