Chapter 8:
Sampling, Standardization, and Calibration



A chemical analysis uses only a small fraction of the available sample, the
process of sampling is a very important operation.

Knowing how much sample to collect and how to further subdivide the
collected sample to obtain a laboratory sample is vital in the analytical
process.

Statistical methods are used to aid in the selection of a representative
sample.

The analytical sample must be processed in a dependable manner that
maintains sample integrity without losing sample or introducing
contaminants.

Many laboratories use the automated sample handling methods.



Type ol analysis

8A Analytical Samples and Methods

Types of Samples and Methods

Quantitative methods are traditionally classified as
gravimetric methods,
volumetric methods, and
instrumental methods.

Other methods are based on the size of the sample and the level of the
constituents.

Sample Size

Techniques for handling very small samples are quite different from those for
treating macro samples.

Sa.mple Size Type nfﬁnﬂ.l}rsis
Semimicro } {.:L] g ["'-"[ELCI'EI:
0.01to0.1g Semimicro
Micro 0.0001 to 0.01 g Micro
T <107'g Uleramicro

e —
00001 0,001 0.01 0.1

Sample size, g




Constituent Types

» In some cases, analytical methods are used to determine major constituents, which are

those present in the range of 1 to 100% by mass.
» Species present in the range of 0.01 to 1% are usually termed minor constituents.

» Those present in amounts between 100 ppm (0.01%) and 1 ppb are called trace

constituents.

» Components present in amounts lower than 1 ppb are usually considered to be

ultratrace constituents.

- - Analyte Level Type of Constituent
g Minor 1 to 100% Major
Z 0.01 (100 ppm) to 1%  Minor
W Trace
2 1 ppb to 100 ppm Trace
Ultratrace < 1 ppb Ulrratrace
I ppb I ppm 0.1 % 100 %

Analyte level

Fiotire -7 Clac<ification of cons<titiient tvoe< bv analvte level



» A general problem in trace procedures is that the reliability of results usually decreases
dramatically with a decrease in analyte level.

» The relative standard deviation between laboratories increases as the level of analyte
decreases.

» At the ultratrace level of 1 ppb, interlaboratory error (%RSD) is nearly 50%. At lower
levels, the error approaches 100%.
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Figure 8-3 Inter-laboratory error as a function of analyte concentration.



Real Samples

» The analysis of real samples is complicated by the presence of the sample
matrix.

» The matrix can contain species with chemical properties similar to the analyte.

> If the interferences are caused by extraneous species in the matrix, they are
often called matrix effects.

» Such effects can be induced not only by the sample itself but also by the
reagents and solvents used to prepare the samples for the determination.

Samples are analyzed, but constituents or concentrations are determined.




8B Sampling

» The process by which a representative fraction is acquired from a material of interest
is termed sampling. ( e.g. a few milliliters of water from a polluted lake)

» It is often the most difficult aspect of an analysis.

» Sampling for a chemical analysis necessarily requires the use of statistics because
conclusions will be drawn about a much larger amount of material from the analysis of a
small laboratory sample.

8B-1 Obtaining a Representative Sample

] ] ) . Identify the
» The items chosen for analysis are often called sampling units or population
sampling increments.
» The collection of sampling units or increments is called the gross l
sample Collect a I
] . . . gross sample
» For laboratory analysis, the gross sample is usually reduced in size
and homogenized to create the laboratory sample. l
» The composition of the gross sample and the laboratory sample Reduce the gross
e sample to a
must closely resemble the average composition of the total mass of laboratory sample

material to be analyzed.

Figure 8-4 Steps in obtaining a laboratory sample. The laboratory sample
consists of a few grams to at most a few hundred grams. It may constitute
as little as 1 part in 107 -108 of the bulk material.



Statistically, the goals of the sampling process are:

1. To obtain a mean analyte concentration that is an unbiased estimate of the population
mean. This goal can be realized only if all members of the population have an equal
probability of being included in the sample.

2. To obtain a variance in the measured analyte concentration that is an unbiased estimate
of the population variance so that valid confidence limits can be found for the mean,
and various hypothesis tests can be applied. This goal can be reached only if every
possible sample is equally likely to be drawn.

Both goals require obtaining a random sample.

A randomization procedure may be used wherein the samples are assigned a number and
then a sample to be tested is selected from a table of random numbers.

For example, suppose our sample is to consist of 10 pharmaceutical tablets to be drawn from 1000
tablets off a production line. One way to ensure the sample is random is to choose the tablets to be
tested from a table of random numbers. These can be conveniently generated from a random number
table or from a spreadsheet as is shown in Figure 8-5. Here, we would assign each of the tablets a
number from 1 to 1000 and use the sorted random numbers in column C of the spreadsheet to pick
tablet 16, 33, 97, etc. for analysis.
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Figure 8-5 10 random numbers are generated from 1 to 1000 using a
spreadsheet. The random number function in Excel [FRAND()] generates
random numbers between 0 and 1.



8B-2 Sampling Uncertainties

» Systematic errors can be eliminated by exercising care, by calibration, and by the
proper use of standards, blanks, and reference materials.

