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Abstract. Within the framework of the Feynman path integral theory, we provide a unified
insight into ground-state properties of the Fröhlich polaron in low-dimensionally confined media.
The model that we adopt consists of an electron immersed in the field of bulk LO phonons and
bounded within an anisotropic parabolic potential box, whose barrier slopes can be tuned so
as to yield an explicit tracking of the Fröhlich interaction encompassing the bulk and all low-
dimensional geometric configurations of general interest.

1. Introduction

In the last two decades, considerable interest has developed in the study of polarons in low-
dimensionally confined quantum systems. The common theoretical prediction concluded by
the relevant work in the literature is that the electron couples more efficiently to the phonons
with increasing degree of confinement, and, consequently, certain polaron quantities scale
to rather pronounced values above their bulk values. The ground-state energy, for instance,
becomes lowered by a factor ofπ/2 ( 3

8π
2) below its corresponding bulk value for weak

(strong) coupling as the dimensionality is reduced from three to two [1, 2]. For systems
of even lower dimensionality, namely quasi-one-dimensional (Q1D) quantum well wires,
the polaron binding is even deeper, with much stronger electron–phonon coupling than
in comparable quasi-two-dimensional (Q2D) quantum well structures [3, 4]. Going on
further to confinement geometries squeezing the electronic density in all directions, such
as is found, for instance, in zero-dimensional (Q0D) quantum-box-type configurations, the
pseudo-enhancement in the effective electron–phonon coupling can be much more sturdy
than for the two- or one-dimensional cases.

One remark that we might make in this regard is that high degrees of localization in
reduced dimensionalities give rise to the possibility that, in spite of a weak polar coupling,
like that in GaAs for instance, the polaron problem may show a strong-coupling aspect
stemming from confinement effects. This salient feature can be more prominent in II–VI
compound semiconductors or in alkali halides, where the relevant coupling strengths are
almost an order of magnitude larger or even much stronger than those for III–V compounds.
We thus feel that for electron–phonon couplings that are not too weak and/or are pseudo-
enhanced, a pure perturbation treatment of the polaron Hamiltonian may not be entirely
appropriate. We were therefore encouraged to formulate the confined-polaron problem
within the framework of the Feynman path integral theory [5], which proves to be a
convenient and powerful technique in the treatment of the Fröhlich interaction over the
entire ranges of the electron–phonon coupling strength and the degree of confinement.
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A description of the lowest polaron bound state within a generalized confining potential,
which can be tuned to all geometric configurations and interesting regimes of the effective
dimensionality, has already been reviewed by Yıldırım and one of the present authors [6, 7].
However, the relevant discussions were restricted to either the strong- or the weak-coupling
limit. In what follows we refer to the same model as was used in these papers, and present
a means of formulating the problem somewhat differently by utilizing the Feynman path
integral technique, thus enabling us to provide a wider, comprehensive insight into polaron
properties in confined media with arbitrary electron–phonon coupling strength.

In the foregoing theory, a low-dimensionally confined electron, assuming a simple
situation—namely an anisotropic potential box with adjustable parabolic barriers—was
considered. The composite assembly will thus be visualized as immersed in a bosonic
reservoir where the electron couples to the LO branch of the bulk phonon spectrum. Hence,
the fundamental approach followed in this work is to take into account solely the generic
low-dimensional aspect of the dynamical behaviour of the electron, and to leave out all of
the other effects; thus, we focus our concern primarily on giving a clear view of just the
bulk phonon effects in confined media. Apart from ignoring the contributions that may arise
from all of the other kinds of phonon mode, we also omit the screening effects and further
detailed features, such as those due to the non-parabolicity corrections to the electron band,
or the loss of validity of both the effective-mass approximation and the Fröhlich continuum
Hamiltonian for microstructures. Under the so-calledbulk phonon approximation, and with
the aforementioned simplifying assumptions, we provide a broad comprehensive version of
the one-polaron problem, consisting of an electron confined within a deformable box that
can be adapted into any desired geometric configuration.

