Chapter 7:

Statistical Analysis Data Treatment and
Evaluation



O The picture here is the
Norman Rockwell Saturday
Evening Post cover ,The
Holdout from February 14,
1959. One of the 12 jurors
does not agree with the
others, who are trying to
convince her.

O In the jury room, we can
make two types of errors.
O An innocent person can
be convicted, or
Q a guilty person can be
set free.
It is a more serious error to
convict an innocent person than
to acquit a guilty person.

Courtesy of the Norman Rockwell Family Agency



Similarly, in statistical tests to determine whether two
guantities are the same, two types of errors are possible:

A type | error occurs when we reject the hypothesis that two
guantities are the same, when they are statistically identical.

A type Il error occurs when we accept that they are the same
when they are not statistically identical.

The characteristics of these errors in statistical testing and the
ways we can minimize them are among the subjects of this
chapter



The most common applications of statistical data treatment :

1. Defining a numerical interval, the confidence interval, around the mean of a set
of replicate results within which the population mean can be expected to lie with
a certain probability. This interval is related to the standard deviation of the mean.

2. Determining the number of replicate measurements required to ensure that
an experimental mean falls within a certain range with a given level of probability.

3. Estimating the probability that (a) an experimental mean and a true value or (b)
two experimental means are different. This test is particularly important for
discovering systematic errors in a method and determining whether two samples
come from the same source.

4. Determining at a given probability level whether the precision of two sets of
measurements differs.

5. Comparing the means of more than two samples to determine whether
differences in the means are real or the result of random error. This process is
known as analysis of variance.

6. Deciding whether to reject or retain a result that appears to be an outlier in a
set of replicate measurements.



7A Confidence intervals

O In most quantitative chemical analyses, the true value of the mean, y,
cannot be determined because a huge number of measurements
(approaching infinity) would be required.

d However, the interval surrounding the experimentally determined mean, x,
can be determined within which the population mean u is expected to lie
with a certain degree of probability. This interval is known as the confidence
interval. The limits of the interval are called confidence limits.

- For example, we might say that it is 99% probable that the true population

mean for a set of potassium measurements lies in the interval 7.25 + 0.15 %

K. Thus, the probability that the mean lies in the interval from 7.10 to 7.40 %
Kis 99%.

O The size of the confidence interval, which is computed from the sample
standard deviation, depends on how well the sample standard deviation, s,
estimates the population standard deviation, c.



Finding the confidence interval when o is known or s is a good

estimate of o

O In each of a series of five normal error curves, the relative frequency is plotted as a
function of the quantity z. The shaded areas in each plot lie between the values of -z
and +z that are indicated to the left and right of the curves.

O The numbers within the shaded areas are the percentage of the total area under the
curve that is included within these values of z.

(a) 50% of the area under any Gaussian curve is located between -0.67c and +0.67c;
(b) 80% of the total area lies between -1.28c and +1.28c and

(c) 90% of the total area lies between -1.64 o and +1.64 o.

(d) ) 95% of the total area lies between -1.96 o and +1.96 o.

(e) ) 99% of the total area lies between -2.58 o and +2.58 o.
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0 The confidence level (CL) is the probability that the true mean lies within a certain
interval and is often expressed as a percentage.
Figure 7-1c the confidence level is 90% and the confidence interval is from -1.64G to +1.64G



O The probability that a result is outside the confidence interval is often called
the significance level.

d If we make a single measurement x from a distribution of known &, we can

say that the true mean should lie in the interval x £ zo with a probability
dependent on z.

Cl foru=x+zo

J However, we rarely estimate the true mean from a single measurement.

Instead, we use the experimental mean X of N measurements as a better
estimate of p.

