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Abstract
This paper presents an extensive study of various string and tubular structures
formed by carbon atomic chains. Our study is based on first-principles
pseudopotential plane wave and finite-temperature ab initio molecular
dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual
mechanical and electronic properties such as large cohesive energy, axial
strength, high conductance, and overall structural stability even at high
temperatures. They are suitable for structural and chemical functionalizations.
Owing to their flexibility and reactivity they can form linear chain, ring, helix,
two-dimensional rectangular and honeycomb grids, three-dimensional cubic
networks, and tubular structures. Metal–semiconductor heterostructures and
various quantum structures, such as multiple quantum wells and double-barrier
resonant tunnelling structures, can be formed from the junctions of metallic
carbon and semiconducting BN linear chains. Analysis of atomic and electronic
structures of these periodic, finite, and doped structures reveals fundamentally
and technologically interesting features, such as structural instabilities and
chiral currents. The double covalent bonding of carbon atoms depicted through
self-consistent charge density analysis underlies the chemical, mechanical, and
electronic properties.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Advances in nanoscience have opened the field of nanoelectronics, aiming at the ultimate
miniaturization of electronic circuits with high speed, ultra-high component density, and
novel functionalities. The main challenge of the research on molecular electronics (or
moletronics) [1, 2] has been in connecting those nanodevices. To develop highly conducting
interconnects, intense research has focused on nanowires [3]. Unusual mechanical and
transport properties of metallic wires [4–7], in particular a close correlation between their
atomic structure and stepwise variation of conductance, have been revealed [8–10]. Following
predictions of several theoretical studies [11–13], the production of monatomic linear gold
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chains, and chiral gold nanowires and nanotubes suspended between two gold electrodes,
have been a breakthrough [14–18]. Unfortunately, thin metal wires drawn between two
electrodes were not reproducible, and hence were unsuitable for device applications. Carbon
nanotubes [19, 20] with their unusual mechanical and electronic properties have been
considered as a promising class of nanostructures meeting several requirements and offering
new paradigms in nanoelectronics. In addition to several prospective device applications [21],
single-wall carbon nanotubes (SWNT) are also considered as interconnects. Experimentally
and theoretically it has been shown that SWNTs can be uniformly coated with Ti atoms [22, 23].

Another ultimate one-dimensional (1D) nanowire, namely a monatomic linear chain
of carbon atoms (C-LC), attracted the interest of several researchers much earlier [24–30],
but has been overshadowed lately due to intense research on carbon nanotubes. Using
chemical methods, production of carbon monatomic chains up to 20 atoms in length has
been achieved [31]. Recently, C-LC has been observed at the centre of multi-wall carbon
nanotubes [32]. Apart from being a prospective nanoscale interconnect, quasi-1D ordering of
carbon atoms in the form of atomic strings provides the basis for various nanostructures [33].
Depending on their geometrical shape and dimensionality, these structures are expected to
exhibit novel physical properties of technological interest.

In this study we carried out an extensive analysis of C-LC and various nanostructures
based on carbon strings using first-principles calculations. Here we placed an emphasis on
the electronic structure of the ring, various 2D grids and the 3D cubic network. In addition
to string structures, we also considered tubular forms made by stacking of polygons (such as
triangles, pentagons and hexagons) of carbon atoms on top of each other. We also examined the
confined states of a superlattice heterostructure made by the periodic repetition of a CN (BN)M

linear chain. The doping of C-LC with transition metal atoms has been studied by spin-relaxed
calculations, indicating the possibility of a magnetic ground state and high spin polarization
at the Fermi level.

We show that carbon string structures display properties which not only make them a
potential alternative to gold nanowires [16, 17] and SWNTs [21] but also point to some other
applications. C-LC is a special structure of carbon with very stable and impressive mechanical
properties, and is suited to structural and chemical functionalizations. We predict that it will be
relatively easy to realize T and crossbar junctions, which may lead to other 2D and 3D grid and
network structures. Carbon strings are flexible, but very stiff axially. Their transport properties
are interesting; in spite of the fact that the parent 3D carbon crystal (namely diamond) is an
insulator, an ideal C-LC is a better conductor than a linear gold chain [15]. Even though some
of the structures treated in this paper are not synthesized yet, it is hoped that present findings
will initiate further theoretical and experimental studies.