2. Theory

2.1. The Hamiltonian

Using units appropriate to a polaron calculation (m? = h̄ = ωLO = 1), the Hamiltonian
describing the confined electron coupled to LO phonons is given by

H = He+
∑
Q

a
†
QaQ +He−ph (1)

where

He = 1

2
p2+ Vconf(%, z) (2)

is the electron part, withVconf(%, z) denoting the confining potential, and

He−ph =
∑
Q

VQ(aQeiQ·r + HC) (3)

is the Fr̈ohlich Hamiltonian. In the above,aQ (a†Q) is the phonon annihilation (creation)
operator,p is the electron momentum, andr = (%, z) denotes the electron position in
cylindrical coordinates. The interaction amplitude is related to the electron–phonon coupling
constantα and the phonon wavevectorQ = (q, qz) throughVQ = (2

√
2πα)1/2/Q.

To provide the confining potential, we adopt a three-dimensional box with adjustable
parabolic barrier slopes, i.e., we set

Vconf(%, z) = 1

2
(�2

1%
2+�2

2z
2) (4)
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in which the dimensionless frequencies�i (i = 1, 2) serve as the measures of the potential
barrier strengths and the degree of confinement of the electron in the respective lateral (%-)
and±z-directions. By tuning�1 and/or�2 from zero to values much larger than unity,
one can obtain a unified picture tracing the transition from the bulk to all of the possible
extremes of the effective dimensionality—such as, for instance, to the two-dimensional
slab-like confinement (�1 = 0, �2 � 1), or to the quasi-one-dimensional quantum well
wire-like tubular geometry (�1� 1, �2 = 0).

The rationale behind imposing quadratic potential profiles is that such a form for
the confining barriers greatly facilitates the calculations, and leads to rather simple and
tractable analytic expressions. We have thus refrained from treating potentials of other
forms, which would possibly lead to complicated and even prohibitively difficult expressions
and numerical complications, and yet would yield qualitative features similar to those for
parabolic potential shapes. Indeed, calculations pertaining to the cyclotron study of polarons
confined to an interface indicate that the phonon-coupling-induced shift in the resonant
energy is sensitive predominantly to the strength of the confining potential, rather than its
shape [8]. Besides this, the static depletion fields achieved in quantum wires and dots which
are laterally confined by Schottky gates exhibit nearly parabolic potentials. We, therefore,
reasonably use the parabolic confinement potential (4) to provide unified insight into the
ground-state polaron properties in confined media, and a comprehensive review of the effect
of confinement on the polaron binding in structures encompassing all geometric shapes of
general interest.

2.2. Ground-state energy

In the Feynman path integral representation of the polaron, the phonon variables can be
projected out exactly, to yield the partition function of the polaron in the form

Zpol = Tr e−βH = ZphZ (5)

where

Zph =
∏
Q

[
1− e−β

]−1
(6)

is the phonon part, and

Z =
∫
Dr eS (7)

is the path integral in which the actionS consists of two parts, one pertaining to the electron
part of the Hamiltonian and the other to the electron–phonon interaction. In imaginary-time
variables(t →−iλ), we have the expression

S = Se+ 1

2

∑
Q

V 2
Q

∫ β

0
dλ
∫ β

0
dλ′ eiQ·[r(λ)−r(λ′)]G(ωLO=1)(|λ− λ′|) (8)

and

Se = −1

2

∫ β

0
dλ

{
ṙ2(λ)+�2

1%
2(λ)+�2

2z
2(λ)

}
(9)

in which the dimensionless parameterβ stands for the inverse temperature, and the memory
function

Gω(u) = cosh((β − 2u)ω/2)

sinh(βω/2)
β→∞−→ e−ωu (10)
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is the Green’s function of a harmonic oscillator with frequencyω. In principle, in the
low-temperature limit, we haveZpol = Z, and the polaron ground-state energy

Eg = − lim
β→∞

β−1 logZ

can be calculated exactly, provided that the path integral (7) can be evaluated. Since this
is not possible due to the analytic complexity of the integral expressions in the action
S—equations (8) and (9)—we choose to proceed with the solvable trial action

S0 = Se− w(ν
2− w2)