» Random errors, which are reflected in the precision of data, can generally be kept at
an acceptable level by close control of the variables that influence the measurements.

» Errors due to invalid sampling are unique in the sense that they are not controllable
by the use of blanks and standards or by closer control of experimental variables.

» For random and independent uncertainties, the overall standard deviation s, for an
analytical measurement is related to the standard deviation of the sampling process s,
and to the standard deviation of the method s_, by the relationship

2 — ¢ 2 2
So _Ss +Sm

*An analysis of variance can reveal whether the between samples variation (sampling
plus measurement variance) is significantly greater than the within samples variation
(measurement variance).

* When s <s./3, there is no point in trying to improve the measurement precision. This
result suggests that, if the sampling uncertainty is large and cannot be improved, it is
often a good idea to switch to a less precise but faster method of analysis so that more
samples can be analyzed in a given length of time. Since the standard deviation of the
mean is lower by a factor of VN, taking more samples can improve precision.



8B-3 The Gross Sample

Ideally, the gross sample is a miniature replica of the entire mass of material to be

analyzed. It is the collection of individual sampling units. It must be representative of the
whole in composition and in particle-size distribution.

Size of the Gross Sample is determined by

(1) the uncertainty that can be tolerated between the composition of the gross sample
and that of the whole,

(2) the degree of heterogeneity of the whole, and
(3) the level of particle size at which heterogeneity begins.

» The number of particles, N, required in a gross sample ranges from a few particles to
1012 particles.

» The magnitude of this number depends on the uncertainty that can be tolerated and
how heterogeneous the material is.

» The need for large numbers of particles is not necessary for homogeneous gases and
liquids.

» The laws of probability govern the composition of a gross sample removed randomly
from a bulk of material.



As an idealized example,
- let us presume that a pharmaceutical mixture contains just two types of particles:

* type A particles containing the active ingredient and

* type B particles containing only an inactive filler material.
All particles are the same size. We wish to collect a gross sample that will allow us to
determine the percentage of particles containing the active ingredient in the bulk
material.

--Assume that the probability of randomly drawing an A type particle is p and that of

randomly drawing a B type particle is (1 - p).

-- If N particles of the mixture are taken, the most probable value for the number of A
type particles is pN, while the most probable number of B type partis (1 — p)N.

-- For such a binary population, the Bernoulli equation can be used to calculate the
standard deviation of the number of A particles drawn, cA

o =~/Np(l—p)
oa_ |1-p
The relative standard deviation o, of drawing A type particles is, Or = N—p = N—p
Thus, the number of particles needed is, N = 1- 2
Por

Thus, for example, if 80% of the particles are type A (p 5 0.8) and the desired
relative standard deviation is 1% (o, = 0.01), the number of particles making up
the gross sample should be N=1-0.8/0.8(0.01)2 = 2500



» To determine the number of particles and thus what mass we should ensure that we
have a sample with the overall average percent of active ingredient P with a sampling
relative standard deviation of &,

d,d,., P, —P
N = 1— AYB 2 A B\2
- P 5

» The degree of heterogeneity as measured by P, - P; has a large influence on the
number of particles required since N increases with the square of the difference in
composition of the two components of the mixture. Rearranging the equation to
calculate the relative standard deviation of sampling, o, we get

_ ‘PA — Pyl » d.dg [p-p)
r P d’ N

If we make the assumption that the sample mass m is proportional to the number of
particles and the other quantities are constant, the product of m and ¢ , should be a
constant. This constant K, is called the Ingamells sampling constant.

K, =m x (o, x 100)?

S

where the term o, x 100% is the percent relative standard deviation.



» To simplify the problem of defining the mass of a gross sample of a multi-component

mixture, assume that the sample is a hypothetical two-component mixture.

» The problem of variable particle size can be handled by calculating the number of

particles that would be needed if the sample consisted of particles of a single size.

» The gross sample mass is then determined by taking into account the particle-size

distribution.

» One approach is to calculate the necessary mass by assuming that all particles are the

size of the largest.

» This procedure is not very efficient because it usually calls for removal of a larger mass

of material than necessary.

» The mass of the sample increases directly as the volume (or as the cube of the particle
diameter) so that reduction in the particle size of a given material has a large effect on the

mass required for the gross sample.



EXAMPLE 8-1

A column-packing material for chromatography consists of a mixture of two
types of particles. Assume that the average particle in the batch being sam-
pled is approximately spherical with a radius of about 0.5 mm. Roughly 20%
of the particles appear to be pink in color and are known to have about 30% by
mass of a polymeric stationary phase attached (analyte). The pink particles
have a density of 0.48 g/cm®. The remaining particles have a density of about
0.24 g/em® and contain little or no polymeric stationary phase. What mass of
the material should the gross sample contain if the sampling uncertainty is to
be kept below 0.5% relative?

