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Abstract. In the limit of strong electron-phonon coupling, we provide a unified insight into the stability
criterion for bipolaron formation in low-dimensionally confined media. The model that we use consists of a
pair of electrons immersed in a reservoir of bulk LO phonons and confined within an anisotropic parabolic
potential box, whose barrier slopes can be tuned arbitrarily from zero to infinity. Thus, encompassing the
bulk and all low-dimensional geometric configurations of general interest, we obtain an explicit tracking of
the critical ratio ηc of dielectric constants below which bipolarons can exist.

PACS. 71.38.+i Polarons and electron-phonon interactions

1 Introduction

Depending on the relevant dielectric properties, two elec-
trons in a polar medium can bind into a composite
complex, termed a bipolaron. An enormous amount of
literature published within this context leads to the
evidence that bipolarons can exist under certain circum-
stances defined critically by the Coulomb repulsion coef-
ficient and the electron-phonon coupling strength [1–16].
Of particular relevance to the content of the present arti-
cle are the recent solutions of this problem in strict two
dimensions (2D) [6–9,12] where it has been found that
bipolaron formation should be easier in a space of low di-
mensions. In this report we would like to extend the bipo-
laron problem into a more general context and present a
comprehensive review of the two-polaron system in a con-
fined medium through a description interpolating between
integer-dimensional-space limits. We adopt an oversimpli-
fied model of a pair of electrons immersed in a reservoir of
bulk LO phonons and confined within a deformable three-
dimensional box of parabolic boundary strengths, given in
usual polaron units (m? = h̄ = ωLO = 1) by

Vconf(%, z) =
1
2

(Ω2
%%

2 +Ω2
zz

2) (1)

in which the dimensionless frequencies Ω% and Ωz serve
for the measures of the degree of confinement of the elec-
trons in the respective lateral (%) and ±z directions. Set-
ting Ω% = 0 and varying Ωz from zero to infinity, one
can trace the variational upper estimate for the bipolaron
energy and the corresponding stability criterion interpo-
lating between the three and two-dimensional space lim-
its. On the other hand, deleting the confining potential
along the z-axis (Ωz = 0) and fixing Ω% at non-zero
finite values, the theory reflects the Q1D-description in
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a free standing QWW-like tubular structure. Hereafter,
wherever relevant, we shall use Ω to mean Ω% (Ωz) when
Ωz (Ω%) = 0. In the spherically symmetric box-type con-
figuration we shall simply set Ω% = Ωz = Ω.

The above choice for the confining potential is appeal-
ing in the sense that the static depletion fields achieved in
microstructures such as quantum wires and dots which
are laterally confined by Schottky gates exhibit nearly
parabolic potentials. Besides this, the usage of quadratic
potential profiles greatly facilitates the calculations and
leads to rather concise and tractable analytic expressions.
We have thus refrained ourselves from treating potentials
of other forms which possibly would lead to complicated
and even prohibitively difficult expressions and numerical
complications and yet yield qualitative features similar
to those for parabolic potential shapes. Indeed, calcula-
tions pertaining to the cyclotron study of polarons con-
fined to an interface indicate that the phonon-coupling
— induced shift in the resonant energy is sensitive dom-
inantly to the strength of the confining potential rather
than its shape [17]. Moreover, due to the absence of an
abrupt variation in the medium structure and properties,
the parabolic confining potential allows one to disregard
any pertinence to the interface phonon modes [18].

A complementary remark regarding the particular
parabolic form of the potential used here is that it also
finds its relevance in the study of bipolarons under ex-
ternal magnetic fields, where a field for a 3D-bipolaron
conforms it effectively to a Q1D-bipolaron and a field ap-
plied normally to a Q2D-system makes it effectively zero-
dimensional. Specifically, under the symmetric gauge for
the magnetic vector potential, one readily achieves the cy-
clotron frequency (measured in units of ωLO) to undertake
the role of the confining parameter Ω%.

We should reemphasize that the fundamental approach
followed in this work is to take into account solely the
generic low dimensional aspect of the dynamical behavior
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of the confined electrons and visualize them as interact-
ing with the medium and with one another through ex-
change of virtual phonons. Thus, adopting the so-called
bulk-phonon approximation and leaving out all the other
complicating detailed features, we study the ground state
of confined bipolarons at strong phonon coupling and ob-
tain an explicit tracking of the polaron-bipolaron transi-
tion as a function of the degree of confinement.

