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Abstract. In the limit of strong electron-phonon coupling, we analyze the stability of two dimensional bipo-
larons in a two-axis elliptic potential well of harmonic boundaries. The confined two-polaron wavefunction
adopted here makes the electrons to form either a bipolaronic bound state or go into a composite state
of two separated polarons bounded inside the same potential well. The methodology involves the mean
polaron-polaron separation treated as an adjustable parameter to be determined variationally. By tuning
the barrier slopes of the confining potential we obtain an explicit tracking of the criterion for bipolaron
stability encompassing the particular cases of a two dimensional circular dot or a planar strip-like quantum
well wire. We observe that, while an increased degree of confinement enhances bipolaronic stability, the
effect of anisotropy is to inhibit bipolaron formation.

PACS. 71.38.Fp Large or Fröhlich polarons – 71.38.Mx Bipolarons

1 Introduction

In selective materials, depending on the relevant dielec-
tric properties, two electrons interacting with the medium
and with one another through exchange of virtual phonons
can lead to the formation of a stable bound state termed
a bipolaron. The first qualitative discussion on the forma-
tion of two-electron bound states in a crystal was given by
Pekar [1]. The quantitative description of the problem was
later provided by Vinetskii and Gitterman [2]. An enor-
mous amount of the preceding literature [3–28] published
within the context of Fröhlich large bipolarons has led to
the evidence that bipolaronic bound states of two electrons
can indeed take place under critical circumstances charac-
terized by the Coulomb repulsion and the electron-phonon
coupling strengths. Described qualitatively, one has simul-
taneously the Coulomb aspect and the phonon-coupling
counterpart of the problem to act in opposition against
one another and in an interrelated manner so as to mod-
ify strongly the overall nature of the effective interaction
between the electrons and lay out a totally distinguish-
ing characterization of the electron pair compared with
the case of bare electrons. Adopting different models and
approximating theories, several aspects of the polaron-
bipolaron transition have been studied rather extensively
as functions of the material dielectric properties in three,
two [16–20], and even lower dimensionalities pertaining to
quantum wires and dots [21–28].

The bipolaron concept has a considerable appeal and
the interest in this subject continues unabatedly pertain-
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ing to the investigation of a possible bipolaronic mecha-
nism for high–Tc superconductivity [29] and in the context
of Bose-Einstein condensation of large bipolarons into a
superfluid [30]. In the present work we refrain ourselves
from discussing any pertinence to the many particle as-
pects of the bipolaron gas and limit our attentions only
to the one bipolaron case with most emphasis devoted to
the formal theoretical counterpart of a model calculation
applied to two dimensional bipolarons in elliptical dots.
For a brief discourse on (bi)polarons the reader is referred
to the review articles by Devreese [31] and by Alexandrov
and Mott [32].

In this paper we would like to provide a variational
scheme to determine the critical conditions under which a
bipolaronic state of two electrons can be realised. In our
treatment of the Fröhlich interaction we choose to use the
strong coupling polaron approximation, since the forma-
tion of bipolarons requires large values of the electron-
phonon coupling constant so as to sustain the phonon-
mediated binding and withstand against the strong
repulsive Coulomb interaction. Fortunately, the adiabatic
theory we follow is motivated by the recent advances in
producing nanocrystals with strong ionic coupling [33–35].
Moreover, the pseudo-enhancement of the electron phonon
coupling in confined media is an additional complement
supporting the applicability of the strong coupling theory.
The key feature of the present formalism will be to set
up a variational coherent phonon state for each electron
as centered at the mirror image positions on either side
of the origin, located respectively at ± 1

2r0. Thus, intro-
ducing |r0| to represent the distance between the polaron
centers, the procedure will rely on the determination of
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the optimal relative position coordinates which we intend
to determine variationally in the foregoing calculations.
Evidently, the case in which r0 comes out zero should re-
fer to the bipolaron state where the charge density profiles
of the electrons map on one another positioned centrally
at the origin and clothed entirely in common by the lattice
polarisation field.

