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We consider the interaction of a confined electron with bulk polar-optical phonons in a cylindrical quantum
well wire with infinite boundary potential. Expressions for the polaron self-energy and mass are derived within
a variational scheme over reasonably broad ranges of the wire radius and the phonon-coupling strength. The
formulation is based on the standard canonical transformation of the strong-coupling ansatz and consists of a
variationally determined perturbative extension serving for the theory to interpolate in the overall range of the
coupling constant. Contrary to the general trend that the electron-phonon interaction is inherently stronger in
systems of lower dimensionality, our results indicate that, at weak coupling, the binding energy of the polaron
can be smaller and its mass less inertial compared with the bulk case when the wire is made narrow.

I. INTRODUCTION

Recent developments, in microfabrication technology,
such as molecular-beam epitaxy and lithographic deposition,
have created a variety of opportunities for the fabrication of
synthetic semiconductor structures with reduced dimension-
ality. Of particular interest is the quantum well wire~QWW!
configuration, where the ultimate confinement effects quan-
tize the carrier motion in the directions transverse to its
length. Since their early prediction1 and subsequent
fabrication,2–4 there has appeared quite a large interest in
phonon-coupling-induced effects and polaronic properties of
one dimensionally confined electrons. Some considerable
amount of the literature published within this context has
been devoted to the interaction of electrons with bulk LO
phonons and the study of the relevant polaron properties.5–12

The common prediction led by these works is that, in quan-
tum wires where the electrons are fundamentally quasi-one-
dimensional~Q1D!, the polaronic binding is far much deeper
than in two dimensionally confined quantum well systems.
Alternatively stating, high degrees of confinement~as real-
ized in thin wires! lead to a pseudoenhancement in the effec-
tive electron-phonon coupling, which in turn brings about the
possibility that, in spite of weak polar coupling as in GaAs,
for instance, the polaron problem may show up as a strong-
coupling aspect coming from confinement effects. This sa-
lient feature can be more prominent in II-VI compound semi-
conductors ~e.g., CdTe!, where the relevant coupling
strengths are almost an order of magnitude larger than those
in III-V materials. We thus feel that, for not too weak and
pseudoenhanced electron-phonon interaction, the strong-
coupling polaron theory, though not capable of reflecting a
totally dependable quantitative description, may serve so to
provide some qualitative insight into the study of polarons in
confined media consisting of materials of somewhat strong
polar crystals. On the other hand, a pure perturbation treat-
ment may also be not perfectly appropriate, except for too
weak-phonon coupling. We are, therefore, tempted to formu-
late the Q1D-polaron problem within the framework of a

more convenient approach accounting for its weak- and
strong-coupling counterparts simultaneously. The formalism
that we follow in this work consists of the usage of a
perturbative-variational approach used previously by
Devreeseet al.,13 in their application to the bulk-optical po-
laron bound to a Coulomb center. The procedure is struc-
tured on basing the starting ansatz on the standard displaced
oscillator transformation of the Pekar-strong-coupling
theory14 and then modifying the adiabatic polaron state by a
variationally determined perturbative extension serving for
the theory to interpolate in the overall range of the coupling
constant.

For the present, we refrain from including the coupling of
the electron to the confined phonon modes, as well as inter-
face surface-optical~SO! phonons and adopt the so-called
bulk-phonon approximation, where a laterally confined elec-
tron is thought of as interacting via the Fro¨hlich Hamiltonian
with the bulk LO phonons of the relevant well material. As
such, the fundamental approach followed in this work is to
take into account only the generic Q1D aspect of the dy-
namical behavior of the electron confined in a free-standing
tubular geometry and leave out all the other effects; thus,
focus our concern primarily to give a clear view of solely the
bulk-phonon effects. Apart from ignoring the contributions
that may come from all other kinds of phonon modes, we
also omit the screening effects and further details, such as
those due to the nonparabolicity corrections to the electron
band or the loss of validity of both the effective-mass ap-
proximation and the Fro¨hlich continuum Hamiltonian in thin
microstructures. In view of these simplifying assumptions,
we provide a broad interpolating overview to the one-
polaron problem consisting of an electron perfectly confined
within a cylindrical boundary with infinite potential. In the
next section, we give the basic essentials of the variational
theory that we adopt in this calculation and derive analytic
expressions for the ground-state binding energy and mass of
the Q1D polaron. In Sec. III, we present our numerical re-
sults over reasonably wide ranges of the wire radius and the
electron-phonon interaction strength.
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II. THEORY