2 Theory

The Hamiltonian describing the confined electron pair sys-
tem coupled to LO-phonons is given by

H = He +
∑
Q

a†QaQ +
∑
Q

VQ [aQ {exp(iQ · r1)

+ exp(iQ · r2)}+ hc] (2)

where
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1
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In the above, aQ (a†Q) is the phonon annihilation (cre-
ation) operator and ri = (ρi, zi), (i = 1, 2), are the po-
sitions of the electrons in cylindrical coordinates. p1 and
p2 denote the momenta of the electrons. The interaction
amplitude is related to the electron-phonon coupling con-
stant α and the phonon wavevector Q = (q, qz) through
VQ = (2

√
2πα)1/2/Q. The coupling constant is given, in

terms of the high frequency and static dielectric constants
of the material, by

α =
e2

√
2

(
1
ε∞
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)
in terms of which the unscreened Coulomb repulsive am-
plitude is

U =
e2

ε∞
=

α
√

2
1− η , η = ε∞/ε0 < 1. (4)

In the center of mass and relative coordinates:

R =
1
2

(r1 + r2), r = r1 − r2, (5)

with corresponding momenta P = p1 + p2 and p =
1
2 (p1 − p2), the Hamiltonian can be rewritten as
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in which R% andRz stand for the lateral and z components
of the center of mass position vector. The components
r% and rz have similar meanings for the relative position
vector r.

In the variational approximation that we follow here,
we use the conventional trial Ansatz of the adiabatic po-
laron theory consisting of a part relevant to the phonon
variables and a part which contains the particle coordi-
nates only, i.e.,

Ψbipol = Φ(r1, r2) |0〉 (8)

where |0〉 denotes the phonon vacuum state. The bipolaron
state, Ψbipol, thus constructed, is to be used in concert with
the optimal displaced-oscillator transformation

H→H = exp(−S) H exp(S), S =
∑
Q

VQsQ (aQ − a†Q)

(9)

in which

sQ = 〈Φ(r1, r2)|
(
e±iQ·r1 + e±iQ·r2

)
|Φ(r1, r2)〉. (10)

A further optimization of

Eg ≡ 〈Ψbipol|H|Ψbipol〉 (11)

with respect to the variational parameters contained in
Φ(r1, r2) corresponds to the self-trapping description of
the polarons where the charge density distribution of the
electrons and the lattice polarization influence each other
in such a way that a stable relaxed state of the “two-
electron + phonon” complex is eventually attained.

To reach this goal we need to use an appropriate form
for Φ(r1, r2) that suits to reflect a reasonable description
of the bipolaron state in a wide range of the confining
parameters extending from the bulk to all low dimensional
geometries. As a sensible approximation, we set

Φ(r1, r2) ∝ G(r1)G(r2) g(r1, r2, |r1 − r2|) (12)

where G(ri) (i = 1, 2) are the one-electron Gaussian wave-
functions, and g is the Coulomb correlation function of
Jastrow type. Compatible with the anisotropy imposed
by the confining potential (1), we write

G(ri) = exp
(
−a2

1%
2
i − a2

2z
2
i

)
(13)

and

g(r1, r2, |r1 − r2|) =
√
r2
% + r2

z exp
(
b21r

2
% + b22r

2
z

)
(14)

in which, the factor r =
√
r2
% + r2

z multiplying the expo-

nential ensures that Φ(r = 0) = 0, so that the electrons
are repulsively kept separated.

Under the coordinate transformations (5), it is possible
to conform Φ into a product form Φ(R, r) = φ(R)×ϕ(r),
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where each of φ and ϕ assumes an oscillator-type wave-
form, given by

φ(R) = NR exp
{
−1

2
κ2
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}

(15)
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where the coefficients NR and Nr serve for normalisation,
and {κi, µi}, (i = 1, 2) is the set of new variational param-
eters linked to those given in equations (13, 14) through
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1
2
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2
2. (17)

It should be noted that during obtaining the optimal fits
to κi and µi, the variational theory is expected to set up a
detailed fractional admixture of all the contributions com-
ing from each single parameter (U, α, Ω% and Ωz) charac-
terising the system.