The underlying motivation which makes us tempted
to impose the relative polaron-polaron distance to take
part in the variational model as an additional parameter
originates from our attempts to study the bipolaron prob-
lem in the dot type confinement. In the peculiar case of an
electron pair in a quantum dot the alternative of the bipo-
laron state is the case where the phonon-mediated binding
breaks up and the electrons are repelled apart in opposite
directions from their common center of mass, yet remain in
a finite optimal separation yielding a description consist-
ing of two individual but nearby polarons bounded within
the dimensions allowed by the barriers of the dot poten-
tial. Clearly, the extreme variational limit r0 � 1 should
only be realized in higher dimensional configurations such
for instance, as in quantum wires or in the entire two di-
mensional space, where the electrons are totally free along
at least one spatial direction.

We shall devote our attention to the study of forma-
tion of bipolarons in strict two dimensions confined within
a deformable two-axis potential well of parabolic bound-
ary strengths, given in usual polaron units (m? = ~ =
ωLO = 1) by

Vconf(x, y) =
1
2

(Ω2
xx

2 +Ω2
yy

2) (1)

in which the dimensionless frequencies Ωx and Ωy serve
for the measures of the degree of confinement of the elec-
trons along the respective x and y axes. Clearly, by tuning
these frequencies one attains a trace of the variational up-
per estimate for the energy of the two polaron complex
and the corresponding criterion for bipolaronic stability
interpolating between the entire space of two dimensions
and the particular geometric configurations of a circular
planar dot and a thin strip-like planar quantum well wire.
In the following we shall take Ωx ≤ Ωy, and thus, conve-
niently set r0 = x0x̂.

2 Theory

The Hamiltonian describing the confined two dimensional
electron pair coupled to LO-phonons is given by

H = He +
∑
q

a†qaq +
∑
j=1,2

∑
q

Vq
(
aqeiq·rj + a†qe

−iq·rj)
(2)

where

He =
1
2

∑
j=1,2

(
p2
j +Ω2

xx
2
j +Ω2

yy
2
j

)
+

U

|r1 − r2|
· (3)

In the above, a†q (aq) is the phonon creation (annihilation)
operator and rj = xjx̂ + yjŷ (j = 1, 2), are the po-
sitions of the electrons. Similarly, pj (j = 1, 2), denote
the respective two dimensional momenta. The interaction
amplitude is related to the phonon wavevector q through
Vq = (

√
2πα/q)1/2. The dimensionless constants of the

Coulomb interaction U and of the electron-phonon cou-
pling α are related by the equation

U =
e2

ε∞
=

α
√

2
1− η (4)

in which parameter η is the ratio of the high frequency
and static dielectric constants of the material, given by

η = ε∞/ε0 < 1. (5)

In the variational approximation that we follow here, we
use the conventional trial ansatz of the adiabatic polaron
theory where we write the total wavefunction to consist of
a part relevant to the phonon variables and a part which
contains the particle coordinates only, i.e.,

Ψ(x0) = Φ(r1, r2;x0)

 ∏
j=1,2

Sj(x0)

 |0〉 (6)

where |0〉 denotes the phonon vacuum state, and{
S1(x0)
S2(x0)

}
= exp

∑
q

Vqs(q, Φ)
{
aqe±i 1

2 qxx0 − a†qe∓i 1
2 qxx0

}
(7)

are the displaced oscillator operators intended to yield the
most efficient polarization fields for either electron, cen-
tered at ± 1

2x0x̂ .
Compatible with the lattice part of the trial wavefunc-

tion (6) we construct the particle part Φ(r1, r2;x0) in a
form consisting of two “shifted” one-electron Gaussians
along the x axis peaked correspondingly at ± 1

2x0, i.e.,

Φ(r1, r2;x0) = g(|r1 − r2|) G(r1 −
1
2
x0x̂) G(r2 +

1
2
x0x̂)

(8)

where g(|r1 − r2|) is the Coulomb correlation function of
Jastrow type.

