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Quasi-two-dimensional Feynman bipolarons
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We study the stability criterion for the formation of two-dimensionally confined large bipolarons. The
electrons are treated as bounded within a parabolic potential well while being coupled to one another via the
Frohlich interaction Hamiltonian. Within the framework of tHmilk-phonon approximationve adopt the
Feynman-polaron model to derive variational results over a wide range of the Coulomb interaction and phonon
coupling strengths interpolating between the bulk and the two-dimensional confinement limit. It is shown that
the critical values of the electron-phonon coupling constant and the ratio of dielectric consjangs Aeo)
exhibit some nontrivial features as the effective dimensionality is tuned from 3 80263-182(09)08637-3

[. INTRODUCTION provided the effective Coulomb repulsion is not larger than a
critical strength and the phonon coupling constant is not

Two electrons in a polar or ionic crystal interact with the smaller than a critical value, the lattice effects may account
lattice vibrations resulting in attractive forces between themfor a considerable part of the energy of the electron-electron
Under certain conditions, the phonon mediated attraction bepair which consists of attracting the particles against their
tween the particles may come out to be strong enough t€oulomb repulsion. Thus, the fundamental condition under
counterbalance the Coulomb repulsion and consequently, \&hich a bipolaron can exist is that the repulsive Coulomb
stable bound state can form. Such a state of the system coimteraction should not be too strong to dominate over and
sisting of the pair of electrons and a common density othence break up the phonon-mediated binding which holds
virtual phonons is termed a bipolaron. the particles together.

Among the numerous amount of papers published within In the last two decades, the study of bipolarons has at-
the context of two-polaron systems, we at first cite the piotracted a revived and extensive interest in the literattf@.
neering work of Hakehwho studied the problem of the in- Of particular relevance to the content of the present article
teraction between an electron and a hole via the coupling tare the recent solutions of the bipolaron problem in three and
the LO branch of the phonon spectrum in polar semiconducstrict two dimension$~1®?'where it is observed that a bi-
tors. Using a variational method he showed that the polaropolaronic bound state of two electrons is more easily attained
corrections to the effective interaction at large distances den two dimensions than in three. The concern of the present
crease exponentially, reflecting the exponentially decreasingtudy is to extend the problem to a broader discourse and
overlap between the clouds of bound charges around the pexplore the stability of quasi-two-dimensional bipolarons
larons. The same problem was further considered by Mahantionfined in a parabolic quantum well with variable well
and Varmé and by Sakwhere they included the corrections width and potential barrier slopes; thus provide an interpo-
to the electron-hole potential coming from the dynamic po-lating insight into the phase diagram, encompassing the bulk
larization of the lattice, and showed how deviations from theand the two-dimensional limits. The harmonic-oscillator con-
Coulomb form could occur. The intrinsic effect of electron fining potential that we adopt here has already been used in a
(hole) phonon interactions on the nature of forces acting beparallel stud$® within the framework of the strong-coupling
tween the particles was reconsidered by Kuleshov, Matveepgolaron theory where it has been noted that, in the quasi-two-
and Smondyretand the same work was revised latdas-  dimensional(slablike configuration, the utmost permissible
ing their calculations on Feynman path-integral formalism,Coulomb strength which would allow a bipolaron state to
they developed a scheme for obtaining expressions for thiarm may turn out to be lower than one would have for the
particle interaction potentials and the ground state energy ithree- and strict two-dimensional bipolarons. To see whether
both the strong- and weak-coupling approximations. A simi-this peculiar feature is indeed a characteristic of quasi-two-
lar problem in the same area was considered by Bishop andimensionally confined bipolarons, we wish to review the
Overhausérto investigate the phonon-mediated interactionproblem within a similar framework of the three and two-
between two electrons where they showed that for ionic crysdimensional bipolaron models set up earlier by Verbist,
tals the effective electron-electron potential may lead to arPeeters, and Devredéavhere they reformulate the Feynman
attractive deep potential well with a minimum occurring for path-integral variational approactto tackle the case of two
particle separations as small as a few tens of A. interacting polarons. Thus, a critical understanding of the

In the bipolaron problem, with the electrons being closelyforegoing calculations and the outcomes depends heavily on
positioned, the polarization fields centered about the particlesaving read Ref. 14 with which we shall make some frequent
overlap and interfere in a constructive manner to create aorrespondence, particularly when the three- and two-
potential well deep enough to compete with the Coulombdimensional limits of our model are concerned. We believe,
repulsion so as to prevent the particles from being projectethe methodology followed in this work proves to be a pow-
apart. Depending on the dielectric properties of the mediumerful technique intended to yield a satisfactory description of
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the problem in the overall ranges of the parameters charac- @2 J2
terizing the system. In the following, we obtain an explicit U=—= 1, (5)
tracking of the phase stability in terms of the Coulomb and € 1

phonon-coupling strengths as a function of the effective di+or the confining potential we use a harmonic oscillator pro-
mensionality tuned from 3 to 2. file with adjustable barrier slopes, i.e., we set