We should remark that the oscillator-oscillator type
waveform (15, 16) for φ(R) × ϕ(r) has proved to be the
most efficient approximation yielding the largest lower
bound on ηc among the possible sets of different com-
binations of Pekar, Coulomb and oscillator type trial-
wavefunctions tackled earlier by Verbist et al. [8] for the
three- and two-dimensional bipolarons. We hope that the
results derived here will provide us a revision of the phase
stability of bipolarons within a broader context beyond
the already existing literature concerning the bulk and
strict 2D cases. We shall set up a total description of
the problem uncovering the quasi-two-, -one- and -zero-
dimensional configurations as a function of the degree of
confinement, and devote our concern mainly to the basic
qualitative aspects of the confined bipolaron in the strong
α limit. We shall not concern ourselves seriously with the
numerals in absolute sense since it has been found that the
value of ηc lays out a considerable amount of digression
depending on the different types of wavefunctions used
for the centre of mass and relative motions (cf. Tab. 1
in Ref. [8]). We therefore disregard all the other possi-
ble forms for Φ(R, r), and adopt plainly the oscillator-
oscillator wavefunction as the most feasible approximation
which, on the other hand, lends a great amount of com-
putational simplification due to its compatibility with the
quadratic barriers of the confining potential.

The explicit analytic form of the variational ground
state energy Eg (11) is given through a series of closed but
somewhat lengthy expressions which we prefer to present
in Appendix A.

3 Results and conclusions

Since analytical minimization of Eg (A.1) is not possible,
the determination of the optimal fits to the variational
parameters {κi, µi}, (i = 1, 2), requires treatment on a
computer. In the foregoing discussions we shall be content
with the limited information the strong coupling approx-
imation can impart to the understanding of the problem,
and devote our concern mainly to the qualitative aspects
of the model uncovering different geometries and dimen-
sionalities other than those for the 3D- and 2D-analogs
which have already been investigated extensively [6–9,12]
within the framework of the same approximate adiabatic
theory.

The fundamental condition under which a bipolaron
can exist is that the repulsive Coulomb interaction should
not be too strong to dominate over and hence break up
the phonon-mediated binding which holds the particles
together. It has been found that for a bipolaron state to
be stable, one should have the ratio U/α be smaller than
a critical value. For instance, in three dimensions, adopt-
ing the strong coupling theory and using oscillator-type
wavefunctions (15, 16) for φ(R) and ϕ(r), one obtains
the bipolaron phase when U/α < 1.627. The correspond-
ing critical bound in two dimensions is inevitably larger
(U/α < 1.679) due to the pronounced effective phonon
coupling. The criterion for which a stable bipolaronic state
takes place can be derived by demanding that the energy
of the system of two interacting polarons be lower than
twice that of a single polaron. Stating alternatively, for
the bipolaron formation to be favourable, one requires

Eg − 2E(1)
g = ε < 0 (18)

where E(1)
g refers to the one-polaron ground state energy,

calculated within the identical framework as for the bipo-
laron system and under the identical numerical precision.
The corresponding one polaron energy results can readily
be recovered from reference [17]. For completeness, we re-
view a brief content of this reference in Appendix B where
the single electron wavefunction is provided by the same
oscillator form as given by equation (15).

In conformity with the inequality ε < 0, the condition
which favours the bipolaron phase is that parameter η (4)
must be smaller than the critical value ηc = η|ε=0 (i.e.,
the value at which Eg and 2E(1)

g cross over). Clearly, the
approximate ηc thus determined may lie either below or
above its actual value depending on respectively whether
the discrepancy between the variational and true energies
for the bipolaron is larger or smaller than the correspond-
ing discrepancy for two separated polarons. Although, at
this point, we do not have a solid ground to judge or dif-
ferentiate between the two possibilities, we are inclined
to suppose that the variational error should be somewhat
smaller for the one-polaron case. The underlying reason
in that is the complexity of the situation for the bipo-
laron state where the intricate and opposing roles which
the Coulomb and phonon parameters (U,α) play in the
problem limits our skills in selecting an appropriate trial
wavefunction that suits to give the least possible energy
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Fig. 1. Eg and 2E
(1)
g versus η. The full curves are the supposed

exact energies, the dashed curves represent the corresponding
variational upper bounds. The crossover point at which the full
curves meet yield the presumably-exact value of ηc. Similarly,
the point at which the dashed lines cross gives the variationally
computed ηc. The crossover point on the very left refers to the
critical η determined by comparing the variational bipolaron
energy with the exact single polaron energy.