8

∫ β

0
dλ
∫ β

0
dλ′ [r(λ)− r(λ′)]2Gw(|λ− λ′|) (11)

which provides us with a convenient variational upper bound governed by the Jensen–
Feynman inequality

Eg 6 E0− lim
β→∞

1

β
〈S − S0〉S0

(12)

where 〈 〉S0 denotes a path integral average with the density function eS0, andE0 is the
trial ground-state energy corresponding toS0. In equation (12),w andν are the variational
parameters introduced within the same context as in the original paper by Feynman [5].
The problem then reduces to the evaluation of three quantities,E0, A, andB, such that

Eg = E0− B − A (13)

is an upper bound, where the last two terms are given by

A = lim
β→∞

1

2β

∑
Q

V 2
Q

∫ β

0
dλ
∫ β

0
dλ′

〈
eiQ·[r(λ)−r(λ′)]

〉
S0

G(ωLO=1)(|λ− λ′|) (14)

B = lim
β→∞

1

β

w(ν2− w2)

8

∫ β

0
dλ
∫ β

0
dλ′

〈
[r(λ)− r(λ′)]2

〉
S0
Gw(|λ− λ′|). (15)

Since the trial action and the path integral averages involved inA andB are all separable
in the Cartesian coordinates, the calculations can all be performed in an identical manner
for each spatial direction. Denoting the Cartesian components of the electron position and
momentum in any chosen direction byx andpx , the corresponding Hamiltonian

H0 = p2
x

2
+ p2

φ

2mφ
+ 1

2
�2x2+ 1

2
mφw

2(x − φ)2 (16)

(in which � stands for either�1 or �2) can be related to the one-dimensional analogue,
S(1D)

0 , of the trial action. Eliminating the harmonic oscillator variablesφ andpφ , one readily
obtains

Z0 =
∫
Dx exp

[
S(1D)

0

]
= 2 sinh

(
1

2
βw

)
Tr e−βH0 (17)

and so

E
(1D)
0 = lim

β→∞
− 1

β
logZ0. (18)

The HamiltonianH0, in which the term1
2�

2x2 is the relevant part of the confining potential
(4) along the chosen coordinate, describes the coupling of the harmonically confined electron
to a fictitious particle of massmφ = (ν2 − w2)/w2 which, in turn, gives the overall effect
of the interaction of the electron with the phonon field (cf. figure 1).
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Figure 1. The coordinates and configuration of the coupled particles corresponding toS(1D)
0 .

Under a suitable coordinate transformation(
x

φ

)
→
(
X

8

)
H0 can be diagonalized in the normal coordinatesX and8, yielding the eigenfrequencies

{
ξ1(�)

ξ2(�)

}
=
�2+ ν2

2
∓
√(

�2+ ν2

2

)2

−�2w2


1/2

(19)

in terms of whichH0 takes on the canonical form

H0 = p2
X

2M
+ p

2
8

2µ
+ 1

2
Mξ2

1X
2+ 1

2
µξ2

28
2 (20)

whereM = ν2/w2 is sum of the mass of the electron and that of the fictitious particle. Using
equations (17) and (18), the part of the ground-state energy contributed by the particular
coordinate relevant toS(1D)

0 is obtained simply as

E
(1D)
0 = 1

2
[ξ1(�)+ ξ2(�)− w]. (21)

Noting that the confinement potentialVconf(%, z) is characterized by only two parameters,
�1 and�2, the former governing the degree of localization of the electron in the lateral
directions isotropically, and the latter relevant to thez-axis, the expression forE(1D)

0 can be
extended to account for each of the Cartesian coordinates all at once, yielding

E0 =
2∑
n=1

1

n
[ξ1(�n)+ ξ2(�n)− w] . (22)

Expanding the path integral average in the integrand in equation (14) up to orderQ2, i.e.,
writing〈
eiQ·[r(λ)−r(λ′)]

〉
S0

≈ 1+ iQ ·
〈
[r(λ)− r(λ′)]〉S0

− 1

2
Q2

〈
[r(λ)− r(λ′)]2

〉
S0

(23)

and using the integral transform∫ β

0
dλ
∫ β

0
dλ′ F(|λ− λ′|) = β

∫ β

0
dη F(η/2) (F (β − η) = F(η)) (24)
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the quantitiesA andB can be cast into more convenient forms. We obtain