Scaling energies by the phonon quantum\vLO and
lengths by (\/2m*vLO)

1/2, the Hamiltonian of an electron
confined in a wire and interacting with the bulk LO phonons
is given by

H52¹21V~r!1(
Q

aQ
† aQ1(

Q
GQ~aQe

iQW •rW1aQ
† e2 iQW •rW!,

~1!

in which aQ (aQ
† ) is the phonon annihilation~creation! op-

erator, andrW5(rW ,z) denotes the electron position in cylin-
drical coordinates. With the normalization volume set to
unity for notational convenience, the interaction amplitude is
related to the phonon wave vectorQW 5(qW ,qz) through
GQ5A4pa/Q, wherea is the dimensionless coupling con-
stant. We assume that the electron is perfectly confined to a
cylindrical wire with infinite potential boundary atr5R,
and takeV(r)50 inside the wire.

We set the electron wave function as separable in the
transverse and longitudinal coordinates in the form

Fe~rW ,z!5w~rW !Z~z!eikz, ~2!

wherein the exponential factoreikz ~with k to be determined
variationally! sets the system in motion, thus enabling one to
trace the polaron mass along the length of the wire.

A. Displaced oscillator transformation

The variational approach that we adopt, in this paper, is
based on utilizing the usual canonical transformation of the
strong-coupling formalism and then extend the adiabatic po-
laron state, by including an approximate first order perturba-
tive correction, by which it is possible to interrelate the
strong- and weak-coupling counterparts of the coupled
electron-phonon system. Regardless of the strength of the
coupling constant, the starting step in the foregoing theory is
to assume a highly rapid charge density fluctuations for the
electron, to which the lattice responds by acquiring a relaxed
deformation clothing the entire extent of the electron. The
adiabatic polaron ground state thus formed is given through a
product ansatz consisting of the electron and phonon parts,
i.e.,

Cg5Fe~rW ,z!u0&, ~3!

together with the Hamiltonian subjected to the displaced os-
cillator transformation,

H→H̃ 5e2SHeS, ~4!

where

S5exp(
Q

uQ~Fe!@aQ2aQ
† #. ~5!

Here,uQ(Fe) is the lattice variational parameter, which will
depend onrW, since it is via this parameter an interrelation
establishes between the potential well set up by the lattice
polarization and the electron which, in turn, becomes trapped
in this well. It then follows that, for each choice ofFe , there

is an optimal fit touQ and, therefore, the transformed Hamil-
tonian depends onFe implicitly.

Under the transformation~4!, the Hamiltonian conforms
to

H̃ 52¹21V~r!1(
Q

uQ
2 2(

Q
GQuQ@exp~ iQW •rW !1c.c.#

1(
Q

aQ
† aQ1(

Q
$@GQexp~ iQW •rW !2uQ#aQ1H.c.%. ~6!

Since the Hamiltonian is invariant to translations of the elec-
tron together with its concomitant lattice distortion, the total
momentum along the wire axis

Pz52 i
]

]z
1(

Q
qzaQ

† aQ ~7!

must be conserved. The variation, therefore, requires an op-
timization of the polaron stateeSCg , which minimizesH
subject to the constraint thatPz is a constant of motion.
Thus, minimizing the functional

F~b,vuuQ ,k![^Cgue2S~H2vPz!e
SuCg&, ~8!

with respect tok anduQ yields

k5
1

2
v and uQ~Fe!5GQsQrQ , ~9!

where

sQ5^Feuexp$6 i ~qW •rW 1qzz!%uFe&, ~10!

rQ5~12vqz!
21, ~11!

in which the Lagrange multiplierv is to be identified as the
polaron velocity along the wire axis~see, e.g., Ref. 15!. In
Eq. ~8!, the symbolb stands for the variational parameter~s!
contained inFe(rW ,z).

In complete form, with the optimal fits fork anduQ sub-
stituted in, the Hamiltonian which we shall be refering here-
after is

H̃ 52¹21V~r!1(
Q

aQ
† aQ1(

Q
GQ
2 sQ

2 rQ
2

2(
Q

GQ
2 sQrQ~eiQ

W
•rW1e2 iQW •rW!