Il. THEORY 1 2

Vo 2) = EQ i (6)

A. Bipolaron model

The model that we use consists of a pair of quasi-two-4in which the dimensionless frequen€y serves for the mea-
dimensional electrons coupled to the LO branch of the bullsure of the degree of confinement of the electron which,
phonon spectrum. As such, the fundamental approach folwhen tuned from zero to infinity, yields a unifying display of
lowed in this work is to account for mainly the generic low- the phase stability of the bipolaron as a function of the ef-
dimensional aspect of the dynamical behavior of the elecfective dimensionality ranging from 3 to 2. The rationale
trons and visualize them as interacting with the medium andbehind imposing quadratic potential profiles is that such a
with one another through exhange of virtual phonons. Aparform for the confining barriers greatly facilitates the calcula-
from ignoring the contributions that may come from all othertions and leads to tractable analytic expressions. We have
kinds of phonon modes, we also omit the screening effectthus refrained ourselves from treating potentials of other
and further details, such as those due to the nonparabolicifiprms which possibly would lead to complicated and even
corrections to the electron band or the loss of validity of bothprohibitively difficult expressions and numerical complica-
the effective-mass approximation and the Hich con- tions and yet yield qualitative features similar to those for
tinuum Hamiltonian in microstructures. Hence, under the soparabolic potential shapes. Indeed, calculations pertaining to
called bulk-phonon approximatiomnd the aforementioned the cyclotron study of polarons confined to an interface in-
simplifying assumptions, we write the Hamiltonian describ-dicate that the phonon-coupling-induced shift in the resonant
ing the confined electron-pair system coupled to the LO phoenergy is sensitive dominantly to the strength of the confin-
non field as ing potential rather than its shap&Moreover, due to the

absence of an abrupt variation in the medium structure and
_ + i0-1; 01, properties, the parabolic confining potential allows us to dis-
H_He+% aQaQ+i212 2 VQ(aQeQ +aQe ? ), regard any relevance to the interface phonon méd#se,
(1)  therefore, conveniently use the harmonic-oscillator potential
(6) as a simplifying first approximation compatible with the
where framework of the path integral approach where one assumes
the two electrons to be coupled to one another and to the
H. = (lp»ZJrV (z) |+ _ ) corresponding fictitious pa}rticles via harmonic springs.
MRS TAVAR cont |F1_F2| In the Feynman path integral representation of the po-
laron, the phonon variables can be projected out exactly to
Here and henceforth we use dimensionless units appropriaigeld the partition function of the bipolaron system in the
to a polaron calculatlon and take* =i=w, o=1. In Egs. form
(1), (2), ag and aQ denote the phonon annihilation and cre-

ation operators, and;=(p;,z) (i=1,2), are the positions Zgp= ZpnZ, (7)
of the electrons in cylindrical coordinates. Similar&, (i
=1,2) denote the respective momenta of the electrons. The

where

Frohlich interaction amplitude is related to the phonon wave 1 3
vectorQ=(q,q,) through Zon= 11 (_—) (8)
Q \1-e Phewo
— 1121~ —1
Vo=(2v2ma)*4Q| ™, is the phonon part, and
where « is the coupling constant defined, in terms of the
high frequency and static dielectric constants of the medium, J Jf i(8)= LM (g)
by i= 12 ri(0)= ro
e2/1 1 is the path integral in which the actiofi consists of two
a= T(f__ 6—). (3 parts, one pertaining to the electron part of the Hamiltonian
2\€= €0 and the other to the electron-phonon interaction. In imagi-
In the Coulomb term, the unscreened amplitutés related ~ Nary time variablest{— —ix), we have respectively, the fol-
to the ratio of the dielectric constants lowing expressions:
€ I =2 2,2
=<, 4) Se=—5 dx > [F20+0Q%Z2(N)]+S.,  (10)
€o 0 i=1.2

through where
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B U c B B ’ ’ g g ’
Sc:_j N ————— (11 SS:_?SJ' d)\f dN'Gy(A—A )2 [ri(N)—ri(\ )]21
0 [ri\)=ra(N)] 0 0 1=12
| 17)
is the Coulomb term, and
1 B B S, ——ZXC—mJBd)\IBd)\’G (A—=\")
Sep== vzf dxf d\'G, —1y(A—\' m 2 v
ep 2i:1’2j21’2% 2], . (w0=1) ) 0 0
 @lQ-Iri(N) =rj(\")] (12) X[ri(0) =ra(\)~a]” (18

is the part describing the phonon mediated retarded attractivd the above'K,' Cs: Cm 'and w are var!atlonal parameters
ntroduced within a similar context as in the original paper

interaction between the electrons. In the above, the dimer* ; . -
sionless parametgs stands for the inverse temperature, andby Feynmart! Vectora is a further parameter describing the

the memory function mean distance between the central positions about which the
electrons fluctuate. We should note that the confining poten-
cosh (B—2|u|) /2] tial (6), being symmetric in thetz directions, imposes the
G, (u)= sinh( Bw/2) mean positions of both electrons to lie in thg plane. We

. . _ . _ therefore readily sed,=0. We should also remark that in
is the Green’s function of a harmonic oscillator with fre- 1o extreme limitsa=0 and|5|—>oo, the model yields re-

quencye. In principle, at zero temperature, we ha#ge  gpectively a description of either the bipolaronic state of the
= Z, and the bipolaron ground state energy two electrons or a pair of two independent polarths.