A =
∫ ∞

0
dη e−η

∑
Q

V 2
Q exp

[
−1

2

(
q2

σ1(η)
+ q2

z

σ2(η)

)
η

]

= α√
π

∫ ∞
0

dη e−η
√
σ2(η)

η

arctanγ

γ
(25)

where

γ =
{
σ2(η)

σ1(η)
− 1

}1/2

(26)

and

B = w(ν2− w2)

4

∫ ∞
0

dη ηe−wη
(

2

σ1(η)
+ 1

σ2(η)

)
=

2∑
n=1

1

2n
[b1(�n)+ b2(�n)] . (27)

In the above, the parametersσn(η) and bi(�n) (n = 1, 2 and i = 1, 2) are given by the
following expressions:

σn(η) = η
{

2∑
i=1

di(�n)

ξi(�n)
[1− e−ξi (�n)η]

}−1

(28)

with

di(�n) =
{

1+ w2(ν2− w2)

[w2− ξ2
i (�n)]

2

}−1

(29)

and

bi(�n) = 1

w + ξi(�n)
{

1

ν2− w2
+ w2

[w2− ξ2
i (�n)]

2

}−1

. (30)

2.3. The effective polaron mass

The variational model used in this work can be extended to yield the effective polaron mass
in two distinctive geometric configurations, with either�1 or �2 set equal to zero. The
extreme limits for which�1 = 0 and�2 = 0 or∞ will be discussed in the next section.

We first refer to the quantum well slab-like geometry:�1 = 0. When the system is
set in virtual motion with a small velocity,u%, in the radial direction perpendicular to the
z-axis, the total energy receives an additional kinetic contribution of the form

δK = 1

2
m(%)p u2

%

in whichm(%)p is to be identified as the polaron mass in the%̂-direction. Imposing a virtual
velocity in the theory is straightforward [5]. In section 2.1, the partition functionZ has
been written down for all of the paths with initial coordinater = 0 at time zero and final
coordinater = 0 at the imaginary timeβ. With the virtual velocityu% turned on, the final
coordinate should now ber(β) = βu%; and it is through this coordinate that one keeps
track of the composite translational inertia of the coupled electron+ phonon complex. We
are thus encouraged to reformulate all of the terms in equation (13), where each ofE0, A,
andB now becomes extended to a form consisting of a part relating to the ground-state
energy of the polaron alone, and a part relating to the kinetic contribution which appears
after we have imposed a virtual displacement on the polaron.
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The additional kinetic extension involved inE0 can be written readily as12Mu
2
%, where

M is the total mass (that of the electron and the fictitious particle), i.e.,E0 scales as

E0→ E0+ 1

2

ν2

w2
u2
%. (31)

For the remaining two quantities,A andB, we have the following modifications:

A→
∫ ∞

0
dη e−η

∑
Q

V 2
Q exp

{
−1

2

(
q2

σ1(η)
+ q2

z

σ2(η)

)
η + i(q · u%)η

}
(32)

and

B → w(ν2− w2)

4

∫ ∞
0

dη e−wη
[(

2

σ1(η)
+ 1

σ2(η)

)
+ u2

%η
2

]
= B + 1

2

ν2− w2

w2
u2
%. (33)

Expanding equation (32) up to second order inu% (the first-order terms inu% vanish after
one projects out theQ-summation), and arranging the relevant terms in equation (13) to
yield the formEg → Eg + δK, we obtain the following expression for the effective mass
of the Q2D polaron in the slab geometry:

m(%)p = 1+ α

2
√
π

∫ ∞
0

dη

√
ησ 3

2 (η)

γ 2
e−η[γ−1 arctanγ − (1+ γ 2)−1] (34)

in which the variational parametersw and ν have to be assigned their optimal-fit values,
which minimize the ground-state energy withu% set equal to zero.