The paper is organized in the following manner: in the next section we describe the
methods of our total energy calculations, and give the parameters used in these calculations.
In section 3, we present our results concerning optimized atomic structure, self-consistent
electronic structure, energetics and stability analysis for various carbon based string and tubular
structures. In particular, we discuss Peierls dimerization in C-LC and second-order Jahn–Teller
distortions in the ring structures together with their effects on the physical properties. Section 4
includes our concluding remarks and a brief summary.

2. Method

We have performed self-consistent field (SCF) total energy and electronic structure calculations
using the first-principles pseudopotential plane wave method [34, 35] within density functional
theory (DFT) [36]. All infinite- and finite-size nanostructures in our study have been treated
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within supercell geometries. The generalized gradient approximation (GGA) [37] has been
used to carry out spin-paired as well as spin-relaxed calculations. All the atomic positions and
lattice parameters of periodic structures have been optimized by minimizing the total energy,
forces on atoms, and stress on the structure. For the ultrasoft pseudopotentials [35, 38] used in
our calculations the wavefunctions are represented by plane waves up to kinetic energy cut-off
400 eV. The Brillouin zones of various structures have been sampled by the Monkhorst–Pack
k-point special sampling scheme [39]. The number of k-points is determined by performing
convergence tests, which yield a 1×1×51 mesh appropriate for the case of C-LC with a single
atom per supercell. For larger supercells, the appropriate numbers of k-points have been set
by scaling them according to the size of the unit cell.

Since the stability of the structures we are predicting is relevant for applied research and
future technological applications,we performed a detailed analysis of stability by re-optimizing
the structures after displacing individual atoms from their original optimized configuration.
Furthermore, ab initio molecular dynamics (MD) calculations have been carried out for all
structures at high temperatures (800 K � T � 1200 K), for a large number of time steps.

3. Atomic and electronic structure, energetics, and stability

We considered a large number of carbon-based nanostructures, which are categorized into
string and tubular forms. The string structures are formed based on the monatomic chain of
carbon atoms. The tubular structures we consider in this work are different from single- or
multi-wall carbon nanotubes. The latter are visualized by rolling of a graphene sheet on a
cylinder of radius R with different chiralities and are left beyond the scope of the present
study [21]. The present tubular structures are formed by stacking triangular, pentagonal, and
hexagonal layers of carbon atoms in the axial direction. In figure 1 we schematically describe
these structures.

3.1. Linear chain

The carbon linear chain is the precursor to all string structures. In this section we discuss its
atomic structure, stability, and energy-band structure in detail. Several 1D chain structures of
carbon including narrow- and wide-angle zigzags (where atoms are displaced in the direction
perpendicular to the axis of the chain to form zigzags in the same plane) and dumbbell
geometries have been considered. Among all these 1D chain structures C-LC, known as
cumulene, is found to be the only stable structure. Upon relaxation, all other carbon chains
are transformed into C-LC with a bond length of c = 1.27 Å. This finding is in contrast
with the chain structures of metals [40, 41] and other group IV elements (Si, Ge, Sn) [42],
where the narrow-angle zigzag structure (with an apex angle of ∼60◦) is energetically more
favourable than the linear chain structure. That the planar zigzag structure is unstable and
transforms to a linear chain is indigenous to C and BN chains. Comparison of the cohesive
energies of C-LC having twofold coordination and bulk diamond having fourfold coordination
indicates the dramatic differences in bonding. The cohesive energy of C-LC calculated by
using GGA is 8.6 eV/atom and is close to 92% of the calculated cohesive energy of bulk
diamond (9.4 eV/atom). The lower coordination in C-LC is compensated by stronger bonds.