Solution
We first compute values for the average density and percent polymer:

d = 020 % 0.48 + 0.80 X 0.24 = 0.288 g/cm’
~ (0.20 X 0.48 X 0.30) g polymer/ cm’
B 0.288 g sample/cm’

X 100% = 0.10%

Then, substituting into Equation 8-5 gives

0.48 X ﬂ.ZéT( 30 — 0 )1
(0.288)° 0.005 x 10.0
= 1.11 X 107 particles rcquirtd

mass of sample = 1.11 X 10° particles X —w{ﬂﬂﬁ}?"

N=02001 — ﬂ.lﬂ][

cm®  0288g
pamc}e car

—=}67p



Sampling Homogeneous Solutions of Liquids and Gases

» Well-mixed solutions of liquids and gases require only a very small sample because

they are homogeneous down to the molecular level. Gases can be sampled by several
methods.

Ex., a sampling bag is simply opened and filled with the gas or gases can be
trapped in a liquid or adsorbed onto the surface of a solid.

Sampling Metals and Alloys

» Samples of metals and alloys are obtained by sawing, milling, or drilling.

It is not safe to assume that chips of the metal removed from the surface are
representative of the entire bulk.

Solid from the interior must be sampled as well.

With some materials, a representative sample can be obtained by sawing across the
piece at random intervals.



Sampling Particulate Solids

Identify the population
to be analyzed I
Randomly collect N pm-ncleﬁl » It is often difficult to obtain a random
(Equation 8-5) to give . .
a gross sample sample from a bulky particulate material.
. . .
Y » Random sampling can best be accomplished
Reduce particle size of gross 3 H H H
amplo and homogeniye I while the material is being transferred.
I » Mechanical devices have been developed
N [Randomly colleet N particles for handling many types of particulate matter.

this sample

of a suitable size
for the

laboratory?

Yes

Y

Store the laboratory sample

¥
Remove portions of the

laboratory sample
for analysis

Figure 8-6 Sampling Particulate Solids



8B-4 Preparing a Laboratory Sample

» For heterogeneous solids, the mass of the gross sample may range from

hundreds of grams to kilograms or more.

» Reduction of the gross sample to a finely ground and homogeneous laboratory

sample, of at most a few hundred grams, is necessary.

»this process involves a cycle of operations that includes crushing and grinding,

sieving, mixing, and dividing the sample (often into halves) to reduce its mass.



EXAMPLE B-2

A carload of lead ore containing galena (= 70% Pb) and other particles with
little or no lead is to be sampled. From the densities (galena = 7.6 g/em®, other
particles = 3.5 g/em?®, average density = 3.7 g/em®) and rough percentage of
lead, Equation 8-5 indicates that 8.45 % 10° particles are required to keep the
sampling error below 0.5% relative. The particles appear spherical with a ra-
dius of 5 mm. A calculation of the sample mass required, similar to that in
Example 8-1, shows that the gross sample mass should be about 1.6 X 10° g
(1.8 ton). The gross sample needs to be reduced to a laboratory sample of
about 100 g. How can this be done?

Solution

The laboratory sample should conrain the same number of particles as the gross
sample, or 8.45 X 10°. The average mass of each particle, m,,, is then

o 1.18 X 10~ *g/particl
= = 1. arti
Ter T 845 % 10° particles g

The average mass of a particle is related to its radius in cm by the equation

4 3.7¢g
mﬂ.\'lt 3 T Em!
Since m,,, = 1.18 X 107" g/ particle, we can solve for the average particle radius r:
R B W
r= (1.13 X 10 g x % X ;_n;g) = 1.97 X 10" * cm or 0.2 mm

Thus, the sample should be repeatedly ground, mixed, and divided until the particles
are abour 0.2 mm in diameter.



Number of Laboratory Samples

» The number, of samples, depends on the required confidence interval and the desired
relative standard deviation of the method.

> If the sampling standard deviation o, is known, we can use values of z from tables, to
get:

Clfor X+
M= f

> Usually, an estimate of o, is used with tinstead of z Clforu = X+

f

»>If we divide this term by the mean value x, we can calculate the relative uncertainty o,
that is tolerable at a given confidence level:

ts,

x~/N

o, =

If we solve Equation 8-8 for the number of samples N, we obtain




EXAMPLE 8-3

The determination of copper in a seawater sample gave a mean value of
77.81 pg/L and a standard deviation s, of 1.74 pg/L. (Note: the insignificant
figures were retained here because these results are used below in another
calcu]atiﬂn,} How many aﬂmplns must be Hnﬂ]}rznd to obtain a relative stan-
dard deviation of 1.7% in the results at the 95% confidence level?

Solution

We begin by assuming that we have an infinite number of samples, which corresponds
to a £ value of 1.96 at the 95% confidence level. Since o, = 0.017, 5, = 1.74, and
x = 77.81, Equation 8-9 gives

(19 % (174
N= 0o x grsye - 00

We round this result to 7 samples and find the value of ¢ for 6 degrees of freedom
is 2.45. Using this ¢ value, we then calculate a second value for NV which is 10.38.

Now if we use 9 degrees of freedom and 7 = 2.26, the next value is V= 8.84. The

iterations converge with an N value of approximately 9. Note that it would be good
strategy to reduce the sampling uncertainty so thar fewer samples would be needed.