upper bound. Apparently, the additional parameters Ω%
and Ωz add more to the complexity by greatly influenc-
ing the Coulomb and phonon counterparts of the problem
and their percentual involvements in the binding (or dis-
sociation). In view of this reasoning we feel that the varia-
tional estimate of ηc is probably smaller, rather than being
larger, than its true value. Thus, adopting the assumption
that ηc < ηexact

c , we think it would be somewhat more
consistent to rely on the approach where both Eg and
E

(1)
g are calculated variationally under similar approxi-

mations, rather than to have ηc determined by comparing
the variational bipolaron energy with the exact single po-
laron energy derived from a superior formalism or any
possible reference (see, for instance, Miyake [20], and Wu
and Peeters [21] for the 3D and 2D cases). We provide
a graphic summary of the content of our arguments in
Figure 1 illustrating the pure-variational ηc to lie closer
to the true value than the one calculated using the exact
one-polaron results.

A complementary note concerning the variational adi-
abatic approach adopted in this problem is that it has a
limited domain of applicability and can meet the more
sensible and reliable approximations only in the limit of
large α. An intuitive envision at this stage would be to
think of this theory as sufficiently valid for α being some-
what of the order of magnitude 10 or even larger in 3D and
inclined to fall off to correspondingly smaller values as the
degree of confinement is increased. To give a quantitative
display of this trend we compare the ground state bind-
ing energy values of harmonically confined “one-polaron”
states calculated within the academic strong-coupling ap-
proximation [19] against those derived using the superior
path-integral formalism [22]. In Figure 2 we plot three
successive domains in the α−Ω space for the quasi-two-,
-one- and -zero-dimensional geometries within which the
strong-coupling one-polaron energies deviate from the cor-
responding path-integral results by at most 20%. It is seen
that the common fundamental effect of reducing the di-
mensionality and/or increasing the confining parameter Ω
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Fig. 2. Diagram describing the domains of applicability of
the strong-coupling (SC) approximation where the one-polaron
binding energy deviates from the corresponding path-integral
(PI) value by at most 20%. In the inset, the curves (solid: SC,
dashed: PI) display the binding energy against α in the Q1D-
configuration for Ω = 0 and Ω = 102. The vertical arrows
refer to the corresponding α-values for which the SC-theory
lies deviated below the PI-theory by 20%.

is to enlarge the domain of validity of the strong coupling
approximation. Thus, based on a quantitative comparison
of the strong-coupling and path-integral theories pertain-
ing to the one-polaron case, we feel that the strong cou-
pling approximation applied to the present problem will
provide us with fairly acceptable values for α > 10 in 3D
and α > 4 in 2D. Going over to the Q1D-confinement with
Ω set equal to 40, for instance, the corresponding lower
bound to α for which the adiabatic theory lies within 20%
digression shifts down to a value as small as 2. The over-
all content of Figure 2 is therefore to shed some crude
insight into the effect of dimensionality and the degree of
confinement concerning the validity of the approximation
followed in this work.

In regard with the strong coupling expansion to leading
order in α, i.e., O(α2), we would like to draw attention to
that, if in equations (2, 3) the energies are scaled by α2 and
lengths by α, i.e., E → Eα2 and L→ Lα, the only modi-
fication in the Hamiltonian would be to replace the confin-
ing parameter Ω by Ω/α2 and the Coulomb coefficient U
by U/α. Thus, in a representation where the critical value
of parameter η is plotted against Ω/α2, rather than Ω, we
find that, irrespective of the value of α, one can display
the phase boundary on a single universal curve for each
individual geometry. In every case, whatever the geomet-
ric configuration is, the ground state energy is seen to be
proportional to the square of the coupling constant, i.e.,
Eg = −Cα2, where the corresponding coefficient of pro-
portionality bears a functional relation solely to Ω/α2 for
both the single-polaron and two-polaron systems. There-
fore, in the foregoing particular plots for which the ab-
scissae are expressed in units of the ratio Ω/α2, one can
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Table 1. The ground state energy of the two-polaron complex compared with twice that of a single polaron in the quasi-
2D configuration. The energy values are given in positive terms where the corresponding lowest subband energies have been

subtracted out, i.e., ∆Eg = Ω−Eg and ∆E
(1)
g = 1

2Ω−E
(1)
g . Those entries typed in boldface correspond to the set of parameter

values, α, η and Ω, for which bipolaron formation is favourable.