The electronic band structure and total density of states of C-LC with optimized uniform
bond distances are presented in figure 2. The σ band below the Fermi energy, EF, is composed
from 2s and 2pz atomic orbitals. The doubly degenerate π band is formed from the bonding
combinations of 2px and 2py atomic orbitals. This band crosses EF at k = π/2c and hence
accommodates two electrons per unit cell. In addition to the σ bond derived from the states
of the σ band, doubly degenerate half-filled [π(2px) and π(2py)] band states are combined
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Figure 1. (a) Nanostructures based on carbon strings: carbon linear chain (C-LC); doped C-
LC; ring structure of N carbon atoms (C-RN ); helix structure having N atoms per pitch length
p (C-HX(N,p)); CN (BN)M superlattice; N- or B-doped CN (BN)M superlattice; symmetric and
asymmetric loop devices; 2D rectangular and honeycomb grids; 3D cubic network. (b) Tubular
structures: T1, P1, and H1 tubes are made of respectively, triangular, pentagonal, and hexagonal
layers of carbon stacked in top-to-top configuration. In T2, P2, and H2 the layers are staggered.
T3, P3, and H3 structures have extra carbon atoms in between the layers.

to form another π bond. The double-bond structure is visualized by the plots of band charge
densities presented in figure 2(c).
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Figure 2. Energy band structure of C-LC with uniform bond distance c = 1.27 Å (a), and
corresponding total density of states (TDOS) (b). The dashed lines denote zone folded bands. The
zero of energy is set at the Fermi level. (c) Charge contour plots of C-LC. Total charge density,
ρT , and charge density corresponding to σ and π bonds are shown on a plane containing the axis
of the chain. The arrows indicate the direction of increasing charge density.

This double-bond structure contributes a highly metallic character to C-LC, and the elastic
stiffness defined as the second derivative of the strain energy per atom with respect to the
axial strain, d2 E/dε2, is calculated to be as high as 119 eV in C-LC. On the other hand, the
dimensionality as well as the type of the π band make C-LC vulnerable to Peierls distortion.
According to the well known Peierls theorem [43] the metallic chain of equidistant atoms
can be expected to undergo a distortion by doubling the size of the unit cell of the periodic
structure. The instability occurs through folding of the bands at the k = π/2c point and
opening of a gap at the Fermi level, as shown in figure 3(c). Once alternating carbon atoms
in the C-LC are displaced by δ in the same direction (by forming an alternating sequence of
long and short bonds resulting in a dimerization), the unit cell size is doubled, and folded
π bands are split at EF. The gain of energy through the lowering of the occupied π band
around the k = π/2c-point is the driving force for the Peierls distortion, which may induce a
metal–insulator transition.

Whether LDA calculations can lead to the Peierls distortion in C-LC has been a subject
of several studies [30]. The predictions of the theory regarding the strength of this many-body
effect strongly depends on the methodology used. Here, using LDA and GGA we calculate
the change of energy per unit cell with the displacement of every other carbon atom in the
chain as a result of dimerization. The energy-change profiles obtained by using GGA and
LDA both display a minimum at δ ≈ 0.017 Å (see figure 3(a)). The energy gain per atom
through distortion is calculated to be just 2.7 and 3.2 meV with LDA and GGA, respectively.
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Figure 3. Peierls distortion in C-LC: (a) GGA- and LDA-calculated effective double-well potential
with minima at δ ≈ ±0.017 Å. (b) The zero-point oscillation energy of a C atom (denoted by the
dashed line) in the GGA-calculated effective potential. (c) Gap opening of the zone-folded π band
at k = π/2c upon doubling of the chain periodicity by the dimerization of the chain.