E,=— lim g~ logZ SinC(_e the trial action and the path-inte_gral averages in-

g P ' volved in Egs.(14)—(18) are all separable in the Cartesian

coordinates, the calculations can be performed all in identical
can be calculated exactly provided the path inte@@alcan  manners for each spatial direction. Denoting the Cartesian
be evaluated. Since this is not possible due to the analyticomponent of theth electron in any chosen direction By
complexity of the integral expressions in the acti®nEqgs. and that of theth fictitious massM by X;, the part of the
(10—(12), we choose to proceed with the introduction of amodel Lagrangian relevant to that coordinate
solvable trial actionSy intended to provide us with a conve-

nient variational upper bound to the ground state energy, led 1 ) : K
by the Jensen-Feynman inequality LET)%dZE i;” (X = Q2%+ MXP) + E(Xl_XZ_ax)z
1 K
Egg EO_ lim E(S_So>50, (14) _ E E (Xi_xi)z
B—x i=1,2

where the notation| )s, denotes a path-integral average K’ ) )

with density functione®, and E, is the trial ground state — 5 = Xpma) T+ (X = Xyt 8% (19
energy corresponding t&,. The form of the trial action

should be simple enough to permit analytical calculationsan be related to the following model action:

and yet be detailed enough to cover all the basic features of

the exact actiors. 1(8 . :
Shhoa= zf dh > [XFN) O3+ MXEV)]
0 i=1,2
B. The trial model and its diagonalization
. . . 1(8
For the trial action we choose the model which was suc- + EJ d)\( K[X1(A) = Xo(N) —a, ]2
cessfully applied to similar polaron or bipolaron 0

problemd*?7-**where the electrons are considered to be in

quadratic interaction with the fictitious masses. We wége -> K[Xi(R)—Xi()\)]Z]
as a sum of three terms, i.e., i=12

— "B
S0 St 8t Sy (19 -5 a0 00 -a,
whereS, is similar to that given by Eq10), except now that 0
the Coulomb tern{11) is reexpressed as +[X2(N) = X1 (N) +a,]?). (20)

1 B - -5 Here, it should be understood tHathas its original meaning
SCZEKL dA[ra(N) —ra(N)—a]”. (16) as in Eq.(10) when one refers to thedirection, but assumes
zero value for the remaining two directions.
Ss and S, refer to the self- and mutual interaction of the  Similar to the elimination of the phonon degrees of free-
electrons with the fictitious masses, each with its own andiom, also eliminating the fictitious mass coordinaxes we
with that of the other electron, respectively. These terms assbtain the relevant trial action, expressed solely in terms of
sume the following path-integral representations the electron coordinates, in the form as given in E45)—
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(18). The variational parameters of the trial action can then

1 .
be identified in terms of the parameters of the model La- LEQZE 2 my( 77— & n), (26)
grangian =
where
[kt K’ _K2+ K'2 B KK’ o1
WENTM O ST amw o Y 1 8-8 18-8 -
m0_2 W2—§S’ m1_2 fi—wzy

In order to calculate the ground state energy of the varia-
tional model and the path integral average required in Eq. 5 2 > 2
(14), one needs to diagonalize(?, (19). Introducing m 166 m 166 (29)
Xem(Xem) @ndXe(Xe) @s the center of mass and relative 222w 0 2we-g2

coordinates for the electrorifictitious massesthrough _
are the relevant mass values a((2) (i=0,1,2,3) refer to

the eigenfrequencies, given by

N

Xq 1
X, = E(Xc.m.i Xrel) =

1 1 ’ ?j = \%{Q% oI F (024 07)? - 402w, (29)
1 Ay
| XZ} = E(Xc.m.i Xrel) t?

&
. . . . _ 2 2
we rewrite the Lagrangian relevant to the chosen direction as ’53 = E{QZﬂL w3+ w3

x) —1 (¥ (x)
I-n2|<od_ I-c).(m._l_ I-r:e(I ) + \/(QZ_,_ w§+ wg)z_ 4(Q2W2+ m%w%)}m.
where (30

1. 1 . 1 We note that, in the limit)—0, the eigenfrequencie§
(x) 2 2 2 1Yy 2
Lém= Zxc.m.+ 2 MXEm— Z(Q tktk )Xc.m. reduce to
(et kD 2 (4 K Xem¥ems (22 £(0)=0 and £(0)=w; (=123 (31)
——(ktk 5 (kT K )X , . ) .

