Feedback Control of Dynamic Systems

Asst. Prof. Tolga Ayav, Ph.D.

Department of Computer Engineering
İzmir Institute of Technology
Contents

• Introduction to Control Theory
• Modeling Physical Systems
• Laplace Transforms
First Control Application: Watt’s Speed Governor (1769)
Achievements

• Watt was a practical engineer. He did not make theoretical analysis. But he showed that the speed oscillates under certain conditions (instability)
• Maxwell (1868) developed a model using dif. Eq. and found stability criteria (roots of characteristic equation must have negative real parts)
• Stability of non-linear systems studied by Lyapunov (1893)
• Mathematical framework established by Laplace and Fourier
• Nyquist (1932), Bode and Nichols (1945) used frequency domain methods based on complex variables to determine system stability.
• Evans (1948) found a graphical method: Root-Locus
• Kalman (1961) announced optimal control strategies.
• In 1980s, H_∞ control was used to overcome dynamic uncertainties (robust control methods)
• In 1990s, intelligent control methods studied (Fuzzy-logic controllers)
Open-loop Control

For example, think of the temperature control of a room.

Advantage: Simple
Disadvantage: Disturbance cannot be taken into account
Closed-loop Control

Diagram showing the components of a closed-loop control system:
- Desired Value
- Summing Point
- Error Signal
- Controller
- Control Signal
- Plant
- Measured Value
- Sensor
- Feedback Path
- Output Value
Aircraft Fluid-Level Control
Room Temperature Control System

Desired Temperature

Potentiometer

Control Signal

Gas Solenoid Valve

Gas Flow-rate

Outside Temperature

Heat Loss

Actual Room Temperature

Heat Input

Thermometer

Inside Temperature

Desired Temperature

Potentiometer

Error Signal

Controller

Control Signal

Gas Solenoid Valve

Gas Flow-rate

Heat Loss

Insulation

Room

Actual Temperature

(°C)

(V)

(°C)

(V)

(°C)
Ship Autopilot Control System
Modeling Physical Systems
A simple model for a motor vehicle

\[\Theta(t) : \text{accelerator pedal angle} \quad u(t) : \text{forward speed} \]

\[u(t) = a \cdot \Theta(t) \]

\(D: \text{aerodynamic drag} \)
\(F: \text{wheel traction force} \)
\(T: \text{engine torque} \)

\[T = b \cdot \Theta(t) \]
\[F = c \cdot T \]
\[D = d \cdot u(t) \]

\[D \text{ must equal to } F \quad \Rightarrow \quad D = F \]
\[d\ u(t) = c \cdot T \]

\[u(t) = \left(\frac{cb}{d} \right) \cdot \Theta(t) \]

\(\Theta(t) : \text{degrees} \quad a = \frac{b \cdot c}{d} \)

This model is not realistic since we know that it takes time to build up to the new forward speed. We use diff. eq.

\[e \cdot \frac{du}{dt} + fu = g \cdot \Theta(t) \]

acceleration, when it travels at constant velocity, becomes zero

\[so \quad f\ u(t) = g \cdot \Theta(t) \quad \Rightarrow \quad u(t) = \left(\frac{g}{f} \right) \cdot \Theta(t) \quad (a = \frac{g}{f}) \quad \text{the same equation again!} \]

Using diff. eq. to represent systems

1st order system: \(a \cdot \dot{y} + b \cdot y = c \cdot x(t) \)

2nd order system: \(a \cdot \ddot{y} + b \cdot \dot{y} + c \cdot y = e \cdot x(t) \)

3rd order system: \(a \cdot \dddot{y} + b \cdot \ddot{y} + c \cdot \dot{y} + e \cdot y = f \cdot x(t) \)