These results imply that in fact LDA and GGA give rise to an insignificant Peierls distortion
in C-LC. Treating the GGA-calculated energy-change profile as an effective potential for the
dynamics of a C atom in the chain, the ground state energy of the atom in the double-well
potential turns out to be 51 meV. Clearly the zero-point energy is much higher than both the
Peierls distorted ground state energy and the energy of the metallic state. As a result, Peierls
distortion cannot be observed even at T = 0 K with the GGA and LDA energies. On the other
hand, we note that the ab initio Hartree–Fock (HF) calculations predict the displacement of the
alternating C atoms to be almost ten times as large, and the effective potential to be 60 times as
deep as LDA results. However, from studies on the bond alternation effect (i.e. second-order
Jahn–Teller effect) in carbon ring structures, it is known that while LDA and GGA somewhat
underestimate the effect, the HF method tends to overestimate it [28, 29]. Another interesting
point to note is that although Si and C are isovalent elements the σ band dipping below the Fermi
level delocalizes the double-bond structure, and prevents the Si linear chain from undergoing
Peierls distortion [42].

3.2. Rings and helices

The axial strength and radial flexibility of the monatomic carbon chain led us to consider some
other related carbon structures having curved forms such as rings and helices as schematically
depicted in figure 1. Closed circular forms of carbon atomic chains (or planar monocyclic
rings), C-RN as we label them, are synthesized experimentally up to relatively large sizes
with N ∼ 30, and studied both experimentally and theoretically [25–29]. The properties of
C-RN planar ring structure depend strongly on the value of N , whether N is odd, N = 4n,
or N = 4n + 2 (n being a natural number). For N = 4n + 2, the electron correlation appears
to be decisive in the stability of the structure. According to the Hückel rule the double π-
electron conjugation is responsible for the strong aromatic stabilization. C-RN tends to favour
one of the three structural forms: in the A-structure, (i.e. monocyclic cumulenic) having DNh

symmetry, all bond lengths and bond angles are equal. Within the D(N/2)h symmetry either
the B-structure with bond-angle alternation or the (polyacetylenic) C-structure with bond-
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Table 1. Structural type (A, equal bond lengths and angles; B, bond angle alternation; C, bond-
length alternation), binding energy (Eb), and energy gap between LUMO and HOMO (Eg) of
carbon rings, C-RN , for N = 8, 10, . . . , 30.

N 8 10 12 14 16 18 20 22 24 26 28 30

Type B, C B B, C A C A C A C A C A
Eb (eV) 7.45 7.93 7.89 8.12 8.07 8.20 8.16 8.24 8.21 8.26 8.24 8.27
Eg (eV) 1.1 3.6 0.9 2.7 0.9 2.2 0.8 1.9 0.7 1.6 0.6 1.4

length alternation is favoured [29]. It appears that the competition between this conjugated
aromaticity, second-order Jahn–Teller and Peierls instabilities (for very large N) determines
the type of structure. Small carbon rings with 3 � N � 7 have been treated by Saito and
Okamoto [28] using the hybrid DFT method. Jones and Seifert [25] carried out calculations for
14 � N � 24 using HF and second-order Moller–Plesset calculations. They found that C-RN

rings with N = 14, 18, 22 are in the A-structure, and those with N = 16, 20, 24 are in the
C-structure. Calculations by Torelli and Mitas [29] have revealed that while HF calculations
predict rings with N = 10, 14, 18 to be in the C-structure, multi-configuration self-consistent
field calculations refute the bond alternation in C-R10.