In order to calculate the mass in the relevant free direction in a quantum well wire tubular
configuration, we follow the same steps in the formulation, but nowu% is replaced by a
virtual speed,uz, along thez-axis. Consequently, the quantitiesE0, A, andB are provided
by the same expressions, equations (31)–(33), as were given for the slab geometry, except
that all of theu% have to be replaced byuz, and the productq ·u% in equation (32) becomes
qzuz. For the Q1D polaron mass we then obtain

m(z)p = 1+ α√
π

∫ ∞
0

dη

√
ησ 3

2 (η)

γ 2
e−η[1− γ−1 arctanγ ]. (35)

3. Results and conclusions

When�−1/2
i (i = 1 and/or 2) is reduced to values comparable with the polaron size, the

boundary effects start to become significant, and the system enters the regime of reduced
dimensionality. Setting�1 = 0 and varying�2 from zero to infinity, one can track the bulk
polaron properties as they go over to those of a strictly 2D polaron. On the other hand,
on deleting the confining potential along thez-axis (�2 = 0) and fixing�1 at non-zero
finite values, the theory reflects the Q1D description in a quantum well wire-like tubular
structure. Hereafter, we will consider the polaron binding energy relative to the subband
level asEp = �1 + 1

2�2 − Eg, and use� to mean�1 (�2) when�2 (�1) = 0. In the
spherically symmetric box-type configuration, we simply set�1 = �2 = �. Similarly, we
shall useσ(η) to meanσ1(η) and/orσ2(η).

Since analytical minimization ofEg, equation (13), is not possible, the determination
of the optimal fits tow andν, and the polaron quantities of interest, requires treatment on
a computer. Before we present our numerical results over a broad range of the confining
parameters and the coupling constant, we find it useful to investigate the conformity with a
few extreme cases which have already been treated in the literature, and are well understood.
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3.1. Integer-dimensional-space limits

Setting�1 = 0 and�2 = 0 or∞, we attain respectively the bulk (3D) and strictly two-
dimensional (2D) limits, where the general expressions (22), (25), (27) and (34), (35) for the
ground-state energy and mass take on more tractable and simple forms. For�1 = �2 = 0,
the theory duplicates the results of the original paper by Feynman [5]. In this limit the
eigenfrequencies (19) reduce toξ1(0) = 0 andξ2(0) = ν, and we obtain

σ(η) =
{
w2

ν2
+
(

1− w
2

ν2

)
1− e−νη

νη

}−1

(36)

E0 = 3

2
(ν − w) (37)

B = 3

4
(ν2− w2)/ν (38)

yielding the binding energy

Ep = −Eg = A− 3(ν − w)2
4ν

(39)

where

A = α√
π

∫ ∞
0

dη e−η
√
σ(η)

η
. (40)

Furthermore, from equation (34) we obtain that the 3D (isotropic) mass is given by

mp = 1+ α

3
√
π

∫ ∞
0

dη e−η
√
ησ 3(η). (41)

Going over to the strict 2D characterization of the polaron, we have

lim
�2→∞

{
ξ1(�2)

ξ2(�2)

}
=
{
w

∞
}

(42)

and, consequently,σ1(η) = σ(η) as given in equation (36), andσ2(η) → ∞. For the 2D
binding energy we then obtain [9]

Ep = −
(
Eg− 1

2
�2

)
= A− (ν − w)

2

2ν
(43)

in which A is provided by the same expression, equation (40), as was given for the bulk
case, except that the coefficient multiplying theη-integral is now(

√
π/2)α. Similarly, the

2D polaronic mass is given by equation (41), where the corresponding factor multiplying
the η-integral scales to(

√
π/4)α.

For an extensive treatment of the polaron problem in (integer)N dimensions, the reader
is referred to reference [10]. Here (cf. figure 2), we shall be content to just present numerical
displays of the variational parametersw and ν, the binding energy, and the polaron mass
for N = 3 andN = 2 over a wide range of the coupling constant encompassing the weak-
and the strong-coupling extremes.