4 em.= 2 cmaem. in which w; are the normal mode frequencies calculated pre-
viously by Verbist, Peeters, and Devre¥der the bulk case,
L= 552 MK~ (024 2K + i k) expressed as

rel _4 rel 4 rel 4 KT K rel

M+1 v

M

W= (k+k')

1 ’ 2 1 ’
_Z(K+K )Xre|+Z(K_K ) XreXrel - (23

We should note that we have excluded a final term ‘wz] = i{ M +1(K+ k') — 2K
—202%a,x,, Which has had to appear on the right hand side | @3 V21 M
of Eq. (23), since this term always vanishes because, either
Q or a, is zero for all Cartesian directions. + \/[M -1 "

+ (k+x")—2K

2

4 1/2
o . \2
+M(K K)} .

Under appropriate coordinate transformations M
32
Xem= 1m0t 71, (32
Here we shall adopt the conventional HRarmonic oscilla-
w2 w2 tor) operator representation which allows us to calculate all
Xem=""Z"5M0t 55 M, (24)  the required path integral averages easily. On this purpose
W= Wo— & we introduce the lowering and raising operatoysand ciT,
(i=0,1,2,3), defined by
Xrel= 72t 713,
m=\i(c/+c), [c.cl1=1 (33
K KT W ke W (25 in which
rel K+ k' w2—§§ 72 K+ K Wi— %773.
Ni=(2m&) 12 (34

LX) andL{ can be diagonalized in the respective normal
coordinates{7,,7,} and {#,,7s}, yielding the canonical The corresponding Hamiltonian relevantliff), can be ex-
forms pressed in the HO form

3
1 . 1

LY =5 mi(nf — & nf), H®=> &(Q)|cle+ =],
2501 =0 2
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where the summation indextakes values 0 and 1 for the we readily write

center of mass coordinates, and values 2 and 3 for the rela- . N ) )

tive coordinates. Hence, the part of the ground-state energylim (e'Q'“l(*)‘rl()‘/)bSo:e—q D1 -1 0)g= ;D1 1A —1".0)
contributed by the particular coordinate reIevantStgF) is B—ee

obtained simply as (39)

12 lim (e/Q- 1) —r20)=aly
EQ=—w+5 2 &(Q), (35 B ’
1=0
— A= 02D AA—7",0)a— 02D A—\",Q)
wherein the additional termv comes about under eliminating € . e ' (40
the fictitious mass coordinates to obtain the trial actfyn where
from the model action.

Noting that the confining paramet€r is relevant only to 1 5

. . . —— — e &)

the z axis, and that it has to be accounted for having value Dyi(r.Q)=7 ;0 N(Q)(1—e &), (41)
zero in the remaining two directions, the expressiongg?

3

can be extended to account for each of the Cartesian coordi- 1 )
nates all at once, yielding Dy A7,Q0)= 1 _201 A2(Q)(1—e &)
1=0,
3
1 1
Eo:_3W+iZo {fi(o)‘F Egi(ﬂ)}- (36) +2 > N2Q)(1+e GOy (42
a i=23

, Using the integral transform
C. Path-integral averages

In order to reach the upper bound to the bipolgronic fﬁd)\fﬂd)\’F(D\—)\’|)=2,8J"B/2dTF(T), (43)
ground state energy, one has to evaluate the path integral 0 0 0

average involved in Eq14), where . -
g q14 valid for F(B— 7)=F(7), we can express the variational up-

8 . . . per bound to the ground state energy of the “two-electron
(8=So)s,=— Efo d)\([rl()\)—rz()\)—a]z)so phonon” complex in the following convenient form
13 2
B 4aq - - - = - : -
_Ufo d)\%: §<eIQ'[rlo\)7r2()\)]>$o Eg 3W-{_n;,zn igo §,(Qn)+Kn:21’2nD1’2(0,Qn)

4o - - 2
18 B T iQ-an-02D1 A007) 2D A005)
+§f dxf A\ Gy(A—\") +U%: € e T rATe A
0 0

o 2
R R o —wr _
X[Csi=212<[|'i()\—ri(7\,)]2>30 4[0 dre n=21,2 n{CSDl'l(T,Qn)_'—Cle’Z(T,Qn)}
- - - 2 [~ — i A= 2Dy (1 Q1) a—a2Dq (7,0
+2Cm([r1()\)—rz()\/)_a]2>50] —2% VQfo dre e 9 117 21) = 0;D11(7.07)
+elQag- DA 0)g=0ID1 A7 02)) (44)

1 5 B B
+5 2 V5[ dN| dN'G, (A—M') _ _ _
279 0 0 Lo Here, for notational convenience, we have introduced

G- [H (=T (N 0 for n=1
X > (M=ol o (37) _ ;
=12 ° 2 Q for n=2. 49
in which, for computational convenience, the Coulomb po-Using Egs.(21) and (32), the variational parametets, cq
tential has been written in its Fourier expanded form. andc,, can be expressed in termswfand w;(i=1,2,3),

Using the well established identity for a harmonic oscil-
lator with frequencyw and the relevant annihilation and cre-

. + K:_(wZ_MZ_wZ)
ation operatorg andc o\ W1 W2 Ws)