In this study, we examined C-RN planar ring structures having even numbers of atoms in
the range 8 � N � 30 within DFT and GGA. Although fine details of C-RN depend on proper
treatment of many-body effects, our objective is to reveal broad features such as energetics
and electronic energy structure within DFT. For odd N , the ring is distorted so that all bond
lengths become non-uniform. The details of atomic and electronic structures of carbon rings
and their energetics are summarized in table 1. Remarkably, we found that the C-R10 ring is in
the B-structure. Bond lengths remain uniform, but bond angles alternate with α = 131◦ and
157◦. On the other hand, we found that C-R12 exhibits alternations in bond length as well as
in bond angle. As compared to the state of the A-structure this corresponds to an energy gain
of 87 meV/atom, which is 54 times larger than the energy gain due to the Peierls distortion of
C-LC. The inset in figure 4 illustrates the effective potential obtained by the circumferential
displacement δ of every other atom in C-R12. As shown, the ground state energy associated
with the longitudinal vibration of carbon atoms is located close to the bottom of this effective
potential, which has a double-well form. Therefore, the bond alternations of C-R12 should be
observable even at room temperature. As seen in table 1 all C-RN ring structures with N = 4n
are found in the C-structure, if N > 12, whereas those with N = 4n + 2 are in the A-structure.
The variation of the binding energy, Eb, and the gap between the energies of the LUMO and
HOMO, Eg, with N are illustrated in figure 4. The binding energy Eb of C-RN should increase
with increasing N due to decreasing strain, but it displays an oscillatory variation. We observe
the interesting trend Eb[N = 4n + 2] > Eb[N = 4(n + 1)]. As N → ∞, Eb approaches
the asymptotic value of 8.6 eV, namely the binding energy of C-LC. The LUMO–HOMO gap
exhibits a similar relation, Eg[N = 4n + 2] > Eg[N = 4(n + 1)], but the overall trend is
opposite: Eg decreases with increasing N . The calculated energy level diagram of C-R12 is
illustrated in figure 5.

Similar to the ring structure, single helical strands of carbon are also found to be stable.
The helix structure generated from carbon strings can occur in different radii and pitch lengths.
We denote the helix structure by C-HX(N,p) where N is the number of C atoms in one pitch
(p, in Å) of the helix. In the configurational space of (N, p), periodic (infinite length) helix
structure stays in a very flat potential, and hence does not show a strong tendency to transform
into a linear chain. On the other hand, a finite helix structure is stabilized by fixing from both
ends. The binding energy of C-HX(N,p) depends on N and p. For example, for a fixed pitch
length p = 10 Å, Eb is 8.3 and 8.5 eV for N = 10 and 16, respectively. The binding energies
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are slightly smaller than that of the C-LC due to strain energy implemented by the curvature,
but they approach it with increasing radius and/or p. All C-HX structures we studied here
have the bond alternation no matter what the value of N is, and are stable even at T = 1200 K.
In figure 5 the electronic band structure and TDOS of C-HX(12,5.3) are shown. The electronic
structure is a kind of combination of the electronic structures of C-LC and C-RN . The bands
are formed due to the periodic structure with lattice parameter c = p. Owing to the band
formation, the LUMO–HOMO energy gap of C-R12 has reduced to 0.4 eV in the C-HX(12,5.3)

structure. We believe that the helix structure may be interesting to study chiral currents and to
fabricate nanosolenoids. Transport properties of helix structure are discussed in [33].
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A special case for the ring structure is the symmetric or asymmetric loop described in
figure 1(a). For the symmetric loop, the junction to C-LC is achieved by the sp2-bands and the
circular cross section becomes oblique. The asymmetry of the junction with C-LC is expected
to lead to interesting consequences in quantum conduction.