3.2. The weak-coupling limit

Since in the most commonly studied compound semiconductors the electron–phonon
coupling is rather weak, we would like to place particular emphasis on the weak-coupling
regime. A discussion of the present model within the perturbation approach has already
been provided in reference [7], with which we wish to establish some correspondence here.
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Figure 2. The variational parametersw andν, the binding energy, and the mass for three- and
two-dimensional polarons as functions of the coupling constant. The dashed lines relate to the
perturbation and strong-coupling theories.

For weak coupling, the parametersw and ν tend asymptotically to the same constant
value (≈3.3), while preserving the intrinsic relationν > w (cf. reference [5]), and in the
limit α→ 0, one hasν−w = O(α) regardless of the degree of confinement. Hence, setting
ν ≈ w, we have

{
ξ1(�)

ξ2(�)

}
≈
{
�2+ w2

2
∓ |�

2− w2|
2

}1/2

(44)

yielding the simplificationsE0 = �1 + 1
2�2 andB = 0. In the weak-α regime, we thus

readily establish that the binding energy is given solely byA, equation (25), whereinσn=1,2,
equation (28), reduces to exactly the same expression as was derived previously within the
framework of second-order perturbation theory [7], i.e.,

σn(η) = �nη

1− e−�nη
n = 1, 2. (45)

An elaborate study of the weak-coupling polaron quantities as functions of�1 and�2 can be
found in reference [7]. We therefore do not repeat the relevant results here, and readdress
only the three- and two-dimensional limits. In approaching the bulk case, we assume a
spherically symmetric isotropic confinement:�1 = �2 = �� 1, and for the 2D limit we
set�1 = 0, and let�2 = � � 1. From equations (13) and (34), we derive the binding
energy and the polaron mass up to the lowest-order contribution from� as follows:

Ep =


lim
�→0

α

(
1+ �

8

)
3D

lim
�→∞

π

2
α

(
1− 4√

�

)
2D

(46)
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Figure 3. The binding energy (scaled relative to the bulk value) as a function of the confining
parameters for weak coupling (α = 0.4). The diagonal curve on the grid refers to the spherically
symmetric configuration (�1 = �2).

mp =


lim
�→0

1+ 1

6
α

(
1+ 9

8
�

)
3D

lim
�→∞

1+ π
8
α

(
1− 4√

π3�

)
2D.

(47)

3.3. The overall view

For a complete description covering the ranges between all possible extremes of the effective
dimensionality and the coupling constant, we refer back to the set of equations (22), (25), and
(27), and numerically minimize the ground-state energy (13) with respect to the variational
parametersw and ν. In figure 3 we selectα = 0.4 (appropriate for CdTe), and construct
a unified physical image of the polaron binding over a reasonably broad range of�1 and
�2, covering all of the interesting regimes of the effective dimensionality. Starting from
the flat plateau at the bottom (corresponding to the bulk case), and following the incline for
increasing values of�2, one arrives at a second plateau characterizing the two-dimensionally
confined nature of the polaron. On following the direction parallel to the�1-axis, however,
Ep is seen to increase steadily at a much faster rate, and rapidly become much larger than in
the Q2D configuration, which follows essentially from the fact that, in the wire geometry,
the polaron becomes highly localized towards the wire axis, due to confinement arising
from all transverse directions. For instance, for the Q2D confinement with� = 10, we find
Ep to be 1.16 times its bulk value,E (3D)

p . For the case of a wire with the same parameter
value, the binding becomes stronger by an even greater factor of about 1.45 than the 3D
energy. On lowering the dimensionality one step further down, to the spherically symmetric
quantum well box-type localization of the polaron (displayed by the diagonal curve on the
grid in figure 3), the effective electron–phonon coupling is observed to be even stronger
(Ep/E (3D)

p = 2.02), since now the polaron becomes radially squeezed in all directions. The
corresponding values when� is set to 102 are 1.34, 2.27, and 5.70.