—  LO
Cl foru=x+—
: JN

we replace x with x bar and s with the standard error of the mean, o/\N,



TABLE 7-1 TABLE 7-2

Conﬁdence Levels for Various Size of Confidence Interval as a
Values of z Function of the Number of
Measurements Averaged
Confidence Level, % z
Number of Relative Size of
50 0.67
Measurements Confidence
68 1.00 A
veraged Interval
80 1.28 i 100
90 1.64 '
2 0.71
95 1.96 3 0.58
99 2.58 5 0.45
99.7 3.00 6 0.41
99.9 3.29 10 0.32
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Values of z at various confidence levels are found in Table 7-1.

The relative size of the confidence interval as a function of N is shown in
Table 7-2.



EXAMPLE 7-1

Determine the 80% and 95% confidence intervals for (a) the first entry
(1108 mg/L glucose) in Example 6-2 (page 107) and (b) the mean value (1100.3
mg/L) for month 1 in the same example. Assume that in each part, s = 19 is a

good estimate of or.

Solution

(a)

(b)

From Table 7-1, we see that z = 1.28 and 1.96 for the 80 and 95% confidence
levels. Substituting into Equation 7-1 gives

80% CI = 1108 £ 1.28 X 19 = 1108 £ 24.3 mg/L
95% CI = 1108 = 1.96 X 19 = 1108 = 37.2 mg/L

From these calculations, we conclude that it is 80% pmb:ab]c that u, the pop-
ulation mean (and, in the absence of determinate error, the true value), lies in the
interval 1083.7 to 1132.3 mg/L glucose. Furthermaore, the probability is 95%
that w lies in the interval between 1070.8 and 1145.2 mg/L.

For the seven measurements,

1.28 % 19
80% Cl = 11003+ ——— = 1100.3 + 9.2 me/L
Vi

1.96 % 19
7

Therefore, from the experimental mean (x = 1100.3 mg/L), we conclude
that there is an 80% chance thar w is located in the interval between 10911
and 1109.5 mg/L glucose and a 95% chance that it lies between 1086.2 and
1114.4 mg/L glucose. Note that the intervals are considerably smaller when we

'] i i ™ " i i

95% CI = 1100.3 £ = 1100.3 = 14.1 mg/L



EXAMPLE 7-2

How many replicate measurements in month 1 in Example 6-2 are needed to
decrease the 95% confidence interval to 1100.3 * 10.0 mg/L of glucose?

Solution

We want the term = % to equal =10.0 mg/L of glucose.

10.0
N = (3.724)* = 139
We thus conclude that 14 measurements are needed 1o provide a slightly betrer than

95% chance that the population mean will lie within =10 mg/L of glucose of the
experimental mean.



Finding the confidence interval when o is unknown

 In case of limitations in time or in the amount of sample available, a single
set of replicate measurements must provide not only a mean but also an
estimate of precision.

s calculated from a small set of data may be quite uncertain.

[ Thus, confidence intervals are necessarily broader when we must use a small
sample value of s as our estimate of G.

[ To account for the variability of s, we use the important statistical parameter
t, which is defined in exactly the same way as z, except that s is substituted

for o. X —
S

O For a single measurement with result x, we can definetas |l =

X -
U For the mean of N measurements | = ATH

/N

The t statistic is often called Student’s . Student was the name used by W. S.
Gossett because Guinness did not allow employees to publish their work, Gossett
began to publish his results under the name “Student.” He discovered the t
distribution through mathematical and empirical studies with random numbers.




* Like z, t depends on the desired confidence level as well as on the number of
degrees of freedom in the calculation of s.

t approaches z as the number of degrees of freedom becomes large.

