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Abstract

We study the energy-transfer rate for electrons in a double-quantum-well structure, where the layers are coupled through
screened Coulomb interactions. The energy-transfer rate between the layers (similar to the Coulomb drag effect in which the
momentum-transfer rate is considered) is calculated as functions of electron densities, interlayer spacing, the temperature
difference of the 2DEGs, and the electron drift velocity in the drive layer. We employ the full wave vector and frequency-
dependent random-phase approximation at finite temperature to describe the effective interlayer Coulomb interaction. We find
that the collective modes (plasmons) of the system play a dominant role in the energy-transfer rates. © 2002 Elsevier Science

Ltd. All rights reserved.
PACS: 72.10. — d; 73.50.Dn; 73.25.Dx; 73.20.Mf
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1. Introduction

Coupled quantum-well systems are known to exhibit rich
and interesting physics, where correlation effects are signifi-
cant (for recent reviews, see Refs. [1,2]). In particular, the
Coulomb drag effect is a unique way of probing many-body
correlations through a transport measurement [3—5], where
one of the layers is driven by an external current, and the
influences on the other (drag) layer are investigated. The
interlayer carrier—carrier interactions lead to measurable
effects, such as transresistivity due to momentum
transfer between the layers. The observed transresistance
crucially depends on the single-particle and collective
excitations of the coupled system, because these excitations
are the ones which mediate the momentum and energy
transfer between the layers. There has been a growing
theoretical [6—9] and experimental [10—13] activity in the
past years investigating various aspects of the drag
phenomenon.
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In this paper, we study the energy-transfer process
between two layers of quasi-two-dimensional electron
gases under experimental conditions similar to the trans-
resistivity measurements. The importance of the energy
transfer between two Coulomb coupled quantum wells
were pointed out by Price [14,15]. In the hot-electron
context, the energy transfer occurs when there is a difference
of electron temperatures in the two layers. In the actual
drag experiments [10,16], the energy transfer was
detected from the heating effects. The energy-transfer rate
in spatially separated systems were theoretically considered
also by Jacobini and Price [17], Laikhtman and Solomon
[18], Boiko and Sirenko [19], and recently by Tanatar [20]
who considered the case of a coupled quantum wire
system.

We calculate the temperature dependence of the energy-
transfer rate in a double-quantum-well system. It is assumed
that the wells may be kept at different carrier temperatures
which are also different from the lattice temperature in
general [21]. The calculations are based on the random-
phase approximation (RPA), with full consideration of
wave vector and frequency dependencies at finite tempera-
tures. The layers are coupled through Coulomb interactions,
and in the steady state, the resulting charge polarization
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produces an electrostatic field which compensates the drag
force in the drag layer. Using the momentum and energy
balance equations, we investigate the static and dynamic
screening effects on the power transfer between the layers.
In the drive layer, the influence of the externally applied
electric field is treated in terms of the electron drift velocity.
We probe the effects of a finite drift velocity to study the
nonlinear regime of the energy-transfer rate. The non-
equilibrium aspects of frictional drag has recently been
considered by Wang and da Cunha Lima [22], who
employed the balance-equation approach. The amount of
transferred energy has a direct dependence on the electron
layer densities which can be different in general. We also
calculate the effect of density mismatch on the energy-
transfer rates.

2. Model

We consider two quantum wells of width w, and center-
to-center separation d. The potential barriers are assumed to
be infinite, so that there is no tunneling between the layers.
The two-dimensional electron charge density in the first
layer, ny, is related to the Fermi wave vector by n; =
k/(2m), and Ty is the corresponding Fermi temperature of
the electron gas in the layer. It is also appropriate to define
the dimensionless electron gas parameter r, = \/i/(kFaE),
where ap = eol(ezm*) is the effective Bohr radius in the
layer material with background dielectric constant €, and
electron effective mass m”. For GaAs quantum wells, ay =~
100A and experimentally realized electron densities are of
the order of 10'' cm %, which corresponds to r, =~ 1-2, and
Tr = 40-100 K. We take the charge density in the second
layer with reference to the drive layer; n, = anj, so that the
quantities for the second layer scale as, kl(:z) = \Jakg, r? =
rdJa, T](;z) = aTF.