1(
Q

GQ~hQaQ1hQ* aQ
† !, ~12!

where

hQ5eiQ
W
•rW2sQrQ . ~13!

Similarly, for the total momentum transformed accordingly,
Pz→e2SPze

S, we have

P̃ z52 i
]

]z
1(

Q
qzaQ

† aQ1(
Q

GQ
2 qzsQ

2 rQ
2

2(
Q

GQqzsQrQ~aQ1aQ
† !. ~14!
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In what follows, we shall consider the case of a stationary
polaron, i.e., takêCguP̃zuCg& as zero, and thus regardv as
a virtual velocity that we retain in our calculations to keep
track of the effective mass of the coupled electron-phonon
complex.

In the case where the coupling constant is thought to be
really strong, the visualization of the problem is relatively
simple and a reasonable description of the system can readily
be achieved by requiring an optimization of the transformed
Hamiltonian H̃, with respect to the ground state,
Fe(rW ,z)u0&, of the polaron. We shall retain the results and
discussions pertaining to the largea limit until later and
point them out as a special case of the more general results,
which we derive in the last section. Here, our concern is to
make correspondence with the variational scheme of
Devreeseet al.,13 where the adiabatic polaron trial state is
modified accordingly, so as to cover the overall range of the
coupling strength. For the sake of completeness, in the fore-
going two subsections, we choose to include a brief revision
of the basic essentials in the variational ansatz advanced in
Ref. 13. The major distinction, which sets the present con-
cern apart from that in Ref. 13, is that we confine ourselves
to a one dimensionally confined polaron model with a virtual
momentum imposed to the coupled electron-phonon com-
plex through the factorrQ , multiplying the termsQ in the
Hamiltonian~12!.

B. Variational state for arbitrary a

Regardless of the value ofa, no matter how small it is,
the procedure is still to continue with our considerations
from Eq. ~12!, since with decreasinga, the degree of local-
ization of the electron becomes reduced in a significant man-
ner; eventually,sQ tends to zero on the average and, thus,
H̃ converts back to its original formH stripped from the
displaced oscillator transformation. In view of this reasoning,
one is led to include a first order correction to the trial state
~3!, with the last term in Eq.~12! treated as a perturbation.
Since, at present, we limit ourselves to the case of a station-
ary polaron, we first would like to bring about an insight into
the problem withrQ in Eq. ~12! set to unity, thereby obtain
a means of characterizing the polaron~i.e., calculating the
optimalFe and hence the binding energy, for instance! for
the case whenv50. Thereafter, we shall turn on the velocity
to keep trace of the polaron mass under a virtual translation
of the electron and the lattice distortion together.

In the perturbation treatment of the Fro¨hlich interaction,
the first nonvanishing contribution to the ground-state energy
comes from the term, which is of second order in the inter-
action amplitude. Correspondingly, the leading correction to
the trial state defined through Eqs.~3! and ~4! is of first
order. The ground state trial wave function forH̃ and for the
constraint that the total momentumP̃z be conserved, then
becomes extended to

Cg→C̃g5cCg1(
Q

GQ(
i

uC i&

3
^C i u~e2 iQW •rW2sQ!aQ

† uCg&
D« i2g

. ~15!

In the above,c is a constant, which serves for normalization,
and the indexi refers to the intermediate states, those con-
sisting of the electron and one-phonon with wave vector
QW . The summation over the intermediate states is a rather
difficult task, since now the states themselves and the corre-
sponding energies depend ona and the lattice coordinates in
involved manners. Nevertheless, this shortcoming can be
eliminated by replacing the energy denominatorD« i2g by an
average quantity,

gQ5 K 1

D« i2g
L
i

, ~16!

which in the calculation will be determined variationally.
Using completeness, thei summation in Eq.~15! can be
projected out to yield13

C̃g5H c1(
Q

GQgQ~e2 iQW •rW2sQ!aQ
† J Cg . ~17!

The variational parametergQ sets up a fractional admixture
of the strong- and weak-coupling counterparts of the coupled
electron-phonon system and thus is expected to serve for the
theory to interpolate between the extreme limits of the cou-
pling constant.