3.3. 2D honeycomb grid and 3D cubic network

Earlier we have shown that C-LC can branch off to form T junctions (C-T) and crossbar
junctions (C-CB) [33]. These junctions can form because an additional carbon atom can easily
be attached to any carbon atom of C-LC with a significant binding energy (see section 3.4).
For example, a T junction is produced if a perpendicular chain develops from that adatom. At
the junction the double-bond structure changes into planar sp2-like bonding with equal 120◦
angles between the bonds. In the case of the crossbar junction, one carbon atom in the linear
chain is connected to two adjacent atoms in the same chain and also to two carbon atoms of
the crossing chain. This way, a tetrahedral coordination and hence 3D sp3-like bonding are
achieved at the junction. The stable T and crossbar junctions have been exploited to form 2D
grid and 3D network structures. First, we examine the 2D C-G(N × N) square grids having
N = 6 and 9. Owing to the 3D sp3-like bonding at the corners, the C-G(N×N) square grids are
neither perfectly planar, nor made of perfect squares. For example, the C-G(6×6) grid, which
initially incorporates six carbon atoms along each edge of the square and has nine atoms in the
2D cell, deviates from planar square geometry upon relaxation. Ab initio molecular dynamics
calculations performed at T = 800 K have confirmed the stability of the grid structures.
The grid structures with larger N , for example C-G(9 × 9), shared similar overall atomic
configurations and stabilities. The electronic structure calculated self-consistently along the
edges of squares indicates that N = 6 and 9 square grids are semiconductors. However, the
bandgap decreases as N increases. We found also that N being even or odd affects the overall
shape of the bandgap. For example, while C-G(9 × 9) is an indirect bandgap semiconductor,
C-G(6×6) has a direct bandgap. The semiconducting behaviour is associated with the sp3-like
bonding at the corners of the grid. The situation is, however, different for the 2D honeycomb
grid. The 2D hexagonal primitive unit cell is illustrated in figure 6 as an inset. Since the
carbon atoms at the corners of the hexagons form sp2-bonding, the structure is planar and is
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graphene-like. The electronic structure of the honeycomb structure having four carbon atoms
along each edge of the hexagon is reminiscent of that of the graphene. It is metallic since
π and π∗ bands cross the Fermi level at the corner of the first Brillouin zone. The calculated
electronic band structure of the stable honeycomb grid is presented in figure 6.

A 3D (4×4×4) cubic network as described in figure 1(a) is found to be stable at T = 0 K,
but deformed and clustered at T = 500 K. The structure corresponding to T = 0 K is found
to be metallic with a single band crossing the Fermi level for k which are parallel to the edges
of the cube. Improving the stability of the cubic network by substituting the corner atoms with
atoms having six valence electrons, such as S, Se, and Te, is crucial for further understanding.
While carbon grid and network structures have not been produced yet, present calculations
indicate that they can be stable at reasonable temperatures. Through different geometries and
structural variations such as N and periodic doping, these structures offer several possibilities
to engineer their physical properties. Since they incorporate nodes and metallic interconnects,
one can contemplate that these structures may be used in the future for device integration in
molecular electronics.

3.4. Functionalizations of carbon strings

Carbon chains are reactive owing to their double-bond structure. As possible mechanisms of
functionalizing carbon strings we have considered chemisorption and substitution of foreign
atoms, and investigated the effects on their electronic and magnetic properties. As far as the
branching of C-LC is concerned, the adsorption of an individual carbon atom in the C-LC is
crucial. First we consider the adsorption of a single carbon atom at a top-site of the chain.
The binding energy is calculated to be 4.9 eV. The presence of the additional carbon atom
modifies the bonding locally to sp2. An oxygen atom can also be chemisorbed to a single
carbon atom of C-LC, or to two adjacent carbon atoms to form a bridge bond. The former is
found to be energetically favourable by 0.2 eV and has binding energy of ∼5 eV. Similarly,
a single hydrogen atom can easily be adsorbed to a chain atom with Eb = 3.6 eV. Hydrogen
is chemisorbed on the surfaces of SWNTs with relatively smaller binding energy [44]. Here,
at the chemisorption site the bonding configuration changes from double-bond structure to
planar sp2-like as in a C-T junction. By attaching another H atom to the same carbon from
the opposite side the 2D sp2-like bonding changes to 3D sp3-like bonding. A (CH2)n structure
develops if this procedure is repeated for each carbon atom of the chain. Consequently, the
double-bond structure of the carbon chain is lost, and the metallic C-LC becomes a wide
bandgap semiconductor.