* The confidence interval for the mean of N replicate measurements can be
calculated from t as

Cl for u=x=
TABLE 7-3 \/7

Values of t for Various Levels of Probability

Degrees of
Freedom 80% 90% 95% 99% 99.9%
1 3.08 6.31 12.7 63.7 637
2 1.89 292 4.30 9.92 31.6
3 1.64 2,99 3.18 5.84 12.9
4 1.53 2,13 2.78 4.60 8.61
5, 1.48 2.02 257 4.03 6.87
6 1.44 1.94 2.45 371 5.96
7 1.42 1.90 2.36 3.50 5.41
8 1.40 1.86 231 3.36 5.04
9 1.38 1.83 2.26 3.2 4.78
10 1.37 1.81 2.23 o.17 4.59
15 1.34 1.75 2.13 2.95 4.07
20 1.2 179 2.09 2.84 3.85
40 1.30 1.68 2.02 2.70 3.55
60 1.30 1.67 2.00 2.62 3.46

0 1.28 1.64 1.96 2.58 3.29
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EXAMPLE 7-3

A clinical chemist obtained the following data for the alcohol content of a
sample of blood: % C.,H.OH: 0.084, 0.089, and 0.079. Calculate the 95% confi-
dence interval for the mean assuming that (a) the three results obtained are
the only indication of the precision of the method and that (b), from previous
experience on hundreds of samples, we know that the standard deviation of
the method s = 0.005% C,H.OH and is a good estimate of o.

Solution
(a) Xx, = 0.084 + 0.089 + 0.079 = 0.252
S = 0.007056 + 0.007921 + 0.006241 = 0.021218
e \/0.021218 — (0.252)*/3
3-1

In this instance, ¥ = 0.252/4 = 0.084. Table 7-3 indicates that ¢ = 4.30 for two
degrees of freedom and the 95% confidence level. Thus, using Equation 7-5,

4.30 X 0.0050
V3

95% Cl = x = = 0.084 =

S

= 0.084 * 0.012% C,H,OH
(b) Because s = 0.0050% is a good estimate of o, we can use z and Equation 7-2

20 1.96 X 0.0050
95% CI = % + — = 0.094 +
o V3

=

= 0.084 + 0.006% C,H.OH

Note that a sure knowledge of o decreases the confidence interval by a significant
amount even though s and o are identical.



7B Statistical aids to hypothesis testing

d

The hypothesis tests are used to determine if the results from these
experiments support the model.

If they do not support, the hypothesis is rejected.

If agreement is found, the hypothetical model serves as the basis for further
experiments.

Experimental results seldom agree exactly with those predicted from a
theoretical model.

Statistical tests help determine whether a numerical difference is a result of a
real difference (a systematic error) or a consequence of the random errors
inevitable in all measurements.

Tests of this kind use a null hypothesis, which assumes that the numerical
quantities being compared are the same.

We then use a probability distribution to calculate the probability that the
observed differences are a result of random error.



»Usually, if the observed difference is greater than or equal to the difference
that would occur 5 times in 100 by random chance, (a significance level of 0.05),
the null hypothesis is considered questionable, and the difference is judged to

be significant.

»Other significance levels, such as 0.01 (1%) or 0.001 (0.1%), may also be
adopted, depending on the certainty desired in the judgment.

When expressed as a fraction, the significance level is often given the symbol a.
The confidence level, CL, as a percentage is related to a by CL=(1- a) x 100%

Some examples of hypothesis tests that scientists often use include the comparison
(1) the mean of an experimental data set with what is believed to be the true value,
(2) the mean to a predicted or cutoff (threshold) value, and

(3) the means or the standard deviations from two or more sets of data.

The sections that follow consider some of the methods for making these

comparisons.



Comparing an Experimental Mean with a Known Value

O In many cases the mean of a data set needs to be compared with a
known value.

In such cases, a statistical hypothesis test is used to draw
conclusions about the population mean p and its nearness to the known
value, which we call py

There are two contradictory outcomes in any hypothesis test:
1. The null hypothesis H,, states that u = w,.
2. The alternative hypothesis H, can be stated as:

* reject the null hypothesis in favor of H, if p # .

e ORifu< pyoru>p,.