C. Formulation

The requirement that the extended trial stateC̃g be nor-
malized yet poses a further constraint, interrelating the pa-
rametersc andgQ through

f ~c,gQ!5c21(
Q

GQ
2 gQ

2 hQ2150, ~18!

in which

hQ5^0u~eiQ
W
•rW2sQ!~e2 iQW •rW2sQ!u0&512sQ

2 . ~19!

In order to find the optimal fit togQ , one has to minimize the
expectation value ofH̃2vP̃z in the trial state~17!, subject to
the constraint~18!. Within the framework of the modified
trial stateC̃g , the functional~8! now takes the form

F~b,vuc,gQ!5c2~e01
1
4 v

2!2
1

2
v21~122c2!x

12c(
Q

GQ
2 gQhQ1(

Q
GQ
2 gQ

2 ~eQ2dQ1hQ!,

~20!

where

e05^Feu2¹2uFe&, ~21!

eQ5^Feu~eiQ
W
•rW2sQ!~2¹2!~e2 iQW •rW2sQ!uFe&

5eQ
~0!2v~qz2

1
4 v !hQ , ~22!

with

eQ
~0!5q21 1

2 qz
21~e01

1
2 qz

2!hQ , ~23!
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and furthermore,

x5(
Q

GQ
2 sQ

2 rQ , ~24!

dQ5(
Q8

GQ8
2 sQ8DQQ8rQ8, ~25!

wherein

DQQ85^0u~eiQ
W
•rW2sQ!~eiQ

W 8•rW1e2 iQW 8•rW!~e2 iQW •rW2sQ!u0&.
~26!

The variational fit togQ ~and to the normalization constant
c) is achieved by requiring

]

]gQ
$F~b,vuc,gQ!2L f ~c,gQ!%50, ~27!

with L being a Lagrange multiplier. It then follows that the
functionalF is given by

F~b,v !5e02x2
1

4
v21L, ~28!

whereL is derived through the transcendental equation,

L5(
Q

GQ
2 @gQ /c#hQ , ~29!

in which

gQ
c

52
hQ
DQ

~30!

and

DQ5eQ2dQ1~12e02
1
4 v

212x2L!hQ . ~31!

In order to trace out the polaron mass from Eq.~28!, we have
to splitF(b,v) into its parts consisting of the binding energy
of the polaron alone and the additional kinetic contribution,
which shows up having imposed a virtual momentum to the
polaron. We are thus tempted to expand Eqs.~24!, ~25! and
the summand in Eq.~29! in a power series up to second order
in v. We, therefore, conformx anddQ into the forms

x5x~0!1
1

4
v2x~1! and dQ5dQ

~0!1
1

4
v2dQ

~1! , ~32!

wherex (n) anddQ
(n) (n50,1) are given by

x~n!5(
Q

GQ
2 sQ

2 @2qz#
2n, ~33!

dQ
~n!5(

Q8
GQ8
2 sQ8DQQ8@2qz8#2n

52x~n!~11sQ
2 !22sQ(

Q8
GQ8
2 sQ8

3~sQ1Q81sQ2Q8!@2qz8#2n, ~34!

in which sQ6Q8 refers to the same expression as forsQ , cf.
Eq. ~10!, in which qW is to be replaced byqW 6qW 8, andqz by
qz6qz8 .

Furthermore, setting

DQ
~0!5eQ

~0!2dQ
~0!1~12e012x~0!2L!hQ , ~35!

we obtain

F~b,v !5Eg~b!2
1

4
v2mp , ~36!

where

Eg~b!5e02x~0!1L ~37!

refers to the ground-state energy and the factormp multiply-
ing 1

4v
2 is identified as the polaron mass given by

mp511x~1!1(
Q

GQ
2
hQ
2

DQ
~0! $@2qzhQ /DQ

~0!#2

1@dQ
~1!22x~1!hQ#/DQ

~0!%. ~38!

The explicit analytic forms for the quantitiese0 , sQ , x (n),
and dQ

(n) , involved in Eqs.~37! and ~38!, can be derived

using the functional form forFe(rW ,z), which we introduce
in the next section. They are, however, lengthy to write here
and therefore, we list them in the Appendix.

It should be clear that, in deriving Eq.~36!, we have re-
garded parameterL as being obtained from Eq.~29!, for
gQ /c52hQ /DQ

(0) , i.e., for the case where the polaron is
taken as stationary.