\(a, b, c, e \ldots \text{constant coefficients}. \text{ These are linear dif. eq.s.} \)
Mathematical Models for Electrical Systems

\[\frac{R}{M} i(t) + \epsilon_0 = R_i + i(t) \] (Resistance)

\[L + \epsilon_0 = L \frac{d}{dt} i(t) \] (Inductance)

\[C + \epsilon_0 = C \frac{d}{dt} i(t) \] (Capacitance)

\[\epsilon_1(t) - \epsilon_2(t) = R \cdot i(t) \]

\[\epsilon_2(t) = -\frac{1}{C} \int i(t) \, dt \quad \text{or} \quad i(t) = -\frac{C}{\epsilon_2(t)} \frac{d\epsilon_2(t)}{dt} \]

\[\epsilon_1(t) - \epsilon_2(t) = RC \frac{d\epsilon_2(t)}{dt} \]

\[RC \frac{d\epsilon_2(t)}{dt} + \epsilon_2(t) = \epsilon_1(t) \] (1st order diff. eq.)

\[\epsilon_1(t) - \epsilon_2(t) = R \cdot i(t) + L \frac{d}{dt} i(t) \]

\[\epsilon_2(t) = -\frac{1}{C} \int i(t) \, dt \quad \text{or} \quad i(t) = -\frac{C}{\epsilon_2(t)} \frac{d\epsilon_2(t)}{dt} \]

\[\epsilon_1(t) - \epsilon_2(t) = RC \frac{d\epsilon_2(t)}{dt} + L \frac{d}{dt} \left(c \frac{d\epsilon_2(t)}{dt} \right) \]

\[LC \frac{d^2\epsilon_2(t)}{dt^2} + RC \frac{d\epsilon_2(t)}{dt} + \epsilon_2(t) = \epsilon_1(t) \] (2nd order diff. eq.)

\[i_1, i_2, R_1, R_2, C_1, C_2 \]

\[\epsilon_1 - \epsilon_2 = R_1 (i_1 + i_2) \]

\[C_1 \frac{d\epsilon_2}{dt} = i_2 \]

\[\epsilon_2 - \epsilon_2 = R_2 i_2 \]

\[i_2 = C_2 \frac{d\epsilon_2}{dt} \]

\[R, R_2, C_1, C_2 \frac{d^2\epsilon_2}{dt^2} + (R_1 C_1 + R_1 C_2 + R_2 C_2) \frac{d\epsilon_2}{dt} + \epsilon_2 = \epsilon_1 \]
Heat flow by conduction is given by Fourier's Law:
\[Q_T = KA \left(\theta_1 - \theta_2 \right) \]

- \(K \): Thermal conductivity (W/mK)
- \(Q_T \): Heat flow (J/s = W)

If \(R_T = \frac{\ell}{KA} \) (Thermal resistance), then
\[\theta_1(t) \theta_2(t) = R_T Q_T(t) \]

Thermal capacitance:

The heat stored by a body is
\[H(t) = m C_p \frac{\theta(t)}{C_T} \]

- \(H \): heat (J)
- \(m \): mass (kg)
- \(C_p \): specific heat at constant pressure (J/kgK)
- \(\theta \): temperature (K)

To obtain heat flow \(Q_T(t) \) = \[\frac{d}{dt} H(t) = C_T \frac{d\theta(t)}{dt} \]

Wall:

Heat source \(\theta_1(t) \)

Heat sink \(\theta_2(t) \)

Heat flow is given by
\[Q_T = \frac{\theta_1 - \theta_2}{R_T} \quad Q_T = C_T \frac{d\theta_2}{dt} \]

\[\frac{\theta_1 - \theta_2}{R_T} = C_T \frac{d\theta_2}{dt} \Rightarrow \]

\[R_T C_T \frac{d\theta_2}{dt} + \theta_2 = \theta_1(t) \]
Stiffness, damping and mass:

An elastic element is assumed to produce an extension proportional to the force applied to it.

Force & Extension

\[F(t) = K(x(t) - x_0(t)) \]

Linear elastic elements (Translational spring)

Torque & Twist

\[T(t) = K(\theta(t) - \theta_0(t)) \]

Rotational spring

A damping element is assumed to produce a velocity proportional to the force applied to it.