Large Sample z Test

If a large number of results are available so that s is a good estimate of 5, the z
test is appropriate. The procedure that is used is summarized below:

1.  State the null hypothesis: Hy: i =,

2. Form the test statistic: v
;= X

_alx/ﬁ

3. State the alternative hypothesis H, and determine the rejection region:

* For H,: p# 1, reject Hyif z >z, or if z < -z, (two-tailed test)

crit

* For H: p >, reject H, if z >z, (one-tailed test)

crit

* For H,: p <, reject Hy if z < -z_,, (one-tailed test)



Note that for H_: pu # p, we can reject for either a positive value of z or
for a negative value of z that exceeds the critical value.

This is called a two-tailed test since rejection can occur for results in
either tail of the distribution.

For the 95% confidence level, the probability that z exceeds z_, is 0.025
in each tail or 0.05 total.

Hence, there is only a 5% probability that random error will lead to a

valueofz>z_, or z<-z_.,. The significance level overall is a = 0.05.
If instead our alternative hypothesis is H_: u > ,, the test is said to be a
one-tailed test. In this case, we can reject only whenz > z_..



Figure 7-2 Rejection regions for the 95% confidence level.

(a) Two-tailed test for H: p # ,. (b) One-tailed test for H_: p > .
Note the critical value of z is 1.96. The critical value of z is 1.64 so that
P value = 0.050 = sum of area in both tails 95% Of the darea iS to the left Of Zcrit

and 5% of the area is to the right.
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" (c) One-tailed test for H_: p < .
E/lA The critical value is again 1.64 so that 5%
I crit

! | | | | of the area lies to the left of -z
|
|



EXAMPLE 7-4

B class of 30 students determined the activation energy of a chemical reac-
tion to be 116 kJ mol™ (mean value) with a standard deviation of 22 kJ mel™.
Are the data in agreement with the literature value of 129 kJ mol™ at (a) the
95% confidence level and (b) the 99% confidence level? Estimate the probabil-
ity of obtaining a mean equal to the student value.

Solution

We have enough values that s should be a good estimate of or. Accordingly, w, is the
literature value of 129 k] mol™ so that the null hypothesis is u = 129 k] mol™. The
alternative hypothesis is that u # 129 k] mol™". This is thus a two-tailed test. From
Table 7-1, z.;, = 1.96 for the 95% confidence level, and z.;, = 2.58 for the 99% con-

fidence level. The test statistic is calculared as

'E: —l — —
alVN 221730

=3.27

Since z = —1.96, we reject the null hypothesis at the 95% confidence level. Note that,
since z = —2.58, we also reject H, at the 99% confidence level. In order to estimate
the probability of obtaining a mean value p = 116 k] mol™, we must find the prob-
ability of obtaining a z value of 3.27. From Table 7-1, the probability of obtaining a z
value this large because of random error is only about 0.2%. All of these results lead us
to conclude that the student mean is actually different from the literature value and not
just the result of random error.



Small Sample t Test

For a small number of results, we use a similar procedure to the z test except
that the test statistic is the t statistic.

1. State the null hypothesis: Hy: =,
2. Form the test statistic: _
_ X~ Ko
s/+/N
2. State the alternative hypothesis H,and determine the rejection region:
* ForH_:p#p, reject Hyift>t_, orift <-t_, (two-tailed test)
* ForH_:u>y, reject H,if t > t_, (one-tailed test)
* ForH_:pu<p, reject H,if t <-t_, (one-tailed test)

t

As an illustration, consider the testing for systematic error in an analytical method.
In this case, a sample of accurately known composition, such as a standard
reference material, is analyzed. Determination of the analyte in the material gives

an experimental mean that is an estimate of the population mean.




If the analytical method had no systematic error, or bias, random errors
would give the frequency distribution shown by curve A. Method B has

some systematic error so that x;,
which estimates y, differs

from the accepted value p,.

The bias is given by

Bias = g - 1y

< Ko M

< B

% —>{biasl€e—
>

Q

=

)]

=

=

()

G

= A B
=

)

(a4

Analytical result, x;
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Figure 7-3 lllustration of systematic error in an analytical method.