III. RESULTS AND CONCLUSIONS

Due to the analytic complexity, the optimal fits toL and
Fe are to be performed by numerical methods within an
iterative scheme. In our calculations, we select the electron
wave functionFe(rW ,z), given by Eq.~2! in a reasonably
simplest form, where its transverse and longitudinal parts are
given by

w~rW !5
J0~ j 0,1r/R!

ApRJ1~ j 0,1!
~39!

and

Z~z!5S b2

p D 1/4exp~2 1
2 b2z2!. ~40!

Here,Jn denotes thenth order cylindrical Bessel function of
the first kind andj 0,1'2.4048 is the first zero ofJ0 . Param-
eterb is to be adjusted variationally and provides a measure
of the spatial extent of the electron along the wire axis, i.e.,
the root mean square of the coordinatez is related tob
through
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jz5$^C̃ guz2uC̃ g&%
1/2

5
1

A2b
A11(QGQ

2 ~gQ /c!2@12~12qz
2/b2!sQ

2 #

11(QGQ
2 ~gQ /c!2hQ

.

~41!

We think that, for not too largea, the choice~39! for w(rW ) is
well suited for thin wire structures, as the transverse local-
ization is provided most dominantly by the wire-boundary
potential, rather than the phonon-coupling-induced localiza-
tion. We could, as well, have chosenw(rW ) as more general
like,

w~rW !→w~rW !exp~2b82r2!, ~42!

consisting of a Gaussian extension, for instance. This latter
wave form duplicates the same features at small wire radii
and is expected to give better results in the range of large
R, and moreover, to depict asymptotically the bulk limit
whenR→`. However, we still adopt the former expression
~39! for Fe, mainly to facilitate the analytic and numeric
computations. In the following we, therefore, restrict our
considerations solely to thin wires, rather than bulklike me-
dia, where the relevant polaron properties have already been
well understood in the literature. In this regard, we shall be
content with a comparison of the two wave forms~39! and
~42! within only the framework of the strong-coupling ap-
proximation witha selected as larger than 1, where the dis-
crepancy is expected to be somewhat more prominent than
that in the intermediate and weak-coupling regimes~cf. Fig.
1!. From the succession of curves fora52, 4, and 6, we
observe that the energy values, derived from~39!, exhibit a
considerable amount of digression from what one expects for
large R, and in particular, the digression grows larger for
strongera. We also note that the place at which the curves
for ~39! and~42! start to get deviated shifts down to smaller
R values for stronger phonon coupling, since for largea, the
polaron is already in a highly localized state and a small
sized polaron becomes influenced by the confining boundary

only for small wire radius. On the contrary, however, we see
that, for not too largea, both wave functions,~39! and~42!,
give almost identical binding energies forR<2, and that the
wave form~39!, which we use in our calculations, becomes
capable of reflecting a reasonable description of the system
over a broader range ofR, whena is made weaker.

In displaying the results of the present formulation, we
first refer to the regime of strong phonon coupling and pro-
vide plots of the binding energyEp5( j 0,1/R)

22Eg and the
polaron massmp against the wire size for a succession of
largea values. An immediate glance at the set of curves in
Fig. 2 reveals that, with increasing degree of confinement
~i.e., with increasingR21, as well as with increasinga), the
binding becomes substantially deepened, where, correspond-
ingly, the effective polaronic mass scales to large values with
very pronounced slopes. Comparing our results with those
derived from the strong-coupling theory~cf. dashed curves!,
we note that the present approach yields significantly im-
proved energy upper bounds and that the strong-coupling
approximation deviates considerably from the present for-
malism asa is made weaker and/orR is increased. Indeed, it
is only for largea and smallR that the two approaches
become identical since, in this limit, the electron gets highly
localized,sQ ~10! becomes unity on the average, and thus
hQ ~19!, and henceL ~29! tend to zero and the present
theory readily reproduces the strong-coupling limit, i.e.,

Eg5e02x~0! and mp511x~1!, ~43!

as depicted by the curves~solid and dashed! that become
closer and eventually match as the phonon coupling is made
stronger andR is tuned to small values.

FIG. 1. The binding energy, as a function of the wire radius
calculated within the strong coupling theory. The solid and dashed

curves are forw(rW ), taken as given by Eqs.~39! and ~42!, respec-
tively.