The transport properties of the double-quantum-well
system can be characterized by the electron drift velocities
v; and electron gas temperatures T;. One of the layers (drive
layer) is subject to an electric field in the x-direction which
drives the electrons with a drift velocity v,. The other well is
kept as an ‘open circuit’, therefore v, = 0. The drag experi-
ments are performed at low electric fields in the linear
regime, so we shall take the limit v; — 0 at the end of the
calculations. In this work, our starting point for the calcula-
tion of the energy-transfer rate is the balance-equation
approach to hot carrier transport which has been success-
fully applied to a variety of situations involving transport
phenomena in semiconductors [23]. The resulting momen-
tum and energy-transfer rate equations have also been
obtained within a variety of other techniques [4,6,7,19].
With the assumption that only the lowest subband in each
layer is occupied, the momentum and energy-transfer rate
expressions due to interlayer Coulomb interactions, derived
within the balance-equation approach to nonlinear electrical
transport in low dimensional semiconductors, are given by

21-23]1 (h=kg = 1)
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respectively. In the above, w, = g, (vi — v,), Wir(gq, w) =
Vi2(q@)/e(q, w) is the dynamically screened interlayer poten-
tial, Im x(g, w) is the imaginary part of the temperature-
dependent two-dimensional susceptibility [4] for a single
layer, and ng(x) = 1/(exp(x) — 1) is the Bose distribution
function. The screening function &(g, w) for the double-
well system is written within the RPA as

&(q, w) = [1 = Vi1 (@x1(q, 0; THI[1 — Vaa(@)xa(q, w; T7)]
— Vh(@xi (g ; T)xa(q, 0; Ty), 3)

where
2me’ —qd(1-8,)
Vii(@) = Fij(qw)——e¢ y 4)
€q

define the intra- and interlayer unscreened Coulomb inter-
actions, and F ii(qw) are the form factors [4,7] for a model of
infinite barrier and square wells of width w. Note that we
have indicated explicitly in Egs. (1) and (2) that the layers or
quantum wells are kept at different temperatures. Under
drag conditions mentioned before, the interlayer resistivity
(transresistivity) reads

P2 = _%flz("l), (©)
nynye-v;

where f, is the interlayer momentum-transfer rate or fric-

tional force. Resistivity expression is further simplified if we

consider layer temperatures to be equal, 7; = T,, and within

the linear regime v; — 0, yielding

I dfip(vp)
mnye?  dvp |y =0

P2 = — (6)
The energy-transfer rate expression given in Eq. (2)
resembles the momentum-transfer rate expression of
Eq. (1), except the transferred energy w appears in the
integrand, and the difference between the Bose distribution
functions at different temperatures reduces to the familiar
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Fig. 1. The energy-transfer rate for identical quantum wells of width w = 2ag, (a) in the static (dashed) and the dynamic (solid) screening
approximations as functions of temperature 7,. The temperature of the drive layer is kept constant at 7} = Tg. The couple of curves from top to
bottom are for (r,, d) values of (1, 5ap), (2,5ag), and (2, 7ay), respectively, (b) for different values of T;. The solid, dashed, and short-dashed

curves are for 7'/Tz = 1, 0.5, and 0.25, respectively.

[3,6,7] ~ 1/sinh2(w/2T) when T, approaches 7,. With the
sign chosen in Eq. (2), P, is the amount of power trans-
ferred fo the layer 1 from the layer 2.

We note that our RPA-based calculations neglect the
exchange-correlation effects which are shown to be impor-
tant [5,13]. Inclusion of such many-body effects would
involve say local-field corrections which take into account
the layer thickness and temperature dependences. We
surmise that the results to be presented below will not
change qualitatively when the exchange-correlation effects
are incorporated within our theory.