An optimization of

Eg = 〈Ψ(x0)|H|Ψ(x0)〉 (9)

with respect to s(q, Φ), x0 and the further variational
parameters contained in Φ(r1, r2;x0) corresponds to the
adiabatic self-trapping description of the polarons where
the charge density fluctuations of the electrons and the
induced polarization field influence mutually each other
in such a way that a stable relaxed state of the “two-
electron + phonon” complex is eventually attained.

Transforming to a representation in the center of mass
and relative coordinates:

R =
1
2

(r1 + r2) , r = r1 − r2 ,
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with corresponding momenta P = p1 + p2 and p =
1
2 (p1 − p2), the product wavefunction (8) conforms to
a form separable in the center of mass and relative co-
ordinates, each part having an anisotropic oscillator-type
waveform, given by

Φ(R, r ;x0) = N g(r)Ga(R)Gb(r) (10)

where N is the constant of normalization, and

Ga(R) = exp
(
−1

2
a2X2

)
exp

(
−1

2
a2λ2

aY
2

)
(11)

Gb(r) = exp
(
−1

2
b2(x− x0)2

)
exp

(
−1

2
b2λ2

by
2

)
. (12)

In equation (10) we have set the correlation function sim-
ply as g(r) =

√
x2 + y2. This ensures Φ = 0 for r = 0,

so that the electrons are repulsively set separated. More-
over, such a choice for the Jastrow factor has proved to
yield a comparatively lower variational upper bound to
the ground state energy for the bipolaron. We should re-
mark that the oscillator-oscillator wavefunction that we
have adopted proves to be a feasible approximation [18]
which, on the other hand, lends a great amount of com-
putational simplification due to its compatibility with the
quadratic barriers of the confining potential.

It should be noted that during obtaining the optimal
fits to s(q, Φ), a, b, λa, λb and x0, the variational theory
is expected to set up a detailed fractional admixture of
all the contributions coming from each single parameter
(Ωx, Ωy, U and α) characterizing the system.

The variational function s(q, Φ) of the displaced os-
cillator operator (7) is determined from the requirement:
∂〈Ψ(x0)|H|Ψ(x0)〉/∂s(q, Φ) = 0 to yield

s(q, Φ) =
〈
Φ

∣∣∣∣2 cos
(

1
2
q · r

)
exp(±iq ·R)

∣∣∣∣Φ〉 · (13)

In complete form, the ground state energy (9) of the com-
posite system of two polarons is evaluated as

Eg = ER +Er +Ω2
xEx +Ω2

yEy +Ec +Eph. (14)

In the above, ER and Er stand for the kinetic terms 〈14P 2〉
and 〈p2〉, respectively; Ex and Ey are the energies rele-
vant to the confining potential; EC is the Coulomb energy
and Eph refers to the contribution coming from the lat-
tice. We obtain the following explicit analytic expressions
for each of these terms:

ER =
a2

8
(
1 + λ2

a

)
(15)

Er =
b2

2
(
1 + λ2

b

)
. (16)

Defining

g = 2x2
0b

2

h = b2
[
1 + λ2

b(1 + g)
]

we calculate

Ex =
〈
Φ(R, r, x0)

∣∣∣∣X2 +
1
4
x2

∣∣∣∣Φ(R, r, x0)
〉

=
1
2

[
a−2 +

(
1
2
b−2 + λ2

bh
−1

)
(1 + g) + λ2

bgh
−1

]
(17)

Ey =
〈
Φ(R, r, x0)

∣∣∣∣Y 2 +
1
4
y2

∣∣∣∣Φ(R, r, x0)
〉

=
1
2

[
λ−2
a a−2 +

λ−2
b

2

(
1
2
b−2 + h−1

)]
. (18)

For the Coulomb interaction we derive

EC =
〈
Φ(R, r, x0)

∣∣∣∣Ur
∣∣∣∣Φ(R, r, x0)

〉
=

2b3λbU
πh

∫ ∞
−∞

dt e−t
2
uteut [K0(ut) +K1(ut)] (19)

where K0 and K1 denote respectively, the modified Bessel
functions of the third kind of orders zero and one, and

ut =
1
2
λ2
b(t+ x0b)2 (20)