FIG. 2. ~a! The binding energyEp , and~b! the effective polaron
massmp , as a function of the wire radius. The solid and dashed
curves reflect the results of the present and strong-coupling approxi-
mations, respectively.
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Alternatively stating, for not too stronga, the pure
strong-coupling treatment of the problem is totally inad-
equate to reflect any weak-coupling aspect and this short-
coming is eliminated in the present approach by solving the
transcendental equation~29! for the termL in the energy
expression, since it is only through this term that a detailed
interbalance is set up between the strong- and weak-coupling
counterparts of the coupled electron-phonon system. Asa is
shifted down to small values, the roleL plays becomes very
prominent, and in case the electron is loosely bound, the
polaron binding is mostly determined by this term. In par-
ticular, for a reduced degree of confinement (R@1) and at
weak coupling (a!1), it is easy to see that the termse0 ,
dQ , x, andL in Eq. ~31! become far too small to yield any
significant contribution to the summand in the trancendental
equation ~29!. Therefore, in Eqs.~37! and ~38!, retaining
only hQ'1 andeQ'Q2, we readily obtain

Eg'L'2(
Q

GQ
2 ~11Q2!2152~2/p!aE

0

`

dQ~11Q2!21

52a

and

mp'114(
Q

GQ
2 qz

2~11Q2!23511
1

6
a ,

which are the well established energy and mass values for
the bulk polaron in the weaka limit; thus exemplifying the
essential role whichL plays in conforming the adiabatic
approximation over to the results derived from the perturba-
tion theory.

An important remark pertaining to a weakly coupled po-
laron in a narrow wire is that the electron now has to choose
between two contrasting aspects of whether to conform to a
delocalized state with a correspondingly large spread when
a!1, or to acquire a localized configuration as the wire is
made thinner. It should be mentioned that, the parameters
a andR characterizing the system do not enter the problem
in an independent way, but together take part in a related
manner in the binding, dominating the effect of one another,
and yet acting collaboratively in favor of stronger binding.
Thus, a high degree of localization in reduced dimensionality
is expected to lead to a pseudoenhancement in the effective
electron-phonon coupling, which in turn brings about the
possibility that, in spite of weak polar coupling, as in com-
pound semiconductors, the polaron binding may as well have
a strong-coupling counterpart coming from confinement ef-
fects in narrow wires.

As reference to weak electron-phonon coupling, we select
CdTe (a.0.40) and GaAs (a.0.07) based quantum wires,
which are of particular interest as typical examples of II-VI
and III-V compound semiconductors. An examination of the
curves for CdTe and GaAs in Fig. 3 reveals that bothEp and
mp undergo rather distinctive types of variations when we
varyR. We observe that fora50.40; the binding~and hence
the mass! become monotonically stronger and more inertial,
as the dimensionality is tuned from three dimensional to
quasi-one-dimensional. This is totally consistent with what

one usually expects for systems of reduced dimensionality,
and originates essentially from that, with decreasingR, the
wave function is squeezed onto the wire axis in all transverse
directions, resulting in a reduction in the overall spatial ex-
tent of the polaron on the average and hence in the effective
dimensionality, thus leading to deeper polaronic binding.

For even weaker coupling~as in GaAs, for instance—cf.
the dashed curves in Fig. 3!, the behavior is rather different.
Beginning from the bulk case and approaching the one-
dimensional limit, there comes about a competitive interre-
lation between whether the charge density fluctuations of the
electron will condense onto the polaron center or will expand
to relax itself in the longitudinal (6z) directions along the
wire axis. Starting fromR@1 and then restricting the trans-
verse spread of the electron, the contribution coming from
the tendency of the electron to expand longitudinally domi-
nates first, causing a decrease in the binding energy, and
correspondingly leads to a smaller effective mass of the po-
laron. Meanwhile, with contracting a wire radius, the elec-
tronic spread experiences an increasingly large restriction to-
wards the wire axis and therefore, below a certain wire size,
the effective degree of localization of the electron-phonon
system starts to increase, leading to a considerably pro-
nounced effective phonon coupling and hence to deeper po-
laronic binding. For comparatively strongera, this salient
feature becomes less prominent and does not even show up,
since the starting state of the system is already a localized
one.