8 C Automated sample handling

Automated sample handling can lead to higher throughput (more analyses per
unit time), higher reliability, and lower costs than manual sample handling.

Discrete (Batch) Methods
These often mimic the operations that would be performed manually.

Some discrete sample processors automate only the measurement step of the
procedure or a few chemical steps and the measurement step.

Continuous Flow Methods

The sample is inserted into a flowing stream where a number of operations can
be performed prior to transporting it to a flow-through detector.

These methods can perform not only sample processing operations but also the
final measurement step.



Two types of continuous flow analyzers are
* the segmented flow analyzer and
* the flow injection analyzer.

°The segmented flow analyzer divides the
sample into discrete segments separated
by gas bubbles.

ethe gas bubbles provide barriers to
prevent the sample from spreading out
along the tube due to dispersion
processes.

 Dispersion is a band-spreading or mixing
phenomenon that results from the
coupling of fluid flow with molecular
diffusion.

e Diffusion is mass transport due to a
concentration gradient.
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Figure 8-7 Segmented continuous flow analyzer. The segmented sample is shown in more
detail in (b).The analyte concentration profiles at the sampler and at the detector are shown
in (c). Normally the height of a sample peak is related to the concentration of the analyte.
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Figure 8-8 Flow injection analyzer. Samples can be processed with FIA at rates varying from 60 to 300
samples per hour. The valve, shown in the load position, also has a second inject position shown by the
dotted lines. When switched to the inject position, the stream containing the reagent flows through
the sample loop.

Sample and reagent are allowed to mix and react in the mixing coil before reaching the detector. In this
case, the sample plug is allowed to disperse prior to reaching the detector (b). The resulting
concentration profile (detector response) depends on the degree of dispersion.



8D Standardization and calibration

- Calibration determines the relationship between the analytical
response and the analyte concentration, which is usually determined by
the use of chemical standards prepared from purified reagents.

- To reduce interferences from other constituents in the sample matrix,
called concomitants, standards are added to the analyte solution
(internal standard methods or standard addition methods) or matrix
matching or modification is done.

- Almost all analytical methods require calibration with chemical
standards.

- Gravimetric methods and some coulometric methods are absolute
methods that do not rely on calibration with chemical standards.



8D-1 Comparison with Standards
Two types of comparison methods are:
- direct comparison techniques
- titration procedures.

Direct Comparison

- Some analytical procedures involve comparing a property of the analyte
with standards such that the property being tested matches or nearly
matches that of the standard. This is called null comparison or isomation
methods.

-Some modern instruments use a variation of this procedure to determine if
an analyte concentration exceeds or is less than some threshold level. Such
a comparator can be used to determine whether the threshold has been
exceeded.

-e.g. A comparator to determine whether aflatoxin levels in a sample exceeds the
threshold level that would indicate a toxic situation.




Titrations:
- Titrations are one of the most accurate of all analytical procedures.

- In a titration, the analyte reacts with a standardized reagent (the titrant) in a
known stoichiometric manner.

- The amount of titrant is varied until chemical equivalence is reached as
indicated by the color change of a chemical indicator or by the change in an
instrument response. This is called the end point.

- The amount of the standardized reagent needed to achieve chemical
equivalence can then be related to the amount of analyte present by means
of the stoichiometry.

- Titration is thus a type of chemical comparison.



8D-2- External Standard Calibration
- A series of standard solutions is prepared separately from the sample.

- The standards are used to establish the instrument calibration function,
which is obtained from analysis of the instrument response as a function of
the known analyte concentration.

- The calibration function can be obtained graphically or in mathematical
form.

- Generally, a plot of instrument response versus known analyte
concentrations is used to produce a calibration curve, sometimes called a
working curve.



Residual = y; — (mx; + b)
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Calibration curve of absorbance
versus analyte concentration for a
series of standards.
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-The calibration curve is used in an inverse fashion to obtain the concentration of
an unknown with an absorbance of 0.505.

2.000

3.000 4.000 5.000 6.000 7.000 8.000
x, Concentration of Ni(Il) X 103, M

- The absorbance is located on the line,
corresponding to that absorbance is obtained by extrapolating to the x-axis.

9.000

and then the concentration



External Standard Calibration
The Least-Squares Method

Statistical methods, such as the method of least squares, are routinely used to
find the mathematical equation describing the calibration function.
Two assumptions are made:

1.There is actually a linear relationship between the measured response y (absorbance)
and the standard analyte concentration x.

The mathematical relationship that describes this
assumption is called the regression model, which
y-intercept = b may be represented as
y Ay
R y=mx+b
Slope =m = % where,
0 b is the y intercept (the value of y when x is zero),
- x and m is the slope of the line.

Figure 8-10 The slope-intercept form of a straight line.

2. We also assume that any deviation of the individual points from the straight line arises
from error in the measurement. That is, we assume there is no error in x values of the
points (concentrations).



Whenever there is significant uncertainty in the x data, basic linear least-squares
analysis may not give the best straight line in which case, a more complex
correlation analysis may be used.