Letting φ denote the angle which the wavevector q makes
with the x axis, and setting

c−2
x =

1
2
a−2 +

1
8
b−2

c−2
y =

1
2
λ−2
a a−2 +

1
8
λ−2
b b−2

ψ = x0 cosφ

γ2 =
cos2 φ

c2x
+

sin2 φ

c2y
(21)

A =
λ2
b cos2 φ+ λ−2

b sin2 φ

8h

B =
λ2
bb

2

h
ψ

we write

Eph = −
∑
q

V 2
q [s(q, Φ)]2 (22)

where

[s(q, Φ)]2 = 2{(1−Aq2)2(1 + cosψq) +B2q2(1− cosψq)

− 2B(1−Aq2) q sinψq} exp(−γ2q2). (23)

Introducing

ξ =
ψ

2γ
(24)

and defining, for notational convenience,

fn(ξ) = (2γ)−(n+1)e−ξ
2
Hn(ξ) (25)
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with Hn denoting the nth order Hermite polynomial, and
further, projecting out the q-summations in equation (22),
we express the lattice part of the energy in the integral
form

Eph =
α√
2π

∫ 2π

0

dφ
{

1
2γ

+
B2 − 2A

4γ3
+

3A2

8γ5
+ F (ξ)

}
(26)

where

F (ξ) = f0(ξ)− 2Bf1(ξ) + (2A+B2)f2(ξ)

− 2ABf3(ξ) +A2f4(ξ). (27)

3 Results and conclusions

In presenting our numerical results, wherever relevant, we
shall use Ω to mean Ωx and/or Ωy. In the isotropic dot
type configuration we shall simply set Ω = Ωx = Ωy, and
for the planar strip type configuration (Ωx = 0) we shall
represent Ωy in proportion to Ω.

In regard with the strong coupling expansion to leading
order in α, i.e., O(α2), we would like to draw attention to
that, if in equations (2–3) the energies are scaled by α2 and
lengths by α, i.e., E → Eα2 and L→ Lα, the only modi-
fication in the Hamiltonian would be to replace the confin-
ing parameter Ω by Ω/α2 and the Coulomb coefficient U
by U/α. Thus, regardless of the value of Ω, the ground
state energy is seen to be proportional to the square of
the coupling constant, i.e., Eg = −Cα2, where the corre-
sponding coefficient of proportionality bears a functional
relation solely to Ω/α2. Therefore, in the foregoing par-
ticular plots for which the confinement parameter Ω is ex-
pressed in the ratio Ω/α2, one can conveniently assign α
any arbitrary value with no loss in generality.

3.1 Isotropic confinement

To yield an insight into the essential role which the varia-
tional parameter x0 in the shifted oscillator waveform (8)
plays in the theory, we first provide a broad display of the
variation of Eg in the overall range of this parameter in the
absence of the confining potential (cf., Fig. 1a). Following
the series of plots drawn for three selective values of η, we
note that there shows up two asymptotic minima in the
energy profiles located respectively, at x0 = 0 and x0 � 1;
the former yielding an indication of a bipolaron state, the
latter representing the state of two infinitely separated
non-interacting free polarons each with energy

Eg

α2
= −C

(
Ω

α2

)
= −π

8
≈ −0.3927 .

We find that the particular value of η for which the two
minima have the same level is η(2D)

c = 0.158, as given pre-
viously in references [18] and [26] in two dimensions (2D)
using the same oscillator-oscillator wavefunction for the
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Fig. 1. (a) The ground state energy of the two-polaron com-
plex as a function of the variational parameter x0 for three
different η values in the absence of the confining potential.
The asymptotic value on the right margin refers to the en-
ergy of two strongly coupled free polarons in two dimensions:
Eg/α

2 = −2(π/8). (b) The upper set of curves represent the
variational parameters a and aλa involved in the Gaussian
wavefunction (11) for the center of mass coordinates. The lower
set of plots describe b and bλb which are relevant to the Gaus-
sian wavefunction (12) for the relative coordinates. The dashed
(solid) curves are for η = 0.01 (0.3).