Ω/α2 2∆E
(1)
g /α2 ∆Eg/α

2

η = 0.01 η = 0.10 η = 0.12 η = 0.13 η = 0.14 η = 0.15 η = 0.16

0 0.2122 0.2558 0.2241 0.2166 0.2127 0.2089 0.2050 0.2010

10−2 0.2219 0.2654 0.2337 0.2262 0.2223 0.2184 0.2145 0.2105

10−1 0.2830 0.3270 0.2924 0.2841 0.2799 0.2756 0.2713 0.2669

1 0.4362 0.4905 0.4426 0.4311 0.4252 0.4193 0.4133 0.4072

10 0.6018 0.6840 0.6202 0.6049 0.5971 0.5891 0.5811 0.5729

102 0.7100 0.8248 0.7489 0.7307 0.7213 0.7119 0.7022 0.6924

103 0.7589 0.8939 0.8118 0.7919 0.7818 0.7715 0.7611 0.7505

∞ 0.7854 0.9333 0.8473 0.8266 0.8160 0.8052 0.7943 0.7832

conveniently assign α any arbitrary large value with no
loss in generality.

In Table 1 we give an explicit numerical discourse of
the binding energy values of the “two-polaron” system
compared with that of infinitely separated noninteracting
polarons. We shall be content by tabulating a sample of
our numerical results pertaining to only the slab-like con-
figuration where we set Ω% = 0 and select a succession
of Ωz values ranging between infinity and zero, thus en-
compassing the integer dimensional space limits which are
of immediate relevance to the three- and two-dimensional
one- and two-polaron models studied in the literature in so
far. We should recall that for the case of a free single po-
laron the binding energy calculated by the oscillator-type
wavefunction is given by

−E
(1)
g

α2
≡ C

(
Ω

α2

)
=
{

(3π)−1 for Ω = 0
π/8 for Ω →∞·

The more general values of the coefficient C(Ω/α2), ex-
tended to non-integer dimensionality (0 ≤ Ω < ∞), are
displayed in a succession of columns in the table for the
one- and two-polaron cases with a series of distinctive
Coulomb repulsion strengths; thus yielding an explicit
tracking of the condition, equation (18), for which a bipo-
laronic bound state is favourable.

In Figure 3 we plot three simultaneous curves de-
scribing the effect of confinement on the critical value
of η in the quasi-two, -one and -zero dimensional con-
figurations. Holding α fixed at any desired value and fol-
lowing the variations in ηc as Ω is turned on, we first
note that for each dimensionality the critical η, starting
from the common 3D-value, η(3D)

c = 0.131, displays in
common a decreasing trend where the respective decay
rates are observed to become faster as the effective di-
mensionality is reduced from two to one, and to zero.
Thus, in the wire- and box-type configurations the crit-
ical Coulomb strength below which a bipolaron forms lies
deviated considerably below the corresponding value in
the slab-type geometry. The essential feature portrayed
by the strong coupling theory is therefore that, the lower
the dimensionality is, the more unlikely is to realize the
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Fig. 3. The critical ratio ηc as a function of α/
√
Ω for the

quasi-two-, -one- and -zero-dimensional configurations.

bipolaron state to form; and in particular, in the box-type
confinement, even a small value of η may turn out to
be sufficient enough to lead the Coulomb force to op-
pose and dominate over the phonon–coupling–induced lo-
calisation of the composite assembly of the two nearby
electrons. The same feature has also been depicted
explicitly in an earlier paper by Mukhopadhyay and
Chatterjee [14] for bipolarons in quantum dots. As an im-
mediate reasoning to understand such a characteristic of
low-dimensional bipolarons treated within the adiabatic
theory we are tempted to argue that, with increasing de-
gree of confinement (i.e., with growing Ω% and/or Ωz), the
Coulomb repulsion is steadily strengthened due to that
the particles are squeezed to get closer; and the rate at
which this happens should be most prominent in the Q0D-
configuration where the electrons are pushed towards one
another from all radially inward directions. In the Q1D-
and Q2D-configurations, however, the electrons are free to
expand and relax themselves respectively in either one or
two directions; thus resulting with comparatively weaker
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Coulomb repulsion and weaker dominating strength over
the lattice polarization field holding the particles together.