It may be necessary to apply different weighting factors to the points and
perform a weighted least-squares analysis.

Finding the least-Squares line

The least-squares method finds the sum of the squares of the residuals SS
minimizes the sum using calculus.

4 and

resi

SSresid = Z [yl ‘ N (b PRLX; )]



The slope and the intercept are defined as:

S =, (X %’ -~ X - Q%)

N

S, =y, -y) =Yy - Q%)

N

Sxy ZZ(Xi _;)(Yi —9) :ZXiyi _%

where x; and y; are individual pairs of data for x and y, N is the number of pairs,
and x and y are the average values for x and .

From these values, one can derive the

(1) Slope of the line,




(3) Standard deviation about regression

(4) Standard deviation of the slope

(5) Standard deviation of the intercept

(6) Standard deviation for results obtained from
the calibration curve




The standard deviation about regression, also called the standard error of
the estimate or just the standard error, is a rough measure of the
magnitude of a typical deviation from the regression line.

;[yi—<b+mxi>] | [

=) N — 2 N — 2




EXAMPLE 8-4

Carry out a least-squares analysis of the calibration data for the determina-
tion of isococtane in a hydrocarbon mixture provided in the first two columns

of Table 8-1.

TAELE 8-1

Calibration Data for the Chromatographic Determination of Isooctane
in a Hydrocarbon Mixture

Mole Percent

Isooctane, x; Peak Area y; xt _']-'fl Xy
0.352 1.09 0.12390 1.1881 0.38368
0.803 1.78 0.64481 3.1684 1.42934
1.08 2.60 1.16640 6.7600 2.80800
1.38 3.03 1.90440 2.1809 4,18140
1.75 4.01 3.06250 16.0801 7.01750
3.365 12.51 G.90201 363775 15.81992

Columns 3, 4, and 5 of the table contain computed values for x% v% and x.y,,
with their sums appearing as the last entry in each column. Note that the num-
ber of digits carried in the computed values should be the maximum allowed

by the calculator or computer, that is, rounding should not be performed until
the calculation is complete.

Solution

We now substitute into Equations 8-10, 8-11, and 8-12 and obrain

e .365)%
S.= S = Z_ (o - B3N _ ) 4ssy
N 5
(Zy? (12.51)
Sy =2y — — = 363775 — —_—— = 5.07748
oo . M: 15 FT1O07F 5.365 X 12.51 —_— T IO D




Substitution of these quantities into Equations 8-13 and 8-14 yields

2.39669
= = 2.0925 = 2.0
7 1.14537 = ’
12.51 5.36
b = T — 20925 X Tﬁ = 0.2567 = (.26

Thus, the equarion for the least-squares line is
y = 2.09x + 0.26

Substitution into Equation 8-15 yields the standard deviation about regression,

= 0.1442 = 0.14

B \/SH - mS, Jﬁ.ﬂ??ciﬂ — (2.0925)* X 1.14537
& N -2 5 — 2

and substitution into Equation 8-16 gives the standard deviation of the slope,

5 0.1442)°
Sm= o = ﬁu = (.13
5. 1.14537

Finally, we find the standard deviation of the intercept from Equation 8-17:

r l R
T D'Méi\fq iz 2 antl 0.16




EXAMPLE 8-5

The calibration curve found in Example 8-4 was used for the chromatographie
determination of isooctane in a hydrocarbon mixture. A peak area of 2.65 was ob-
tained. Caleulate the mole percent of isooctane in the mixture and the standard
deviation if the area was (a) the result of a single measurement and (b) the mean
of four measurements.

Solution

In either case, the unknown concentration is found from rearranging the least-squares
equation for the line, which gives

— b — 0.2567 65 — 0.
Y =7 67 _ 265 — 02567 _ 1.144 mol %
= 2.0925 2.0925

x=

(a) Substituting into Equation 8-18, we obtain

0.1442 |1 I (2.65 — 12.51/5)°
— — + =+ =
T 50025 \/1 5t 200257 x 1145 %076 mole%

(b) For the mean of four measurements,

0.1442 |1 1 (2.65 — 12.51/5)°
= — 4+ — + = (.046 mole %
i l.ﬂﬂlﬁ\zﬂi 5 (2.0925)2 X 1.145 —




Interpretation of least-Squares results

The sum of the squares of the residuals, SS,..4, measures the variation in the observed
values of the dependent variable (y values) that are not explained by the presumed linear
relationship between x and y.

N 2
SSresid = E[Yi —(b+ mXx; )]

- RY:
SSot = Syy =2 (¥i Y =T y{ _(sz)

The coefficient of determination (R?) measures the fraction of the observed variation in y

that is explained by the linear relationship. . sS
R°=1-

resid

SS

tot

The difference between SS, , and SS,_.,4 is the sum of the squares due to regression, SS

resi regr

SSran = SStor — SSresid * A significant regression is one in which the variation in the y
values due to the presumed linear relationship is large

5 SSpegr compared to that due to error (residuals).
il 8510t * The F value gives us an indication of the significance of the

regression. When the regression is significant, a large value of
F occurs.