<eXp[ foﬁd)\[f*()\)cT+f()\)C]}>

18 B Consequently, one can treatand{w;} as an alternative set
_ - ’ N * ’ L ! - e . o .
—exp[zfo d)‘fo dAGo(A =AM TE(A )]' of variational parameters satisfying the intrinsic relation

r?}=%{w%wf—w%i(wz—w%(w—w%>}- 49

w

(38) OSw3SWSw2$w1. (47)
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When the two electrons are set a large distance apart, i.e., in N U

the limit |a| — o, the energy expressia@4) should conform EZP=—Nw+ 5 (01t 0ot wg)+ Clﬁ
exactly to that of a single polaron multiplied by a factor of 2. 140.0
Indeed, a careful examination reveals that in this extreme, N w"{—wz w§+w2w3+w§—w2
w3—0, w1— w,, and consequently, the present results re- -7 "

duce to those reported previously by Senger andlEnF® @1 W2 @3

for the one-polaron problem with an identical framework " 1 1
consisting of the same parabolic confining poterale Ap- — aczj dre” T{ + ]
pendix A). We should further emphasize that energetically 0 VD14(7,0) VD1A7,0)

the most favorable bipolaronic state has been fétitwltake (50)

over fora=0. Therefore, in the foregoing numerical calcu- ) 1 o

lations and discussions, we shall presume a vanishing medft WhichN=3, C,=a""%, andC,=(2/m)"".

separation between the electrons. Going over to the strict 2D characterization of the po-
With the corresponding values &f, c; andc,,, Eq.(46), larons, and recalling thd®, stands for(2, whereas(),=0,

substituted in Eq(44) and having projected out tr(é sum- we have the set of eigenfrequencig$), (30), relevant to the

; " . . Z axis, to simplify as
mations, the variational bipolaron energy can be written as a plify

function ofw andw; (i=1,2,3), given by w for i=0 and 3
Qllngi(QZ):{oo for i=1 and 2. (52)
3
1 .
__ - Moreover, using Eqs(27), (28), and (34), we further have
E,=—3w+ (Q
o= 3w nSiz2n Zo () the corresponding.(i=0,1,2,3), all to vanish. It thus fol-
lows that the functionsD, 4(7,Q,) and Dy A7,Q,), Egs.
N U (Dl,z(O,Ql)) (41), (42), both reduce to zero. Hence, evaluating
VD1 A0,Q,) \D1A0.£25)
2 2 2 2 1 I_/ Dl,i(Taﬂl)) R ™ (52)
_ wpt w3 W JD1(1.0,) \Dui(1.Q2)]  2D;(r,0y)

1 w%—w
270 | G TE 0y T 0y 0,
2 N B 2 S we obtain the corresponding ground state energy in two di-

w§w§ } mensions to have exactly the same fais0) as for the bulk
T E 0 G060+ E(0)] case, Sigept that we now haté=2, Cy= /2, andc,
SO R L S L2
7)o \/m D1 4(7.Q,) Il. RESULTS AND CONCLUSION

Since analytic minimization dE (48) is not possible, the
, (48) determination of the optimal fits to the variational parameters
w and{w;}(i=1,2,3) requires numerical treatment. In our
computations we shall trace the domain of stabilty
<n.,a>ac} of the bipolaron as a function of the confining
where(); and (), have to be accounted for having values parameter).
zero and(}, respectively, and The criterion for which a stable bipolaron state takes
place will be derived by demanding that the ground state
energy of the pair of composite polarons making up the bi-
arctarfy/x—1) polaron be lower than twice the energy of one single polaron.
= (49 To provide a consistent comparison of the variational energy
minima of the bipolaron system with those of the single po-
laron case, one needs further to compute the corresponding
one-polaron energy values_" derived within an identical
framework of the present model and formalism, and under
Before we present our results at large, we find it useful tahe same numerical precision. On this purpose, one may ei-
investigate the conformity with the extreme limits of the bulk ther carry out a parallel variational computation of E4y)
and strict two-dimensional cases which have already beeim the limit a—« (see Appendix A or alternatively, refer
studied extensively in the literature. Whéhis set equal to  directly to the series of equatio$3), (22), (25—(30) given
zero, the present model readily conforms to that tackled in & a preceding pap&tpertaining to the study of the Feynman
previous paper by Verbist, Peeters, and Devrééaad du-  one-polaron problem consisting of the same quadratic con-
plicates the same results presented therein for the bulk bipdinement potential.
laron. In this limit the parametel@,, Eq. (45), become both In exploiting the variational bipolaron energy one faces an
zero leading to the simplification: k(= 1. Using further Eq. entangled admixture of a series of competitive aspects intro-
(31) in Eq. (48), the 3D ground state energy can be written induced by the parametets », and{) which characterize the
the simple form, given by system. It should be evident that these parameters do not

n 1 F<Dl,2(T!Ql))
\ D1,2( T,Qz) Dl,2( TVQZ)