3. Results and discussion

We first evaluate the energy-transfer rate P(0) in the
linear regime (v; = 0) for a GaAs system. Even in this
case, the energy-transfer rate is nonzero as long as the

electron gases are kept at different temperatures. The
comparison of taking the interlayer potential as either
statically or dynamically screened is presented in Fig.
1(a). Because the energy-transfer rate P, changes sign as
T, is scanned for a fixed T, we plot |Py,| in our presenta-
tions. In the statically screened interaction, we use &(q) =
[0 = Vi@l = Vaxa@] = Vioxi(@xa(g). in - which
the static response functions x;,(g, @ = 0) enter. Both
quantum wells are taken of width w = 2ap, and with
equal electron densities (n; = n,). The temperature of the
first layer is kept at T} = T. For three distinct sets of r; and
d values, the T, dependence of |P;,| is plotted. We observe
that the inclusion of dynamical screening effects yields
qualitatively and quantitatively different results for the
energy-transfer rate. At very low T, both types of screening
yield close results, but with the increasing temperature, P,
significantly grows for dynamical screening, whereas it
monotonically decreases for the case of static screening.
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Fig. 2. The energy-transfer rate for identical wells in the nonlinear regime when (a) T; = Tg, (b) T} = 0.5T%. The solid, dashed, and short-
dashed curves are for v kp/Ep = 0.5, 1, and 2, respectively, in a w = 2ag and d = 5ag double-well system (r, = 2). The thin solid curves

correspond to the linear regime (v; = 0), included for comparison.
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The difference between the two approaches is attributed to
the contribution of plasmons which is completely missed for
the statically screened interaction. Similar differences
between the static and dynamic screening approaches
were also found in the momentum-transfer rate at high
temperatures determining the transresistivity [4]. We notice
that the qualitative forms of the curves are roughly indepen-
dent of the separation distance and the charge density. When
the temperatures of both layers are equal, the energy transfer
vanishes for all cases in the linear regime. This is also seen
in Fig. 1(b) where we take 7| at three different values, and
vary T from O to T%. Although, experimentally, the energy
transfer is expected to be from the drift layer to the drag layer
(in the linear regime at least), for the sake of generality, the
cases where T, > T are also included in our plots. Note that
Py, changes sign when 7, > T, so that energy is transferred
from the hot layer to the cold one. When we compare the
overall behavior of Py, in a double-layer system with that in
a coupled quantum wire system, we observe that in the
latter, a pronounced peak structure [20] around T ~ 0.3T%
is present. On the other hand, the results shown in Fig. 1(a)
and (b) indicate a rather broad enhancement coming from
the plasmon excitations. Price has estimated [15] the
energy-transfer rate (per electron) between coupled quan-
tum wells to be ~0.1-1 erg/s, for typical layer densities of
n~10"cm % and d = 100 A. In obtaining this estimate,
the electron temperature was taken as 10° K, which is about
107g. Our calculations are mostly done for layers of finite
thickness, larger separation distances and at relatively lower
temperatures around 7. The results indicate rates of the
order of 10 2erg/s, which are much smaller than the
estimate given by Price [15].

Next we investigate the energy-transfer rate in the
nonlinear regime (i.e. for nonzero v;). The density response
function and the Bose distribution function of the drag layer
are calculated at shifted frequencies w — ¢,v;. In Fig. 2, the
energy-transfer rate is displayed in this nonlinear situation