In addition to the external doping of C, O (bridge and top site adsorption), and H, we also
examined adsorption of Al, Si, S, Mn, Fe, Co, and Cr atoms on C-LC, and N, O, P, S, Al,
and Si atoms as substitutional impurities in C-LC. In these calculations, a foreign atom A is
adsorbed on the top or bridge site and this configuration is repeated periodically to have the
C5A formula per cell. We treated the substitutional impurity within the supercell geometry
by replacing one carbon atom with a foreign atom A in each six-carbon atom segment of
C-LC. In table 2 we present our results for external doping of C-LC by foreign atoms. The
electronic structure of the C-LC is affected by the external or substitutional impurity atoms.
Upon adsorption of transition metal (TM) atoms on C-LC, the ground state of the system
becomes a ferromagnetic metal. Spin-relaxed GGA calculation of a TM atom adsorbed on
C-LC yields a net magnetic moment and a lower total energy than that obtained from spin-
paired GGA. The densities of states for the majority and minority spins at the Fermi level
(i.e. D↑(EF) and D↓(EF), respectively) are of particular importance. The spin polarization is
defined as P = (D↑(EF)− D↓(EF))/(D↑(EF)+ D↓(EF)). The larger P at the Fermi level, the
more important is the structure in spintronic applications. In figure 7 we show the calculated
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densities of states of majority and
minority spins, D↑(EF) − D↓(EF),
becomes significant.

Table 2. Results of the adsorption or external doping of foreign atoms on the C-LC. Binding site
(T = top, B = bridge site); binding energy Eb of foreign atom; magnetic moment µ per unit cell in
Bohr magnetons; distance to nearest carbon atoms of the C-LC, d1 and d2. Each supercell includes
five carbon atoms and one foreign atom.

Compound Site Eb (eV) µ (µB) d1(Å) d2(Å)

C5Si T 3.2 — 1.8 2.1
C5Si B 3.1 — 1.9 2.9
C5Mn B 0.9 5.6 2.2 2.9
C5Fe B 1.3 3.3 2.0 2.8
C5Cr B 1.0 5.1 2.2 2.9
C5Co B 1.6 1.4 1.9 2.7
C5Al B 2.2 — 2.2 2.8
C5Ti B 2.6 1.5 2.0 2.2

densities of majority and minority spin states of TM atom doped C-LC. Significant values of
polarization are achieved in cases of external adsorption of Co and Fe atoms.

3.5. Superlattice of heterostructures

We next examine heterostructures formed by the junctions of C-LC and BN-LC. Boron nitride,
being a III–V compound, can form stable linear string structure and display properties very
similar to that of C-LC, except that it is a wide bandgap insulator. The bandgap of BN-LC has
been calculated to be 5 eV. Normally, a long C-LC–BN-LC chain is a metal–semiconductor
junction. A periodic arrangement of CN (BN)M forms a superlattice. It is interesting to know
how 1D superlattices can differ from those in 3D, and whether the periodic arrangement of
metal–insulator heterostructure gives rise to multiple quantum-well structures. In the past,
metal–semiconductor junctions (such as Al–Si) and the nature of the Schottky barrier at
their interface have been subjects of intense research. Here we investigate the CN (BN)M

superlattice with fully optimized structure. Calculated energy band structures indicate that
these superlattices are semiconductors. The bandgap is, however, a strong function of N and
M . For example, we found the bandgap Eg = 1.2, 1.6, 1.8 eV for the superlattices with N = 6
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Figure 8. Calculated energy band structure of the
(BN)3C6 superlattice is presented in the top panel.
Numerals are band indices. As shown by arrows, the
substitution of a carbon atom by a single B or N shifts
the Fermi level down or up to metallize the superlattice.
The charge density contour plots of various bands below
and above the Fermi level EF are presented in the lower
panels.

and M = 1, 2, 3, respectively, suggesting that Eg increases with increasing M . While C6

(BN)3 has a bandgap of 1.8 eV, the bandgaps of C12(BN)3 and C15(BN)3 are 1.1 and 0.8 eV,
respectively. It appears that Eg also decreases with increasing N . In figure 8 we present the
energy band structure of the (BN)3C6 superlattice. While the superlattice is a semiconductor,
the substitution of C atoms with single B (or N) pushes the Fermi level down (or up) as shown
in figure 8 to metallize the superlattice.