electrons. Very recently, energy profiles of similar qual-
itative nature, separating one state from the other by
a barrier, have been reported by Mukhomorov [15] in a
study of the bulk-bipolaron problem in the intermediate
coupling regime. Viewing the bottom curve plotted for
η = 0.01 < ηc, we note that the minimum on the left
margin lies considerably deviated below the asymptotic
value −2(π/8) on the right margin, lending an indication
in favor of an energetically stable bipolaron state. The
top curve plotted for η = 0.3 > ηc, however, represents
an example describing a metastable state of the bipolaron
with most weight attributed to the state of dissociated
polarons. Tuning η to even larger values the minimum at
x0 = 0 loses its prominence and eventually diminishes sig-
nifying that beyond a certain strength of the Coulomb
coefficient the only configuration the electrons can form is
the state of separated polarons.

As complemental, we also plot the variational param-
eters involved in the electron-electron wavefunction (10)
over the complete range of x0 for η = 0.01 and η = 0.3. An
immediate glance at the series of couples of curves in Fig-
ure 1b reveals that in the extreme limits x0 = 0 or x0 � 1,
one essentially has a perfectly isotropic charge density of
the electrons (λa = λb = 1) regardless of whether they
form a bipolaron state or a state of dissociated polarons. In
conforming from one state to the other, however, the pairs
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Fig. 2. The ground state energy of the two polaron complex
as a function of x0 for a succession of different η values in the
two dimensional circular quantum dot where Ω/α2 = 0.01.

of curves pertaining to the x and y directions get split-
ted reflecting a strong spatial anisotropy in the transition
region separating the two states of the polaron-polaron
complex. We should also note that in the limit x0 � 1,
parameters a and b are independent of the value of η.

Imposing the geometric confinement, one again en-
counters in general, two minima in the ground state energy
profiles, one of which is attained asymptotically at x0 = 0
reflecting the bipolaron phase, i.e., the on-center config-
uration of the two polarons. Referring to the curves in
Figure 2 plotted for the isotropic circular geometry with
Ω/α2 = 0.01 (and for not too weak η) we observe the
second minimum to take place not at infinity as in the en-
tire space of two dimensions but, instead, at a finite value
of x0. For this ratio of Ω to α2, the critical value of η at
which the ground state energies of the on-center and off-
center configurations cross over is found to be ηc = 0.180,
a value somewhat above the two dimensional value due
to the pseudo-enhancement of the effective phonon cou-
pling under confinement. In our numerical computations
we have noted that the value of x0 increases slightly as η is
adjusted to larger values since the strengthened Coulomb
interaction sets the particles apart with greater repulsion
against the confining potential barriers.

In order to provide a more informative description of
the effect of confinement on bipolaron formation we dis-
play the variational energy over a series of plots for differ-
ent Ω with η = 0.2 (cf., Fig. 3). Following the succession
of curves from bottom to top, one traces the transition
from a configuration of two separated polarons to that of a
stable bipolaron. One readily observes that, starting from
the entire two dimensional configuration and turning on
the confinement, the polarons in the off-centered configu-
ration get inevitably closer as the degree of confinement is
increased. In the meantime, the corresponding minimum
of energy increases in value and beyond a certain strength
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Fig. 3. The ground state energy of the two polaron complex
as a function of x0 in the two dimensional circular quantum
dot where η = 0.2. The succession of curves from bottom to
top are for Ω/α2 = 0, 0.01, 0.05, 0.1 and 0.15.
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Fig. 4. The phase diagrams illustrating the domain of stabil-
ity of the bipolaron phase in terms of the critical ratio η and
the Coulomb coefficient U as a function of the confining pa-
rameter Ω in a circular dot. In either figure, the solid curve is
the phase boundary above (below) which the off- (on-) center
configuration occurs more favorably. In the dark gray region
bounded from above by the dashed line the two polaron com-
plex is found to take solely the bipolaron configuration.

of the potential barriers (Ω/α2 > 0.025) crosses over the
minimum relevant to the on-center configuration repre-
senting a bipolaron state. Thus, in the overall, the effect
of confinement is seen to favor the formation of bipolarons
and for dots of small size (as exemplified by the topmost
curve), the bipolaron state may even turn out to be the
only and unique ground state of the two-polaron assembly.