EXAMPLE 8-6

Find the coefficient of determination for the chromatographic data of Example 8-4.

Solution

For each value of x;, we can find a predicted value of y; from the linear relationship.
Let us call the predicted values of y,, 3;. We can write §; = & + mux; and make a table
of the observed y; values, the predicted values 3, the residuals y; — 3, and the squares
of the residuals (y; — #)°. By summing the latter values, we obtain 85,4 as shown in

Table 8-2.
TABLE 8-2
Finding the Sum of the Squares of the Residuals
Xy i Vi Yi— ¥ 0y — 5’
0.352 1.09 0.99326 0.09674 0.00936
0.803 1.78 1.93698 —0.15698 0.02464
1.08 2.60 2.51660 0.08340 0.00696
1.38 3.03 3.14435 —0.11435 0.01308
1.75 4.01 3.91857 0.09143 (.00836G
Sums 5.365 12.51 0.06240

From Example 8-4, the value of Sﬂ = 5.07748. Hence,

3 S'Eifs.id 0.0624
R=1- =1 - — =0
S8, 5.07748 =




This calculation shows that over 98% of the variation in peak area can be explained by
the linear model.

We can also calculate 55, as
Segr = S8t — SSig = 5.07748 — 0.06240 = 5.01508

Let us now calculate the F value. There were tive xy pairs used tor the analysis. The
total sum of the squares has 4 degrees of freedom associated with it since one is lost in

calculating the mean of the y values. The sum of the squares due to the residuals has
3 degrees of freedom because two paramerers m and & are estimated. Hence S5, has
only 1 degree of freedom since it is the difference berween 55, and 55

weid- 1N OUr case,
we can find F from

SSegr/ 1 5.01508/1

F = =
S8:esial 3 0.0624/3

= 241.11

This very large value of F has a very small chance of occurring by random chance, and
therefore, we conclude thar this is a significant regression.



Transformed Variables

Linear least squares gives best estimates of the transformed variables,
but these may not be optimal when transformed back to obtain
estimates of the original parameters.

For the original parameters, nonlinear regression methods may give
better estimates.

TABLE B-3

Transformations to Linearize Functions

Function Transformation to Linearize RE:EI:I.Iﬁ]lE Equation

Exponential: y = ™ ¥ = In(y) ¥y = In(f) + mx

Power: y = bx" y' = logly, x" = log(x) y' = log(é) + mx'
| = *

Rﬂcipmmljf=&+m(%> x - y= bt me




Errors in External Standard Calibration

» When external standards are used, it is assumed that, when the same analyte
concentration is present in the sample and in the standard, the same response will be
obtained.

» The raw response from the instrument is usually not used.

» Instead, the raw analytical response is corrected by measuring a blank. The ideal blank
is identical to the sample but without the analyte.

» A real blank is either a solvent blank, containing the same solvent in which the sample is
dissolved, or a reagent blank, containing the solvent plus all the reagents used in sample
preparation.

» Systematic errors can also occur during the calibration process.

» To avoid systematic errors in calibration, standards must be accurately prepared, and
their chemical state must be identical to that of the analyte in the sample.

» The standards should be stable in concentration, at least during the calibration process.

» Random errors can also influence the accuracy of results obtained from calibration
curves.



Figure 8-11 Shown here is a calibration curve with confidence limits.

Measurements made near the center of the curve will give less
uncertainty in analyte concentration than those made at the extremes.

12.5
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Minimizing Errors in Analytical Procedures

The overall accuracy and precision of an analysis is not limited to the
measurement step and might instead be limited by factors such as sampling,
sample preparation, and calibration.

Separations

Sample cleanup by separation methods is an important way to minimize errors
from possible interferences in the sample matrix.

Technigues such as filtration, precipitation, dialysis, solvent extraction,
volatilization, ion exchange, and chromatography can be used.

In most cases, separations may be the only way to eliminate an interfering
specimen.



Saturation, Matrix Modification, and Masking

*The saturation method involves adding the interfering species to all the
samples, standards, and blanks so that the interference effect becomes
independent of the original concentration of the interfering species in the
sample.

*A matrix modifier is a species, not itself an interfering species, added to
samples, standards, and blanks in sufficient amounts to make the analytical
response independent of the concentration of the interfering species.

*Sometimes, a masking agent is added that reacts selectively with the
interfering species to form a complex that does not interfere.



Dilution and Matrix Matching

*The dilution method can sometimes be used if the interfering species
produces no significant effect below a certain concentration level.

*The matrix-matching method attempts to duplicate the sample matrix
by adding the major matrix constituents to the standard and blank
solutions.

*Errors in procedures can be minimized by saturating with interfering
species, by adding matrix modifiers or masking agents, by diluting the
sample, or by matching the matrix of the sample.



Internal Standard Methods

*An internal standard is a reference species, chemically and physically
similar to the analyte, that is added to samples, standards, and blanks.

*The ratio of the response of the analyte to that of the internal standard
is plotted versus the concentration of analyte.