In Fig. 4, we provide a global comprehensive summary of
the variation of the binding energy as a function ofa and
R. We observe that, regardless of the wire width,Ep ~and

FIG. 3. ~a! The binding energyEp , and~b! the effective polaron
massmp , as a function of the wire radius. The solid and dashed
curves are for CdTe and GaAs based quantum wires, respectively.
In the plots, the energy and length units correspond, respectively, to
18 (35) meV and 44 (40) Å, for CdTe~GaAs!.
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mp — not pictured in the figure! always increase monotoni-
cally with increasinga. So it is true with decreasingR as
well, only however, fora lying above some value around
0.10. Below this value ofa, the energy and mass profiles
~viewed as a function of decreasingR) are seen to decrease
first, and then increase after going through a minimum as in
the aforementioned description given for the GaAs wire. To
give somewhat more impact to this interesting type of varia-
tion of the polaronic binding, we portray the longitudinal
extent of the polaron,jz ~41!, over the relevant range of
weaka and the wire radius~cf. Fig. 5!. We note that when
a is small,jz has first a tendency to expand and, after having
displayed a peaked profile, shrinks as the wire radius is re-
duced to smaller values. For large values ofa, however,jz
is seen to shrink monotonically without showing any promi-
nent increase, since, in this case, the polaron has already a
comparatively deeper self-induced potential, and an increase
in the degree of confinement makes the polaron even more
deeply bound and more localized.

An interesting remark pertaining to the regime of weak
coupling is that even for coupling constants as small as
a;0.01, a ‘‘pseudostrong-coupling’’ condition can be
reached at high degrees of confinement. For completeness,
we exemplify this feature in Fig. 6, where we plotjz ~calcu-
lated from both the strong coupling and present theories!
against the wire size. From the succession of the pairs of
curves fora50.01, 0.02, and 0.03, we readily note that, at
highly confined configurations of the polaron, thejz profiles
calculated from Eq.~42! are fairly close to those derived
from the strong-coupling theory:jz51/A2b, where now the
optimalb is to be obtained by minimizing the energy expres-
sion given by Eq.~43!. As the confining boundary is made to
expand, however, the strong-coupling theory rapidly loses its
validity and deviates rather drastically from the present for-
malism, both in terms of magnitude and qualitative nature;
and the digression grows at much faster rates for smaller
values of the coupling constant.

In summary, this work revises the ground-state property
of the optical polaron confined in a cylindrical quantum wire
of infinite boundary potential. The formalism adopted here
allows one to trace out the polaron quantities of general in-
terest within an interpolating scheme, accounting for the
fractional admixture of the weak- and strong-coupling coun-
terparts of the coupled electron-phonon complex. Contrary to
the general trend that the effective electron-phonon coupling
is inherently stronger in systems of lower dimensionality, we
find that, at weaka and for thin wires, the polaronic binding
may get loose and even become weaker than for the bulk
case.

APPENDIX

The functional forms for the quantitiese0 , sQ , x (n), and
dQ
(n) (n50,1), calculated using Eqs.~39!–~40! are given by

FIG. 4. The binding energy~in arbitrary units on a logarithmic
scale!, as a function of the coupling constant and the wire radius.

FIG. 5. The longitudinal spatial extentjz , as a function of the
coupling constant and the wire radius.

FIG. 6. The longitudinal spatial extentjz , as a function of the
wire radius at weak coupling. The solid and dashed curves reflect
the results of the present and strong-coupling approximations, re-
spectively.
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e05~ j 0,1/R!21
1

2
b2,

sQ5A~qR!expS 2
qz
2

4b2D ,
x~0!5aE

0

`

dqA2~qR!eg2erfc~g!,

x~1!5A32/pabE
0

`

dqqA2~qR!$12Apgeg2erfc~g!%,

dQ
~n!52x~n!~11sQ

2 !2
8

p2asQE d3q8
qz8

2n

q8 21qz8
2

3sQ8A~ uqW 1qW 8uR!expS 2
qz
21qz8

2

4b2 D coshS qzqz82b2 D ,
where in the above, we have definedg5q/A2b, and

A~qR!5
2

@ j 0,1J1~ j 0,1!#
2E

0

j 0,1
dt tJ0

2~ t !J0S qRj 0,1t D .
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