Force & Velocity

\[F(t) = C \delta(t) = C \frac{dx_0}{dt} \]

Translational damper

Torque & Angular velocity

\[T(t) = C \omega(t) = C \frac{d\theta_0}{dt} \]

Rotational damper

The force to accelerate a body is the product of its mass and acceleration (Newton's second law)

Force & Acceleration

\[F(t) = ma(t) = m \frac{dv}{dt} = m \frac{d^2x}{dt^2} \]

Free body diagram

\[\sum F_x = ma \]

\[K(x(t) - x_0(t)) = C \frac{dv(t)}{dt} = m \frac{d^2x_0}{dt^2} \]

\[m \frac{d^2x_0}{dt^2} + C \frac{dx_0}{dt} + Kx_0 = Kx_1(t) \]

(2nd order)
If the mass is neglected, then:
\[C \frac{dx_0}{dt} + K x_0 = K x_1(t) \]
\Rightarrow \text{it becomes a 1st order system}

Example 1

A flywheel of moment of inertia \(I \) sits in bearings that produce a frictional moment of \(C \) times the angular velocity \(\omega(t) \) of the shaft. Find the diff. eq. relating the applied torque \(T(t) \) and the angular velocity \(\omega(t) \).

\[z M = I \alpha \]
\[T(t) = C \omega = I \frac{d\omega}{dt} \Rightarrow I \frac{d\omega}{dt} + C \omega = T(t) \text{ or } I \omega + C \omega = T(t) \]

Example 2

Gearbox is driven by a motor that develops a torque \(T_m(t) \). It has a gear reduction ratio of \(n \) and the moments of inertia on the motor and output shafts are \(I_m \) and \(I_o \) and the respective damping coefficients \(C_m \) and \(C_o \). Find diff. eq. modeling this system.

\[X(t) = \text{gear tooth reduction force} \]

Gearbox parameters:
- \(T_m = 5 \times 10^{-6} \text{ kNm} \)
- \(I_o = 0.01 \text{ kg m}^2 \)
- \(C_m = 60 \times 10^{-6} \text{ Nm s/rad} \)
- \(C_o = 0.15 \text{ Nm s/rad} \)
- \(n = 50 : 1 \)
Cont'd:

Motor shaft:

\[I M = I_m \frac{d^2 \Theta_m}{dt^2} \]

\[T_m(t) - C_m \frac{d \Theta_m}{dt} - a \chi(t) = I_m \frac{d^2 \Theta_m}{dt^2} \Rightarrow \chi(t) = \frac{1}{a} \left(T_m(t) - I_m \frac{d^2 \Theta_m}{dt^2} - C_m \frac{d \Theta_m}{dt} \right) \]

Output shaft:

\[I_d = I_o \frac{d^2 \Theta_o}{dt^2} \]

\[b \chi(t) - C_o \frac{d \Theta_o}{dt} = I_o \frac{d^2 \Theta_o}{dt^2} \Rightarrow \chi(t) = \frac{1}{b} \left(I_o \frac{d^2 \Theta_o}{dt^2} + C_o \frac{d \Theta_o}{dt} \right) \]

Combining two equations:

\[\frac{b}{a} \left(T_m(t) - I_m \frac{d^2 \Theta_m}{dt^2} - C_m \frac{d \Theta_m}{dt} \right) = \left(I_o \frac{d^2 \Theta_o}{dt^2} + C_o \frac{d \Theta_o}{dt} \right) \]

Kinematic relationships:

\[\frac{b}{a} = n, \quad \Theta_m(t) = n \Theta_o(t), \quad \frac{d \Theta_m}{dt} = n \frac{d \Theta_o}{dt}, \quad \frac{d^2 \Theta_m}{dt} = n \frac{d^2 \Theta_o}{dt} \]

Hence:

\[n \left(T_m(t) - n I_m \frac{d^2 \Theta_o}{dt} - n C_m \frac{d \Theta_o}{dt} \right) = \left(I_o \frac{d^2 \Theta_o}{dt^2} + C_o \frac{d \Theta_o}{dt} \right) \]

\[(I_o + n^2 I_m) \frac{d^2 \Theta_o}{dt^2} + (C_o + n^2 C_m) \frac{d \Theta_o}{dt} = n T_m(t) \]

\[0.0225 \text{ kgm}^2 \quad 0.3 \text{ Nms/rod} \]

\[0.0225 \frac{d^2 \Theta_o}{dt^2} + 0.3 \frac{d \Theta_o}{dt} = 50 T_m(t) \]