*In the internal standard method, a known amount of a reference
species is added to all the samples, standards, and blanks.

*The response signal is then not the analyte signal itself but the ratio of
the analyte signal to the reference species signal.



*A calibration curve is prepared where the y-axis is the ratio of responses
and the x-axis is the analyte concentration in the standards as usual.

*This method can compensate for certain types of errors if these
influence both the analyte and the reference species to the same
proportional extent.

*The calibration curve plots the ratio of the analyte signal to the internal
standard signal against the concentration of the analyte.



Figure 8-12 |lllustration of the internal standard method.

Internal standard Anabyie

Response

-
IS

; =
= LA k3 Lh Ui LA

Internal standard
Analyie

Response

—
-
&= L

1l 1 2 3 4 5
Time

Internal standard

Response




EXAMPLE 8-7

The intensities of flame emission lines can be inﬂuenceld by a variety of instru-
mental factors, including flame temperature, flow rate of solution, and nebu-
lizer efficiency. We can compensate for variations in these factors by using the
internal standard method. Thus, we add the same amount of internal standard
to mixtures containing known amounts of the analyte and to the samples of
unknown analyte concentration. We then take the ratio of the intensity of the
analyte line to that of the internal standard. The internal standard should be
absent in the sample to be analyzed.

In the flame emission determination of sodium, lithium is often added as an internal
standard. The following emission intensity data were obtained for solutions containing
Na and 1000 ppm Li.

(continued)

x5 PPM Na intensity, I, Li intensity, I}, L1

0.10 0.11 26 0.00128
0.50 0.52 80 0.0065
1.00 1.8 123 0.0141
5.00 5.9 91 0.0648
10.00 9.5 73 0.1301
Unknown 4.4 95 0.0463

A plot of the Na emission intensity versus the Na concentration is shown in
Figure 8-13a. Note thar there is some scarter in the dara and the & value is 0.9816.
In Figure 8-13b, the ratio of the Na ro Li emission intensities is against the Na
concentration. Note thart the linearity is improved as indicated by the #* value of
0.9999. The unknown intensity ratio (0.0463) is then located on the curve, and the
concentration of Na corresponding to this ratio is found to be 3.55 = 0.05 ppm.



10
v =0.94698x + (.4222 r 3
g R*=09816
Z 6
4
2
0
0.00 2.00 4.00 6.00 .00 10.00
{a) Cxar PPM
0.14
0.12
v =0.01298x + (.00028
0.1 R2=0.9999
— 0,08
Z 0.06
0.04
0.02
'} | | |
0.00 2.00 4,00 6.0 8.0 100,00 12,00
{h} CNiI‘ ppm

Figure 8-13 In (a) the Na flame emission intensity is plotted versus the
Na concentration in ppm. The internal standard calibration curve is shown
in (b), where the ratio of the Na to Li intensities is plotted versus the

Ma concentration.



Standard Addition Methods

*The method of standard additions is used when it is difficult or
impossible to duplicate the sample matrix.

*A known amount of a standard solution of analyte is added to one
portion of the sample.

*The responses before and after the addition are measured and used to
obtain the analyte concentration.

*Alternatively, multiple additions are made to several portions of the
sample.

*The standard additions method assumes a linear response.

*Linearity should always be confirmed, or the multiple additions method
used to check linearity.

*The method of standard additions is quite powerful so long as there is a
good blank measurement so that extraneous species do not contribute to
the analytical response.

* Second, the calibration curve for the analyte must be linear in the
sample matrix.



EXAMPLE 8-8

The single-point standard addition method was used in the determination
of phosphate by the molybdenum blue method. & 2.00-mL urine sample was
treated with molybdenum blue reagents to produce a species absorbing at
820 nm, after which the sample was diluted to 100.00 mL. A 25.00-mL aliquot
gave an instrument reading (absorbance) of 0.428 (solution 1). Addition of
1.00 mL of a solution containing 0.0500 mg of phosphate to a second 25.0-mL
aliquot gave an absorbance of 0.517 (solution 2). Use these data to calculate
the concentration of phosphate in milligrams per mL of the sample. Assume
that there is a linear relaticmship between absorbance and concentration and
that a blank measurement has been made.

Molecular model of phosphate ion (PO, ).



Solution

The absorbance of the first solution is given by
AI : 'é““u

where ¢, is the unknown concentration of phosphate in the first solution and £ is a
proportionality constant. The absorbance of the second solution is given by

/e EV e, N kVe,
2 > v

where V, is the volume of the solution of unknown phosphate concentration (25.00 mL),
V, is the volume of the standard solution of phosphate added (1.00 mL), V, is the total
volume after the addition (26.00 mL), and ¢, is the concentration of the standard solu-
tion (0.500 mg mL""). If we solve the first equation for &, substitute the result into
the second equation, and solve for ¢, , we obtain

_.-"1'15‘5'[/';
{'-IJ — —

AV = AV,

0.428 X 0.0500 mgmL™" X 1.00 mL o [
T 0517 X 2600mL — 0428 X 25.00mL o &M

This is the concentration of the diluted sample. To obtain the concentration of the
original urine sample, we need to multiply by 100.00/2.00. Thus,

concentration of phosphate = 0.00780 mg mL™" X 100.00 mL/2.00 mL
= 0.390 mg mL™'



8E Figures of merit for analytical methods

Analytical procedures are characterized by a number of figures of merit such as:
- accuracy, precision, sensitivity, detection limit, and dynamic range.