Finally, pertaining to the planar circular dot geometry
we display the phase diagrams for bipolaron formation in
Figure 4, where we plot the critical Coulomb strength as
a function of Ω. In the main figure and in the inset re-
spectively, we present the critical parameter ηc and the
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alternative related Coulomb amplitude U against Ω/α2

plotted universally for any given value of α. The solid
curve which starts at value η

(2D)
c = 0.158 on the left mar-

gin is the main boundary (η = ηc) along which the two
minima corresponding to the off-center (polaron-polaron:
PP) and the on-center (bipolaron: BP) configurations have
the same level of energy. Above and below this boundary
(empty and shaded regions) one respectively has either the
PP or the BP phase to take place more favorably, domi-
nating the occurrence of one over the other. In the region
below the dashed boundary (shaded dark gray) the vari-
ational calculation yields x0 = 0 as the only and unique
fit to this parameter. In this region the polarons are thus
realized to conform totally to the on-center bipolaronic
configuration. The same qualitative trait can be retrieved
from the inset picturing the domain of stability of the
bipolaron phase in the U − α plane. The essential aspect
which one notes from either representation of the phase
diagram in Figure 4 is that, contrary to most outcomes of
the recent literature [24–27] (pertaining to three dimen-
sional dots), the confinement effects act in favor of bipola-
ronic stability and, even for not too strong α, bipolarons
can form in small-radius dots.

3.2 Anisotropic confinement

Having applied our variational model to two dimensional
dots of disk type, we now would like to extend our consid-
erations to the study of bipolarons confined within dots
of anisotropic nature, where we take Ωy ≥ Ωx. As an
extreme and interesting case, we would also like to con-
sider planar wires. Setting Ωx = 0 and adjusting Ωy to
nonzero arbitrary values one achieves a description of a
strip-type geometry, and even a narrow quasi-one dimen-
sional wire-like configuration. In order to provide a broad
and comparative layout of the basic aspects of bipolaron
formation in a general sense encompassing the circular ge-
ometry on one side and the planar wire on the other, and
to show explicitly the distinguishing characteristics of the
two geometries, we introduce an anisotropy parameter µ
ranging within zero and unity, given by

Ωx = (1− µ)Ω
Ωy = (1 + µ)Ω.

Such a representation, besides allowing us to keep an ex-
plicit trace of the effect of confinement, leaves the subband
energy invariant over the complete range of µ.

In Figure 5 we plot the variational ground state en-
ergies pertaining to the bipolaron and polaron-polaron
phases as a function of µ for two different degrees of con-
finement: Ω/α2 = 0.1 and 0.2. The overall implication led
by both pairs of curves plotted for η = 0.2 is that the
effect of anisotropy is to inhibit bipolaron formation. Fol-
lowing the set of plots from left to right, we observe that
the BP phase which is seen to have considerably deeper
binding than the PP phase for µ = 0 turns out to become
unfavorable as the degree of anisotropy is increased. This
peculiar feature is even more striking for higher degrees

0.0 0.2 0.4 0.6 0.8 1.0
µ

-0.80

-0.75

-0.70

-0.65

-0.60

-0.55

Ω/α2=0.2
Ω/α2=0.1

η=0.2

Ωx=(1−µ)Ω
Ωy=(1+µ)Ω

Eg

(PP)

Eg

(BP)

Eg

(PP)

Eg

(BP)

Fig. 5. The variational ground state energies (scaled by
α2) of the two-polaron complex in the bipolaron (BP) and
polaron-polaron (PP) phases as a function of µ, the degree
of anisotropy. The dashed (solid) curves are for η = 0.2 and
Ω/α2 = 0.1 (0.2).
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plots merge on the left margin is η
(2D)
c = 0.158. The dashed

curves in the inset are the boundaries below which the two
polaron complex is found to take solely the bipolaron configu-
ration.