when T is kept at either Tr or 0.57z. We observe that for a
finite drift velocity and at very low temperatures of the
second layer, the amount of transferred power is a few
orders of magnitude larger than that for the linear regime.
As T, is increased, |Py,| starts to decrease rapidly and even-
tually vanishes at a critical value, before the temperatures of
the layers become equal. Larger the drift velocity, lower the
T, at which no energy is transferred between the layers (e.g.
for T\ =Tg and v = 2Eg/kg, P1, =0 at T, = 0.6Tf).
Beyond that point, as a consequence of nonlinearity, for
further larger values of 75, the drive layer starts to absorb
power from the second layer even when T; > T,. The
momentum-transfer rate between two coupled electron—
hole quantum wells in the nonlinear regime was considered
by Cui et al. [21]. They found that the nonlinear effects start
to become significant at different electric field strengths (or
equivalently the drift velocity v,) for different temperatures.
In a system of two sets of charged particles streaming
relative to one another, the collective modes may undergo
instabilities with respect to charge density perturbations as
studied by Hu and Wilkins [24]. It is conceivable that under
the drag effect conditions, such two-stream instabilities may
be detected for large drift velocities. Hu and Flensberg [25]
predicted a significant rise in the drag rate just under the
instability threshold. Recent drag rate calculations of Wang
and da Cunha Lima [22] did not explore this phenomenon.
In our calculations of the energy-transfer rate, the shift of
vanishing Py, points to lower 7, values is expected to reflect
the onset of plasma instabilities. In our numerical results
shown in Fig. 2(a) and (b), it appears that two-stream
instability limit is not yet reached for the drift velocities
chosen.

The effect of charge density mismatch in the two layers
on the energy-transfer rate is shown in Fig. 3. We keep n; =
2% 10" em ™2 (ry = 1.22) and T; = Tk constant, and vary
ny/n; in the range 0.2-2 for different 75 values. Both in the
linear and nonlinear regimes, it is observed that Py, is very
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Fig. 3. The energy-transfer rate as functions of the ratio of drag/drive layer electron densities ny/n; at different drag-layer temperatures 7,, and
for electron density n; = 2x 10" cm™2 (ry = 1.22). The dashed and solid curves are for the linear and nonlinear (v, = 2Eg/kg) regimes,
respectively. We take w = 2aj and d = 5a. Note that in the linear regime P;, = 0 when T; = T, regardless of the density ratio.
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sensitive to the electron density ratio of the layers. For
relatively large temperatures (7, ~ Tf), the energy transfer
is considerably larger when the densities are equal. In the
linear regime (cf. dashed curves in Fig. 3), the peak value of
Py, shifts to smaller values of n,/n; ratio when the tempera-
ture of the second layer is lowered, for example, at 7, =
0.17F, the largest transfer rates occur for n, =~ 0.2n;. For
finite drift velocities, the nonlinear effects show up also in
terms of the density ratio. The vanishing of power transfer at
finite temperature differences of the layers is seen at even
lower T, if n, < n;. In the figure, for v{kg/Eg = 2, the direc-
tion of energy flow is from layer 1 to layer 2 (P, < 0) if
T, = 0.4Tg, and vice versa if T, = 0.7T% in the chosen
range of the density ratio. For the cases 7, = 0.5T¢ or
0.6T%, however, P;, < 0 at larger values of n,, and changes
sign at certain values of the density ratio, as n, is lowered.
The feature is due to that a constant temperature corresponds
to a larger effective temperature for a lower-density electron
gas, in units of the Fermi temperature of the second layer.
The momentum-transfer rate in the drag phenomenon has
been known to be very sensitive to the relative densities in
the spatially separated electron systems [5,13,22]. We find
here that energy-transfer rate also has a strong dependence
on the ratio n,/n;.

In summary, we have considered the energy-transfer rate
in a double-quantum-well system in a drag experiment type
setup. The interlayer Coulomb scattering mechanism
through dynamical screening effects greatly enhances the
energy-transfer rate from one layer to another. We have
found that a large drift velocity corresponding to large exter-
nally applied field greatly modifies the energy-transfer rate
and may lead to power absorption from the cooler electron
gas to the other. Some of our predictions may be tested in
hot-electron photoluminescence experiments [26], in which
the power loss of an electron gas is measured.
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