Curve A is the frequency distribution for the accepted value by a method

without bias.

Curve B illustrates the frequency distribution of results by a method that
could have a significant bias due to a systematic error.



EXAMPLE 7-5

A new procedure for the rapid determination of sulfur in kerosenes was
tested on a sample known from its method of preparation to contain 0.123%

S (i, = 0.123% 3). The results for % S were 0.112, 0.118, 0.115, and 0.119. Do the
data indicate that there is a bias in the methed at the 5% confidence level?

Solution

The null hypothesis is Hy: u = 0.123% 5§, and the alternative hypothesis is
H: o #0.123% S.

¥x = 0.112 + 0.118 + 0.115 + 0.119 = 0.464
% = 0.464/4 = 0.116% S
Sxl = 0.012544 + 0.013924 + 0.013225 + 0.014161 = 0.53854

0.053854 — (0.464)%/4 0.000030
$ =\f it 54 _':1 ) = 1ET= 0.0032% S

The test statistic can now be calculated as

X — gy 0116 — 0.123

CONVN O 0.032VE

From Table 7-3, we find that the critical value of ¢ for 3 dcgrccs of freedom and
the 95% confidence level is 3.18. Since ¢+ = —3.18, we conclude that there is a sig-
nificant difference at the 95% confidence level and thus bias in the method. Note thar,
if we were to do this test at the 99% confidence level, ¢, = 5.84 (Table 7-3). Since
= —4.375 is greater than —5.84, we would accept the null h}-’puthcsis at the 99%
confidence level and conclude there is no difference berween the experimenral and the
accepted values. Note in this case that the outcome depends on the confidence level that
is used. As we will see, choice of the confidence level depends on our willingness to ac-
cept an error in the outcome. The significance level (0.05 or 0.01) is the probability of
making an error by rejecting the null hvpothesis (see Section 7B-3).

E

= —4.375



Comparison of Two Experimental Means

* In many cases, it needs to be determined whether a difference in the
means of two sets of data is real or the result of random error.

* In some cases, the results of chemical analyses are used to determine
whether two materials are identical.

* In other cases, the results are used to determine whether two
analytical methods give the same values or whether two analysts using
the same methods obtain the same means.

* Data are often collected in pairs to eliminate one source of variability
by focusing on the differences within each pair.



The t Test for Differences in Means

Differences in means can be computed with the z test, modified to take
into account a comparison of two sets of data, if we have large numbers
of measurements in both data sets.

Typically, both sets contain only a few results, and we must use the t test.

Let us assume that N, replicate analyses by analyst 1 yielded a mean
value of x, and that N, analyses by analyst 2 obtained by the same

method gave x..
According to the null hypothesis, we can write H,: t; = (4.

The alternative hypothesis is H,: 1, # 11, and the test is a two-tailed test.



To get a better estimate of s than given by s; or s, (estimates of population
standard deviation) alone, we use the pooled standard deviation.

The std deviation of the mean of analyst 1 is Sy
N,
The variance of the mean of analyst 1 is 5 1
2 _ S
S —
. . mi N
The variance of the mean of analyst 2 is 1
S >2

The variance of the difference s?, between the means is Sczl — Sril + SriZ

The std deviation of the difference between the means is

2 2
2°s MR | 52

VNUN; N,



* Further assumption that the pooled standard deviation s

4 IS a better

poole
estimate of o than s, or s,
S? S?
Sd \ pooled " pooled —g N1 + N2
A/ N Nl N2 NlNZ
The test statistic t is now found from X — X
t . 1 2
. \/Nl +N,
pooled
N; N,

If there is good reason to believe that the standard deviations of the two data

sets differ, the two-sample t test must be used.

However, the significance level for this t test is only approximate, and the number

of degrees of freedom is more difficult to calculate.