For completeness, we extend our considerations to the regime of strong phonon coupling,
and, in figure 4, with the confining parameter held fixed (� = 102), we plot profiles of
the polaronic binding as a function of growingα for the quasi-two-, quasi-one-, and quasi-
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Figure 4. The binding energy as a function of the coupling constant with� (=�1 and/or�2)

held fixed. The solid curves from bottom to top are respectively for the quasi-two-, quasi-one-,
and quasi-zero-dimensional configurations, and the dashed curves give the bulk and strictly 2D
polaron energies. The inset provides an alternative view of the binding energy as a function of
�, in the strong-coupling regime.

zero-dimensional configurations, thus providing a comparison of the binding energy values
for a succession of effective dimensionalities pertaining to the slab-, wire-, and box-type
geometries. The inset in the figure gives a complementary display ofEp as a function of�,
where the coupling constant has been selected arbitrarily to be an order of magnitude larger
than for CdTe. The general trend towards the electron–phonon coupling being inherently
stronger in reduced dimensionalities is seen to be reflected in the plots which we have
generated so far.

It should be mentioned that the parametersα and� (=�1 or �2) characterizing the
model do not enter the problem in an independent way, but together take part in a linked
manner in the binding and act collaboratively in favour of stronger binding. Thus, a high
degree of localization in cases of reduced dimensionality is expected to lead to a pseudo-
enhancement of the effective electron–phonon coupling. Even for weak coupling (α � 1),
when the polaron is in a delocalized state with a large spread, the influence of the geometric
confinement on the polaron is immediate when� is turned on, and, to first order in small
�, the coupling constant is observed to scale asα→ α[1+O(�)] (cf. equations (46) and
(47), for instance).

For α � 1, however, the situation is somewhat different. In this extreme, the polaron
is already in a highly localized state, and a small-sized polaron is not expected to feel the
effect of the confining boundary, except for very large�. This peculiar aspect can be
seen clearly if the energy and mass of the confined polaron are displayed relative to their
corresponding bulk values,E (3D)

p andm(3D)
p . For this purpose, we choose to refer to the slab
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Figure 5. (a) The binding energy, and (b) the polaron mass, as functions of the coupling
constant in the quasi-two-dimensional configuration. All of the energy and mass values (except
those in the insets) are scaled relative to the corresponding bulk values. The solid curves (from
bottom to top) constrained by the lower (3D) and upper (2D) dashed curves are, respectively,
for � ≡ �2 = 1, 10, 102, 103, and 104. Similarly, the solid curves in the insets are for
� = 10 and 103.

configuration, and portray (cf. figure 5) the variations of the binding energy and the mass
(along the relevant free direction) as functions of the electron–phonon coupling strength
for a succession of different� values. In view of our results plotted in the figure, we see
that, starting from the weak-coupling extreme, the growth rates (with respect toα) of the
binding energy and mass in low-dimensional configurations (� > 0) are not significantly
different from that for the bulk polaron. However, asα is tuned to greater values, the
polaron goes into a more deeply bound state, and, under the additional spatial constraint
confining it, the binding becomes even deeper, since now the intrinsic collaborative role
which the geometric confinement plays in the effective phonon coupling becomes much more
effective and prominent. In the meantime, contrary to this trend, with growingα the polaron
becomes substantially localized, and becomes unaffected by the boundary potential, except
for large values of�—thus leading to a partial reduction in the confinement counterpart
of the polaron binding. Clearly, in the extreme limit of an artificially largeα dominating
over the external confinement, the problem should be characterized essentially by its bulk
description. This salient feature is manifested in the plots for finite� by the fact that the
energy and mass profiles, after having each displayed a maximum, start to fall off, and
eventually match their bulk values asα is made stronger. A complementary remark that
we might make in this regard is that, for a large�, one requires a correspondingly largeα
for the polaron to conform to its bulk characterization, and, in particular, in the strict 2D
limit (� → ∞) of the slab-like confinement, one should correspondingly haveα → ∞.
This feature can readily be seen from the fact that the upper dashed curves in the figure
tend to the two-dimensional limiting values, 3π2/8 and 81π4/256, for the energy and mass,
respectively.
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In this article we have uncovered the fundamental aspects of the polaron problem in a
confined medium within a unified scheme encompassing the bulk and all low-dimensional
geometric configurations of general interest. The Feynman path integral theory adapted to
the ‘deformable potential box’ model allows us to achieve a simple and yet comprehensive
review of the ground-state polaron properties of structures with reduced dimensionality.
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