In contrast with the outcomes of the present work
and those of reference [14], we should mention two
parallel contravening papers by Wan et al. [15] and by
Pokatilov et al. [16], both treating the Q0D-bipolaron
problem within the framework of the path-integral for-
mulation and leading to the common finding that, unlike
to the strong-coupling results, the confinement effects act
in favour of bipolaronic stability in the zero-dimensional
configuration. Moreover, it has been argued that, even at
weak coupling, bipolarons can form in quantum dots under
strong confinement [15]. Since the path-integral formalism
is highly superior over the strong-coupling approximation,
we think that the counter-view laid out in Figure 3 re-
garding the box-geometry is rather suspect and should be
accounted for as an artifact of the adiabatic theory. Thus,
having pointed out this particular conflicting digression
between the two theories, we continue with our discussions
within the present context to lay out a complete and self-
consistent characterisation of strong-coupling bipolarons
in confined media uncovering a broad variety of the basic
features induced by the adiabatic theory.

We should note that in confined systems it is not
only the Coulomb repulsion strength which gets pro-
nounced, but in the meantime the phonon-coupling be-
comes pseudo-enhanced leading to a more effective and
deeper polaronic binding to oppose and counterbalance
the repulsive forces. The competitive interrelation between
these aspects of the problem determines the phase bound-
ary and moreover may even pose a salient feature stem-
ming from a cross-overing of this competition as the con-
fining parameters are varied. In particular, in the Q2D

slab-geometry where this feature shows up with extreme
prominence, we observe that the critical η does not dis-
play a monotonically increasing behavior interpolating be-
tween the 3D- and 2D-limits, but instead reaches its two-
dimensional value [8] (η(2D)

c = 0.158) after having passed
through a minimum; thus reflecting an explicit image of
the dominating effect of either the Coulomb repulsion or
the phonon mediated attraction over the other.

Peculiar to the slab geometry, we note explicitly that,
whatever the value of Ω is, there is always a non-zero
critical η below which a stable bipolaronic state can be
realized. In the wire- and box-type confinements, how-
ever, no matter how weak the Coulomb strength might be
set, there is always an upper value for Ω beyond which
the bipolaron breaks up into two individual polarons. In-
creased values of α can only support the bipolaron to con-
serve its stability at correspondingly higher degrees of con-
finement. A more clear picture of such a trait pertaining
to the quasi-two-, -one- and -zero-dimensional geometries
is provided by the phase diagrams in Figure 4 where we
plot the Coulomb coefficient U against α. Scaling both
the abscissa and the ordinate in units of Ω1/2 allows us to
display the stability region for any desired Ω-value. In the
phase picture the space lying below the dashed line corre-
sponds to ηc < 0, and is therefore unphysical. The upper
space bounded from below by the solid lines plotted for

0.0 0.5 1.0 1.5 2.0
α/Ω1/2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
/Ω

1/
2

1.310.46

Unphysical-Region

(η<0)

Fig. 4. The phase diagram for bipolaron formation as a func-
tion of the Coulomb coefficient and electron-phonon coupling
constant. The solid lines from top to bottom are respectively,
for the quasi-two-, -one- and -zero-dimensional configurations.
The dashed line (ηc = 0) is the boundary of the unphysical
region. The arrows refer to the corresponding critical values of
α (in units of Ω1/2) in the wire- and box-type confinements.

different geometries gives the unstable region where the
polarons choose to remain separated. Thus, it is only the
narrow triangular area bounded by the dashed and either
of the solid lines in which the polarons can be found in
a bound state forming a stable bipolaron. The vertex of
each triangular region at which the dashed and solid lines
join defines an infimum for the coupling constant for a
given Ω-value. We observe that the critical α below which
the unphysical region is obtained gets shifted to larger
values as the degree of confinement is increased. It should
be remarked that in the Q2D-configuration the solid and
dashed lines join at the origin; yielding an evidence in
favour of bipolaronic stability for any degree of confine-
ment provided the Coulomb coefficient does not exceed
its corresponding critical value.

In this article we have studied the possibility and cri-
teria in achieving stable bipolarons in low dimensionally
confined media. The “deformable potential box” – model
adopted in this work allows us to attain a simple and yet
comprehensive review of the two-polaron problem within
a unifying scheme interpolating between the bulk and all
low dimensional geometric configurations of general in-
terest. It has been illustrated that in structures with re-
duced dimensionality, the phase description displays an
explicit relevance to the phonon-coupling parameter α,
distinguished from that reported earlier for the strongly
coupled bipolaron in three and two dimensions. It has been
shown further that in conforming the potential box to a
thin quantum well, the critical ratio of the dielectric con-
stants may undergo an interesting variation, exhibiting a
decrease first, then ascending and eventually going over to
its topmost two-dimensional value.
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Appendix A: Variational bipolaron energy