EXAMPLE 7-6

In a forensic investigation, a glass containing red wine and an open bottle
were analyzed for their alcohol content in order to determine whether the
wine in the glass came from the bottle. On the basis of six analyses, the aver-
age content of the wine from the glass was established to be 12.61% ethanol.
Four analyses of the wine from the bottle gave a mean of 12.53% alcohol. The
10 analyses yielded a pooled standard deviation s,,,j,4 = 0.070%. Do the data
indicate a difference between the wines?

Solution
The null hypothesis is Hy: g, = p;, and the alternative hypothesis is H: pu, # p,.
We use Equarion 7-7 to calculare the test staristic .

r — —
(N, + N, G+ 4
'fpcu}]cd NINE 0.07 6 X 4

The critical value of ¢ at the 95% confidence level for 10 — 2 = 8 degrees of freedom
is 2.31. Since 1.771 < 2.31, we accept the null hypothesis at the 95% confidence
level and conclude thar there is no difference in the alcohol content of the wines. The
probability of getting a # value of 1.771 can be calculated using the Excel function
T.DIST.2T() and is T.DIST.2T(1.771,8) = 0.11. Thus, there is more than a 10%
chance thar we could ger a value this large due to random error.

= 1.771



Paired Data

The paired t test uses the same type of procedure as the normal t test
except that we analyze pairs of data and compute the differences, d.

The standard deviation is now the standard deviation of the mean
difference. Our null hypothesis is Hy: ngy - A,

where A, is a specific value of the difference to be tested, often zero. The
test statistic value is a A
i,

S

Where d Z d W

The alternative hypothesis would be p # Ay, 1y> Ay 1y <Ag




EXAMPLE 7-7

A new automated procedure for determining glucose in serum (Method A)
iz to be compared to the established method (Method B). Both methods are
performed on serum from the same six patients in order to eliminate patient-
to-patient variability. Do the following results confirm a difference in the two
methods at the L% confidence level?

Patient 1 Patient 2 DPatient 3 Padent 4 Patient 5 Patient 6

Method A glucose, mg/L 1044 720 845 8200 957 650

Method B glucose, mg/L 1028 711 820 795 935 639

Difference, mg/L 16 9 25 5 22 11
Solution

Let us now test the appropriate hypotheses. If g, is the true average difference
berween the methods, we want to test the null hypothesis Hj: p; = 0 and the alternarive
hypothesis, H: pug # 0. The test staristic is

40
Idf\FN
Fromthetble, N=6,35d, = 16 + 9 + 25 + 5 4+ 22 + 11 = 88, X4° = 1592,
and 4 = 88/6 = 14.67. The standard deviation of the difference s is given by Equartion 6-5

: —]

88)°
1592 — Ll
— — ?.?ﬁ
* 6— 1
and the ¢ statistic is
t = = = 4,628



From Table 7-3, the critical value of 7 is 2.57 for the 95% confidence level and 5
degrees of freedom. Since ¢ = z_;, we reject the null hypothesis and conclude thar the
two methods give different resules.

Note thart, if we merely average the results of Method A (x, = 836.0 mg/L) and the
results of Method B (x3 = 821.3 mg/L), the large patient-to-patient variation in glucose
level gives us large values for 5, (146.5) and 3 (142.7). A comparison of means gives us a
test ¢ value of 0.176, and we would accept the null hypothesis. Hence, the large patient-
to-patient variability masks the method differences thar are of interest. Pairing allows us
to focus on the differences.

Errors in Hypothesis Testing

il

A type | error occurs when H, is rejected although it is actually true. In some
sciences, a type | error is called a false negative. The significance level o
gives the frequency of rejecting H, when it is true.

A type Il error occurs when H, is accepted and it is actually false. This is
sometimes termed a false positive.

The probability of a type Il error is given the symbol f3.

Making o smaller (0.01 instead of 0.05) would appear to minimize the type |
error rate. However, decreasing type | error rate increases type Il error rate
because they are inversely related to each other.