The character of the bands of the (BN)3C6 below and above the Fermi level is analysed
by charge density contour plots on a plane passing through the axis of the superlattice. The
doubly degenerate highest valence and the lowest conduction bands are derived from the doubly
degenerate π∗ band of C-LC. These states are confined in the C-LC region of the superlattice,
since their energies fall in the bandgap of BN-LC. Second highest filled and lowest empty
bands appear to have more weight on the BN-LC site. However, bands n = 20 and 30 are
confined on the (BN)3-site, since these band states cannot match states in the C-LC site. The
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absence of the Bloch states having wavevector perpendicular to the chain axis is a profound
difference between 1D and bulk heterostructures. In the present case, states of the superlattice
tend to be confined to either the C-LC or the BN-LC site.

3.6. Carbon tubular structures

Some possible tubular structures of carbon atoms (excluding carbon nanotubes) are depicted
in figure 1(b). These structures are different from the carbon-string-based structures discussed
above, since their cross section perpendicular to their axis is formed of polygons (triangle,
pentagon and hexagon) of carbon atoms. In figure 1(b) the three tubular structures in the
first row, i.e. T1, T2, T3 are made of triangles having carbon atoms at their corners, which are
stacked along the axis of the tube. In T1, triangles are identical; in T2, they are staggered; in
T3 structure, additional carbon atoms are located in between parallel triangles. We followed
the same convention for pentagonal (P1, P2, P3) and hexagonal (H1, H2, H3) tubular structures.
We found that all T3, P3, H3 structures are unstable and transform to diamond-like clusters. T1

is also unstable and it transforms to three C-LCs with repulsive interactions. As for T2, during
structural optimization it first transforms to T1 by rotation of every other triangle by 60◦, then
disintegrates to three parallel C-LCs.

The P1 is stable with a binding energy Eb = 7.47 eV and all C–C bond distances become
dC−C ∼ 1.5 Å. This structure corresponds to a local minimum and it is a semiconductor with
Eg = 0.7 eV. Similarly, H1 is a stable structure with Eb = 7.42 eV, dC−C ∼ 1.5 Å, but it
is a metal with calculated ideal conductance of G = 6G0. Both P2 and H2 are unstable and
transform to P1 and H1, respectively.

4. Conclusions

In this paper, we have presented a study of various nanostructures which are derived from
carbon strings. These structures show interesting mechanical and electronic properties. The
monatomic linear chain of carbon atoms is the basic structure, which is precursor to other more
complex structures we studied. While diamond with sp3 covalent bonding is an insulator, the
linear carbon chain having uniform bond length is a good conductor. That it is flexible,
but has very high axial strength, causes the carbon chain to exhibit a string-like behaviour.
The stable, planar, and monocyclic ring structures comprising different numbers of atoms,
and helix structures, originate from string behaviour of the carbon linear chain. All these
structures have interesting electronic structures and structural instabilities, which modify
ideal geometries by inducing bond length and/or bond angle alternations, lowering the total
energy of the systems. Carbon string structures also exhibit high chemical activity to various
atoms. This property makes them suitable for functionalizations. We investigated external
adsorption and substitution of foreign atoms in C-LC, yielding interesting electronic and
magnetic properties. We also studied the C-LC and BN-LC heterostructure superlattices,
yielding electronic structures suitable for bandgap engineering in 1D systems. The double-
bond structure between adjacent carbon atoms is found to underlie all these unusual physical
and chemical properties. Formation of T and crossbar junctions from carbon strings can
be crucial for nanotechnology. In this study, we examined (N × N) rectangular and also
honeycomb grids. We also considered the (N × N × N) cubic network. As far as technological
applications of interconnects or nanodevices are concerned, the transport properties of carbon
string structures are of particular interest.
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