In complete form, the ground state energy (11) of the com-
posite system of two polarons is evaluated as

Eg = λR + λr +Ω2
%λ% +Ω2

zλz + λc − λph. (A.1)

In the above, λR and λr stand for the kinetic terms 〈14P 2〉
and 〈p2〉, respectively; λ% and λz are the energies relevant
to the confining potential; λc is the Coulomb energy and
λph refers to the contribution coming from the lattice. We
obtain the following explicit expressions for each of these
terms:

λR = 〈−1
4
∇2
R〉φ =

1
8
κ2

1 (2 + µ2
1) (A.2)

λr = 〈−∇2
r〉ϕ = κ2

2

[
2 + 3µ2

2 + 2µ4
2

2 + 4µ2
2

]
(A.3)

λ% = 〈R2
%〉φ + 〈1

4
r2
%〉ϕ =

1
κ2

1

+
1 + 4µ2

2

4κ2
2(1 + 2µ2

2)
(A.4)

λz = 〈R2
z〉φ + 〈1

4
r2
z〉ϕ =

1
2κ2

1µ
2
1

+
3 + 2µ2

2

8κ2
2µ

2
2(1 + 2µ2

2)
·

(A.5)

Defining, for notational convenience,

Fn(t) ≡
∫ ∞

0

dxxn e(1−t)x2
erfc(x) (A.6)

with erfc denoting the complementary error function, we
write

λc = 〈Ur−1〉ϕ = 2U
µ2κ2

1 + 2µ2
2

{
1√
π

+ µ2F0(µ2
2)
}
.

(A.7)

Also, calculating sQ (10); and using equation (A.6), we
derive

λph =
∑
Q

V 2
Qs

2
Q =

α
√

2
π

∫ ∞
0

dq q
∫ ∞

0

dqz
s2
Q

q2 + q2
z

= 2
√

2αb

{
F0(ξ) + δ

(
b

2

)2

F2(ξ) +
δ2

2

(
b

2

)4

F4(ξ)

}

− α a2b δ

2
√

2π(1− µ4
2)

{
1 +

a2δ

24(1− µ4
2)

[
1− 1

2
ξ − 2µ4

2

]}
(A.8)

in which

a =
{

8κ2
1κ

2
2

κ2
1 + 4κ2

2

}1/2

, b =
{

8κ2
1κ

2
2µ

2
1µ

2
2

µ2
1κ

2
1 + 4µ2

2κ
2
2

}1/2

(A.9)

and

ξ =
b2

a2
, δ =

µ−2
2 − µ2

2

κ2
2(1 + 2µ2

2)
· (A.10)

Appendix B: Variational one-polaron energy

In the one polaron problem the Hamiltonian (2, 3) re-
duces to

H =
1
2
p2 +

1
2

(Ω2
%%

2 +Ω2
zz

2)

+
∑
Q

a†QaQ +
∑
Q

VQ
(
aQeiQ·r + hc

)
(B.1)

where r = (%, z) is the electron position, and p is its
momentum.

Using the same variational approximation as for the
bipolaron case, we impose a product Ansatz separable in
the particle and phonon coordinates, i.e.,

Ψ (1) = φ(1)(%, z) exp
∑
Q

sQ (aQ − a†Q)|0〉 (B.2)

in which we use an oscillator particle-wavefunction

φ(1)(%, z) = N exp
{
−1

2
κ2(%2 + µ2z2)

}
· (B.3)

The exponential operator acting on the phonon vacuum
is the displaced oscillator transformation where sQ is a
variational parameter determined from the requirement:
∂〈Ψ (1)|H|Ψ (1)〉/∂sQ = 0 to yield

sQ = VQ 〈φ(1)|e±iQ·r|φ(1)〉

= exp
(
− 1

2κ2µ2
(µ2q2 + q2

z)
)
. (B.4)

Finally, using (B.4) in (B.2) and projecting out the Q-
summations in E

(1)
g = 〈Ψ (1)|H|Ψ (1)〉, we obtain the one-

polaron ground state energy, given by

E(1)
g =

1
4
κ2(2 + µ2) +

1
2κ2

(
Ω2
% +

Ω2
z

2µ2

)
− α√

π
κµ

arctan
√
µ2 − 1√

µ2 − 1
· (B.5)
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