x—1

D. Integer-dimensional-space limits
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enter the problem in an independent way but all together take
part in the binding in connected and somewhat involved
manners, opposing the effect of one against the other. Dis-
tinguished from the case of a three- or two-dimensional bi-
polaron, the extra paramet@ adds more to the complexity
in the delicate balance between the Coulomb and phonon
counterparts of the problem and their percentual involve-
ments in the binding. Clearly, in a confined volume wh@re
is tuned from zero to large values, i.e., when the particles are
squeezed to get closer, one expects their kinetic energy to
increase and the Coulomb repulsion between them to be-
come stronger. In the meantime, due to the rapid charge den-
sity fluctuations of the pair of electrons, the phonon-coupling
becomes pseudoenhanced leading to a more effective and
deeper “phonon-mediated” interaction between the particles
to oppose and counterbalance the kinetic and Coulomb re- FIG. 1. The phase diagram for bipolaron formation in the space
pulsions. Thus, the overall role of the confinement on theof the Coulomb coefficient and the electron-phonon coupling con-
phonon-coupling induced localization of the electron-stant. The narrow triangular-like region bounded from below by the
electron pair and the withstanding repulsion is to make theséashed line and from above by the tdpottom solid line is the
competing counter aspects stronger. What is more peculiar ghase domain for a stable bipolaron in the titbreej dimensional
the present context is that during whéh is varied, the limit as generated by Verbist, Peeters, and DevréRets. 11,14
phonon-coupling and the Coulomb strengths may not in gen'1'he_m|ddl_e solid line is for the quasn-two-dlmer?smné_!_(: 10)
eral grow or decrease monotonically in concert at the Samgonflguratlc_m. The arrows refer tc_) the corresponding prltlcal values
rate and consequently, the relative dominating strength off @ The insets display the variation af; as a function of the
either the Coulomb potential or the electron-phonon interactofining parameter.
tion over the other may become altered as a function of the
degree of confinement. Yet, a further aspect of the problemor of bipolaronic stability; hence, the larger the value(bf
intruded by the confining potential is that, in the Q2D geom-is, the less is the need for strolag A clear description of
etry, the electrons are confined along only one spatial cootthis trait is provided by the phase diagrams in Fig. 1 where
dinate, but are free to expand and relax themselves in thge plot the Coulomb coefficierlt) againsta. In the phase
transverse directions normal to the confining barriers; thuspicture the space lying below the dashed line corresponds to
in the overall, resulting in a comparatively increased inter-,<0, and is therefore unphysical. The upper space bounded
particle separation and a relatively weakened repulsive inteffrom below by the solid lines plotted for three distinctive
action against the lattice polarization field which holds thedegrees of confinemenf)=0, Q=10, and Q—x) gives
particles together. It is therefore the mutual Competition bethe unstable region where the po|arons choose to remain
tween such aforementioned aspects of the problem and thgparated. Thus, it is only the narrow triangular area bounded
interrelated roles which the parametérsa, and( play all  py the dashed and either of the solid lines in which the po-
together that lead to the formatidor dissociatioh of a bi-  |arons can be found in a bound state forming a stable bipo-
polaron. laron. The vertex of each triangular region at which the
The common theoretical prediction led by the relevantjashed and solid lines join defines an infimum for the cou-
works in the literature is that bipolaron formation is more pling constant in the 3D, Q2D({}=10), and 2D configura-
favorable in 2D than it is in bulk. For instance, with param-tjons. Coupling constants larger than these critical vertex val-
eter » set equal to zero, i.e., when the Coulomb repulsion isies serve for supporting the bipolaron to conserve its
thought of as tuned down to its hypothetical minimum stability at correspondingly stronger Coulomb repulsions.
strength U=2e), the critical value of the coupling con- The relevant numerical data ef, for a few sample values of
stant over which the bipolaron state can form is found to() is tabulated in the upper left inset of the figure. A more
be aéaD)|7,:o=6-85 anda(CZD)|7]:o=2-90 in three and two tractable display ofr. is given in the lower right inset where
dimensions, respectively.For actual material parameters of we plot its variation continuously as a function@fencom-
interest wherey>0, the corresponding critical coupling con- passing the bulk and the 2D limits. The overall conclusion
stants scale inevitably to larger values so as to compete witled by the content of Fig. 1 is that the criticalbelow which
the stronger Coulomb repulsion, and yet, regardless;,of a bipolaron state is unfavorable gets shifted to smaller values
one always haSa(CZD) to lie considerably deviated below as the degree of confinement is increased. Also, for a given
a® due to that the electrons interact more effectively withfixed value ofa, the lower the dimensionality is, the more
the phonons in two dimensions, and consequently, a psetiavorably the bipolaron state can be sustained. In numerical
doenhanced effective electron-phonon interaction leads to &rms, settingr=8 for instance, we evaluate the critical up-
relatively smaller numerical value of the coupling constant.per bound for the Coulomb coefficient beyond which the
Such a conspicuous feature met in switching the dimensionbipolaron dissociates into two individual polarons g
ality from three to two should naturally lead one to await=11.59, 11.79, and 12.17, respectively, for the 3D, Q2D
that, in the quasi-two-dimensionalQ2D) configuration (=10), and 2D cases. In the next paragraph we review the
where Q is tuned from zero to large values, an increasedcontent of Fig. 1 from an alternative viewpoint where we
degree of confinement should play a constructive role in fagive an explicit and broader picture bf; against() over a