Comparison of Variances

A simple statistical test, called the F test, can be used to test this
assumption under the provision that the populations follow the normal
(Gaussian) distribution.

The F test is also used in comparing more than two means and in linear
regression analysis.

The F test is based on the null hypothesis that the two population
variances under consideration are equal, Hy: 6 %, = 5,2

The test statistic F, which is defined as the ratio of the two sample
variances (F = s?,/s2,), is calculated and compared with the critical value
of F at the desired significance level.

The null hypothesis is rejected if the test statistic differs too much from
unity.



TABLE 7-4

Critical Values of F at the 5% Probability Level (95 % confidence level)

Degrees of Degrees of Freedom (Numerator)
Freedom
(Denominator) 2 3 4 5 6 10 12 20 >
2 19.00 19.16 19.25 19.30 19.33 19.40 19.41 19.45 19.50
3 9.55 Il 0.10 U 894 879 874 8.66 8.53
4 6.94 IEGEIN 6.39 EEGZGE 6.16 EUGE 5.91 EETEON 5.63
> 579 | 5.41 5.19 | 5.05 495 474 4.68 456 4.36
6 5.14 476 453 439 428 4.06 4.00 3.87 3.67
10 410 T 3.48 BEEGE 3.22 BEZOSE 291 WA 2.54
12 3.80 T 3.26 Sl 3.00 e 2.69 EEEEE  2.30
20 3.49 EENION 2.87 WAl 2.60 mE2EION 2.28 B0 1.84

%0 3.00 mE2iCUN 2.37 B2 2.10 1.83 175 57 1.00
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The F test can be used in either a one-tailed mode or in a two-tailed
mode.

For a one-tailed test we test the alternative hypothesis that one variance
is greater than the other.

Hence, the variance of the supposedly more precise procedure is placed
in the denominator and that of the less precise procedure is placed in the
numerator.

The alternative hypothesis is Ha: ¢ ;%> = 5,2

For a two-tailed test, we test whether the variances are different.

The larger variance always appears in the numerator, which makes the

outcome of the test less certain; thus, the uncertainty level of the F
values doubles from 5% to 10%.



EXAMPLE 7-8

A standard method for the determination of the carbon monoxide (CO) level
in gaseous mixtures is known from many hundreds of measurements to have a
standard deviation of 0.21 ppm CO. A modification of the method yields a value
for s of 0.15 ppm CO for a pooled data set with 12 degrees of freedom. A second
modification, also based on 12 degrees of freedom, has a standard deviation of
0.12 ppm CO. Is either modification significantly more precise than the original?

Solution

We test the null hypothesis Hy: oy = o7, where a2, is the variance of the standard
method and o7 the variance of the modified method. The alternative hypothesis is
one-tailed, H: o} < o Because an improvement is claimed, the variances of the
modifications are placed in the denominator. For the first modification,

and, for the second,

For the standard procedure, s is a good estimate of o, and the number of degrees
of freedom from the numerator can be taken as infinite. From Table 7-4, the critical
value of F at the 95% confidence level is F_;, = 2.30.

Since F, is less than 2.30, we cannot reject the null hypothesis for the first modi-
fication and conclude thar there is no improvement in precision. For the second
modification, however, F;, > 2.30. Hence, we reject the null hypothesis and con-
clude that the second modification does appear to give better precision at the 95%
confidence level.

It is interesting to note that if we ask whether the precision of the second modifica-
tion is significantly beteer than that of the first, the F test diceates that we must accept
the null hypothesis, that is,

g (0157
B o = e

In this case, £, = 2.69. Since F < 2.69, we must accept /, and conclude that the
two methods give equivalent precision.



7C Analysis of variance

d The methods used for multiple comparisons fall under the general
category of analysis of variance, or ANOVA.

d These methods use a single test to determine whether there is or is
not a difference among the population means rather than pair wise
comparisons as is done with the t test.