8E-1 Sensitivity and Detection Limit

The definition of sensitivity most often used is the calibration sensitivity, or the change in
the response signal per unit change in analyte concentration.

The calibration sensitivity is thus the slope of the calibration curve. The calibration sensitivity
does not indicate what concentration differences can be detected. Noise in the response
signals must be taken into account in order to be quantitative about what differences can be
detected. For this reason, the term analytical sensitivity is sometimes used.

The analytical sensitivity is the ratio of the
calibration curve slope to the standard
deviation of the analytical signal at a given
analyte concentration. The analytical

__ sensitivity is usually a strong function of
_____ B concentration.

h The detection limit, DL, is the smallest
concentration that can be reported with a
certain level of confidence.

| . .
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Figure 8-14 Calibration curve of response R versus concentration c. The slope of the calibration curve is
called the calibration sensitivity m. The detection limit, DL, designates the lowest concentration that can be

manaciirad at a enacified coanfidanca lIaval



* Every analytical technique has a detection limit.

* It is the analyte concentration that produces a response equal to k times the standard
deviation of the blank o,

ks,

m

DL

- where k is called the confidence factor and m is the calibration sensitivity. The factor k is
usually chosen to be 2 or 3. A kvalue of 2 corresponds to a confidence level of 92.1%,
while a k value of 3 corresponds to a 98.3% confidence level.

Linear Dynamic Range

* The linear dynamic range of an analytical method most often refers to the
concentration range over which the analyte can be determined using a linear calibration
curve .

* The lower limit is generally considered to be the detection limit.

* The upper end is usually taken as the concentration at which the analytical signal or
the slope of the calibration curve deviates by a specified amount.

* Usually a deviation of 5% from linearity is considered the upper limit.



Quality Assurance of Analytical Results
Control Charts

* A control chart is a sequential plot of some quality characteristic that is important in

guality assurance.

* The chart also shows the statistical limits of variation, the upper control limit (UCL)
and lower control limit (LCL), that are permissible for the characteristic being measured.

3o 30 Where pis the population mean

'N o is the population standard deviation and

N, number of replicates for each sample.

20.0002
UCL
so 20.0001 [
=
<
£ LA\
<
£ 20.0000
: '&V\—I 1=
o
= 19.9999 |-
LCL
19.9998 | | ' '
0 5 10 15 20 25
Sample (day)
Figure 8-15 A control chart for a modern analytical

balance. As long as the mean mass remains between the
LCL and the UCL, the balance is said to be in statistical
control.

Mass data were collected on twenty-four
consecutive days for a 20.000-g standard mass
certified by the National Institute of Standards
and Technology. On each day, five replicate
determinations were made. From
independent experiments, estimates of the
population mean and standard deviation were
found to be p=20.000 g and 6=0.00012 g,
respectively. For the mean of five
measurements, 3x0.00012/\/5 = 0.00016.
Hence, the UCL value = 20.00016 g, and the
LCL value = 19.99984 g.
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Figure 8-16 A control chart for monitoring the concentration of benzoyl peroxide
in @ commercial acne preparation.

The manufacturing process became out of statistical control with sample 83 and
exhibited a systematic change in the mean concentration.



Validation

» Validation determines the suitability of an analysis for providing the sought-for
information and can apply to samples, to methodologies, and to data.

» Validation is often done by the analyst, but it can also be done by supervisory personnel.

» There are several different ways to validate analytical methods. The most common
methods include:

» analysis of standard reference materials when available,
»analysis by a different analytical method,
»analysis of “spiked” samples, and

»analysis of synthetic samples approximating the chemical composition of the test
samples.

» Individual analysts and laboratories often must periodically demonstrate the validity of
the methods and techniques used.

» Data validation is the final step before release of the results. This process starts with
validating the samples and methods used. Then, the data are reported with statistically
valid limits of uncertainty after a thorough check has been made to eliminate blunders in
sampling and sample handling, mistakes in performing the analysis, errors in identifying
samples, and mistakes in the calculations used.



Reporting Analytical Results

»Analytical results should be reported as the mean value and the
standard deviation.

»Sometimes, the standard deviation of the mean is reported instead of
that of the data

» A confidence interval for the mean, the interval and its confidence level
should be explicitly reported.

» The results of various statistical tests on the data should also be
reported when appropriate, as should the rejection of any outlying
results along with the rejection criterion.

»Significant figures are quite important when reporting results and
should be based on statistical evaluation of the data.

»Whenever possible graphical presentation should include error bars on
the data points to indicate uncertainty.



Suggested Problems

8.4,8.10,8.13, 8.1/, 8.20, 8-23
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