10
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' ' ' ' ' confinement is, the more easily the bipolaron state can form
and be supported against the repulsive Coulomb potential.
ZE We should remark that any plot of, pertaining to «
0.06 | SR et <6.85 intersects the abscissa at a nonzero valdg; dfence,
T for not strong enougly, a bipolaron can form only beyond a
005 T ST T critical degree of confinement, and the larger the coupling
Mo ol //// o i constant is, the smaller is the corresponding criti€hl
7 // S 7 T Clearly, for «=6.85 one hafl,=0, where in this case bi-
003 /// SO e il polaron formation is favorable even in bulk, and the sole
002 L J / / . i effect of the confinement is to take over in favor of enhanc-
s / /7 ing the already established stability of the bipolaron.
L S/ ] A careful look at the series of curves from bottom to top
0.00 '3 YAV AN ./.......‘ vl reveals that ag is made indefinitely large, a peculiar feature
10 10 10 Q}cc)xz 10 10 10 starts to build up, and contrary to our anticipations, we ob-

serve that the criticaly does no more display a steady in-

FIG. 2. The critical ration, as a function of degree of confine- creasing behavior interpolating between the 3D and 2D lim-
ment for a succession of differeatvalues. The dashed curves from its, but instead attains its corresponding 2D value after
bottom to top give the path-integral results obtained fer  having gone through a minimum located at some place about
=4,5,6,7,8,10,15,20,30. The topmost solid curve is universal for all)/ #2=1. We feel that this salient characteristic is an im-
largea and has been obtained within the framework of the strong-plicit consequence of the dominating effect of either the
coupling polaron theory. Coulomb repulsion or the phonon mediated attraction over

the other, and the cross overing of the competition between

succession of distinctivex values extended towards the these counter aspects as the confining parameter is varied. In
strong-coupling limit. regard with the strong-coupling limit, we should add the note

Settinga fixed at any desired value, E(p) allows us to  that, asa is adjusted to larger and larger values, the sequence
trace the critical condition on the Coulomb strength as af dashed(path-integral curves converge towards the top-
function of the degree of confinement, displayed equivamost solid curve which we have obtained independently
lently in terms of the alternative related paramepein Fig.  adopting the adiabatic approximation, the details of which
2 we plot a series of curves describing the effect of confinewe summarize in Appendix B. In the extreme strong-
ment on the critical value ofy for different coupling con-  coupling limit we obtainz.=0.079 in both three and two
stants ranging in between 4 and 30. In the same figure, fadimensions, as reported earlier in Ref. 16.
the purpose of comparison, we also include a supplementary Before we close our discussions we would like to shed
layout of 5. versus() derived within the framework of the some insight into polaron-polaron versus bipolaron bound
strong-coupling adiabatic polaron thedigee Appendix R state energies and display the profiles of the corresponding
Over the scale of the abscissa we choose to exdiess  variational parametens and{w;} against the degree of con-
units o, mainly for two reasons; one is that the raflde?®  finement. To provide an explicit track of the evolution of the
(rather than bar€)) proves to be a more sensible measure of‘polaron-polaron” complex as a function of the effective
the degree of confinement, and the other stems from that, idimensionality, we refer back to the simple case for which
the strong coupling expansion to leading orderdnthe  we artificially sety»=0, and choosev=5 as a sample value
ground state energy is seen to be proportional to the squateing somewhat smaller than the corresponding bulk critical
of the coupling constant, i.eEy=—ca?, where the corre- minimum, a&®®)|,_,=6.85. In Fig. 3a) we plot the possible
sponding coefficient of proportionality bears a functional re-bipolaronic binding energy
lation solely toQ/a? for both the single-polaron and two-
polaron system& We should note that the polarons can feel E,=Q-E
the boundary potential and enter a regime of reduced dimen- ¢
sionality only when the effective well width~1/1/Q) is  accompanied by twice the binding energy of the correspond-
smaller than, or at least comparable with the méaijpo-  ing single polaron over the range<@)<10. To give a
laron size ¢~1/«), and consequently, even a larewould  complementary understanding of the polaron-pola(@R)
not mean anything, but bulk medium, unless: Q. It is  and bipolarorBP) phases and the transition from one phase
therefore due to this reasoning that we are tempted to accef the other, we also display the variational parameters as a
the ratioQ)/«? as a convenient measure of confinement. Orfunction of ) [see Fig. 8)]. We at first note that fof)
the other hand, a careful examination of E¢b). and (2) >7.21, i.e., in the region “BAPP),” the bipolaronic phase is
reveals that, if the energies are scaledddyand lengths by energetically more likely to show up compared to the PP
«, the only modification in the Hamiltonian would be to phase of two individual polarons, and yet, increasing the
replace the confining parametér by Q/«? and the Cou- degree of confinement enhances the stability of the BP
lomb coefficientU by U/a(=1[1-7]). Thus, at “strong phase. For)<7.21, however, the state of two individual
coupling,” if 7. is plotted againsf)/a?, rather thar(), we  polarons is favored. In the region “PBP),” (4.53<Q
find that one can display the phase boundary on one univer7.21) the bipolaronic phase is seen to persist rather reces-
sal curve with no loss in generality for all large sively where, with decreasin€, the corresponding local