of confinement. For Ω/α2 = 0.2, for instance, one has the
BP phase to show up as the only and unique configura-
tion of the two-polaron complex for 0 ≤ µ < 0.33. On
the other extreme (µ→ 1), however, it is dominantly the
PP phase to exist. One therefore observes that, in tuning
µ from small values to unity, the bipolaron state breaks
up and dissociates into two separate polarons. An alterna-
tive description of this salient feature is given in Figure 6
where we picture a sequence of phase boundary curves,
ηc versus Ω, for different degrees of anisotropy. The solid
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curves in the main figure give the boundary separating the
two domains where either the bipolaron state is energeti-
cally more stable and the off-center two-polaron configu-
ration is metastable, or vice versa, depending respectively,
on whether η < ηc or η > ηc. In the inset, we plot the
relevant boundaries below which the bipolaron state is
the only and unique configuration which the complex can
take. The topmost curves in both the main figure and the
inset, plotted for µ = 0, constitute a replica of Figure 4
and represents the perfectly isotropic disk-type confine-
ment. The bottom curve relevant to µ = 1 reflects an
entirely distinguishing case of an open ended planar strip
the width of which is determined by the parameter Ω.
The intermediate curves plotted for µ = 0.5, 0.8 and 0.9
give the corresponding phase boundaries for the BP-PP
transition pertaining to the anisotropic elliptic confine-
ment geometry. A careful glance at the sequence of solid
curves drawn for each of the above geometric configura-
tions reveals that the effect of confinement is either to
enlarge the bipolaron stability region or to act in opposi-
tion to yield dissociated polarons, depending respectively,
on whether the anisotropy parameter takes on values close
to zero or unity. In the peculiar case of an open ended pla-
nar strip (Ωy > Ωx = 0, µ = 1) the phase profile displays
a contrasting behavior deviated strongly from the general
trend portrayed by all the other plots drawn for µ < 1.
Instead of having the stability region to be broadened or
at least conserved, we observe that in the planar strip con-
figuration the critical parameter ηc gets considerably low-
ered with increasing Ω, and eventually diminishes in the
limit of a thin planar wire. The underlying reason which
sets the form of ηc plotted for µ = 1 apart from those
for µ < 1 is that in the circular or elliptic type confine-
ments the electrons do not have any free spatial direction
to expand. However, in the open ended strip the degree
of localization of the charge density of the electrons de-
creases, which in turn, leads to a weaker effective coupling
of the electron pair to the phonon field. Consequently, it
becomes less likely for the phonon-mediated attraction to
withstand against the repulsive Coulomb interaction and
this makes the bipolaron state easier to split and disso-
ciate into two individual single polaron states. We would
also like to draw attention to that, while in closed con-
finements (µ < 1) one encounters regions relevant solely
to the bipolaron phase, in the strip or wire geometry one
does not meet any such region (cf., the inset of Fig. 6).

In this article we have considered the problem of for-
mation of two dimensional bipolarons confined within
a two-axis elliptic potential well of quadratic barriers.
The bipolaron model adopted here involves the polaron-
polaron separation introduced as a free parameter which
one determines variationally together with the interrelated
and competitive roles of all the parameters which charac-
terize the system. Thus, rather than founding the stability
criterion on a comparison of the energy of the presumed
bipolaron state with that of two noninteracting polarons
in similar individual dots of the same size and of identical
material parameters, we have chosen to treat the confined
electrons to constitute either a bound bipolaronic state or

go into a state of two individual polarons in essentially the
same dot. Within the framework of this diverting approach
applied to circular dots, we find that the fundamental ef-
fect of the confining potential is to enlarge the region of
bipolaron formation and to sustain the bipolaron phase
even for small radii in contrast with most results led by the
preceding literature [24–27] pertaining to spherical dots.
Extending our calculations to anisotropic geometric con-
figurations we further observe that the effect of anisotropy
is to inhibit bipolaron formation, and that this contraven-
ing aspect to become even more prominent in a confining
potential with steeper barriers.
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