A plain implication led by the plots in Fig. 2 is that, the minimum in its ground state energy starts to lose its depth
stronger the phonon coupling, or the larger the degree odind eventually diminishes fofl=4.53. When{) is made
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P L L L LN I '/'/_ one-po_laron problem by Senger and &ebi3® which here-
(@ o= 77 after will be referred to as SE.
180 - n=0 ] A further simplification is that the eigenfrequencig&()
128 | - (29), (30) now read as
L —_— 2Eb(1)
126 — & E s6)
124 ] §o(Q) =&3(Q)—&177(Q),
122 __ PP /// BP(PP) - SE
N N N £(0)=£6,(Q)—£°9(Q), (A2)
: L LA B '/_L’_;J/'—
s () R where&(S8(Q) and £555)(Q) are the eigenfrequencies given
5| 0,0, i bb e ] by Eg. (19 in SE. We should also remark that in the limit
—_— . ] a— o, the rapidly oscillating terne'® 2 involved in Eq.(44)
sl ® ] yields zero mean value.
, k w ] In view of all the above simplifications, we rewrite the
T 3 energy expressiof¥4) as
W,  |eemmmmmmmmo
0 [ R | 1 1 I A I 2
Y S lim Bg= 27 ~[€0(Qn) +£1(Qp) —W]
a—ow ,
FIG. 3. (a) Bipolaron and two single-polaron binding energies "
and (b) the variational parameters, as functions of the degree of —4c¢ J dre ™ W2D, (7.Q;)+Dy4(7,Q5)]
confinement. *Jo ' '
even smaller, i.e., as the bulk limit is approached, one —2S 2 f“d e~ "exnl — 2D Q
achieves solely the PP phase with whatsoever no relevance % ?Jo T A= aDra(nddy)

to any possible bipolaronic characterization of the two- )

polaron system. In Fig.(B) the variational parameters per- —0;D11(7,Q5)} (A3)
taining to the energetically favorable phase are plotted in = ) ) ) )

boldface curves and those which correspond to the metavhich indeed is a replica of twice the expression for the
stable state of either phase are given in dashed lines. fne-polaron ground state energy given through the series of
should be noted that if the bipolaronic phase should indee§duations(13), (22), (25—(30) in SE. The correspondence
be realized either as a metastable state or otherwise, the cd¥ith the notation of SE can be established through
responding variational parameters all achieve nonzero and

distinctive values. The phase of two independent polarons, T

however, is characterized by that; and w, coalesce into D1a(7,Q)= 20 (0’ (Ad)
one single curve, and ;=0 regardless of). Consequently,

one hasw and v(=w;=w,) to be recognized as the well wheres;(7) is defined by SE Eq28).

established Feynman variational parameters of the usual one-

polaron problent’*°
APPENDIX B: STRONG-COUPLING APPROXIMATION
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_ S T
APPENDIX A: ONE-POLARON LIMIT ‘P—‘P(R,Y)Xexp% so(@g—2ag)|0). (BY)

When the electrons are thought of as infinitely separated,
the part of the trial action relevant to the Coulomb and mu-n the above, the exponential operator acting on the phonon
tual interactions must fall off to zero, and from E¢s6) and ~ vacuum is the displaced oscillator transformation wisgyes
(18) it is not very difficult to guess that the variational coef- @ variational parameter determined from the requirement
ficientsK andc,, should both tend to zero. From E@6), K W|H|¥)/dsq=0 to yield
we find that the only way this can happen is to have
—0 andw;— w,—0. Hence, setting= w,= w,, we further

have the self-energy coefficient to simplify to SQ:VQJ.:E12 (eI D). (B2)
1 . . .
Cs:ZW( 2 —w?) (A1)  For the particle part of the trial state, we assume variational

oscillator-type wave functions separable in the center of

which we identify exactly as the coefficient in the energymassR=(r,+r,)/2 and the relative =r,—r, coordinates,
term given by Eq(27) in a previous paper on the confined i.e.,
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. 1 andr, have similar meanings for the relative position vector.
®(R,r)=N EXD{ - EAE(R§+ Mng)} N is the normalization constant.
The bipolaron ground state energy can then be obtained
1, 5 through a numerical minimization &= (¥|H| V) with re-

Xexp — Ekz(rp+ mory) (B3)  spect to the set of four variational parametéxs,u;} (i
=1,2). In computing the critical phase boundary we have
made correspondence with the results provided in a preced-

) . ing papet? pertaining to the strong-coupling study of the
in whichR, andR, stand for the lateral anzicomponents of - one-polaron problem consisting of the same quadratic con-
the center of mass position vector, and the compongnts finement potential.
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