1 In case of a potential difference, multiple comparison procedures can
be used to identify which specific population means differ from the
others.

Experimental design methods take advantage of ANOVA in planning and
performing experiments.



ANOVA Concepts

In ANOVA procedures, difference in several population means is obtained by
comparing the variances. For comparing | population means p,, W,,....4;, the null
hypothesis H, is of the form H=p, =, = py = ... = ,

The alternative hypothesis H,: at least two of the s are different.

The following are typical applications of ANOVA:

1. Is there a difference in the results of five analysts determining calcium
by a volumetric method?

2. Will four different solvent compositions have differing influences on the
yield of a chemical synthesis?

3. Are the results of manganese determinations by three different
analytical methods different?

4. |Is there any difference in the fluorescence of a complex ion at six
different values of pH?



» In each of these situations, the populations have differing values of a
common characteristic called a factor or sometimes a treatment.

» In the case of determining calcium by a volumetric method, the factor of

interest is the analyst.

> The different values of the factor of interest are called levels.

» For the calcium example, there are five levels corresponding to analyst 1,

analyst 2, analyst 3, analyst 4, and analyst 5.

» The comparisons among the various populations are made by measuring a

response for each item sampled.

Factor Levels Response

Analyst Analyst 1, analyst 2, analyst 3, Amount Ca, mmol
analyst 4, analyst 5

Solvent Composition 1, composition 2, Synthesis yield, %

composition 3, composition 4
Analytical methods Method 1, method 2, merhod 3
pH pH1,pH2, pH 3, pH4, pH S5, pH 6

Concenrration Mn, ppm
Fluorescence intt‘nsil:}..r
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Figure 7-4 Pictorial of the
results from the ANOVA
study of the determination
of calcium by five analysts

[ The type of ANOVA shown is a single-factor, or one-way, ANOVA.

 Each analyst does the determination in triplicate.

L Analyst is considered a factor, while analyst 1, analyst 2, analyst 3, analyst 4,

and analyst 5 are levels of the factor.
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Figure 7-5 This is a pictorial representation of the ANOVA principle.

The results of each analyst are considered a group. The triangles (m) represent
individual results, and the circles (d) represent the means.

The variation between the group means is compared to that within groups.



Single-Factor ANOVA

Several quantities are important for testing the null hypothesis.
One of these is the grand average, which is the average of all the data.

:(—1)x1+(NW)x +('\|\'I3)x_+ ..... +(%)Z

x|l

where N1 is the number of measurements in group 1, N2 is the number in group
2, and so on.

The grand average can also be found by summing all the data values and dividing
by the total number of measurements N.



To calculate the variance ratio needed in the F test, it is necessary to obtain
several other quantities called sums of squares:

1. The sum of the squares due to the factor, SSF, is
SSF = N, (X, = X)2 + N, (X, = X)2 + Ny (Xy = X)% 4.+ N, (X, = X)?

2. The sum of the squares due to error ,SSE, is

2 N, 2

Ny 2N, 2N _
SSE :Z(le — ;) "‘Z(ij —X,) "‘Z(ij —Xg) Fo +Z(Xij —X;)
j=1 j=1 j=1

3. These two sums of squares are used to obtain the between-groups
variation and the within-groups variation. The error sum of the squares is
related to the individual group variances by

SSE = (N, —1)s? + (N, =1)sZ + (N, —=1)sZ +....+ (N, =1)s’
4. The total sum of the squares SST is obtained as the sum of SSF and SSE:

SST = SSF + SSE



* The total sum of the squares SST has N - 1 degrees of freedom.
* Just as SST is the sum of SSF and SSE, the total number degrees of freedom
N - 1 can be decomposed into degrees of freedom associated with SSF and SSE.
* Since there are | groups being compared, SSF has | - 1 degrees of freedom.
This leaves N - | degrees of freedom for SSE. Or,
SST = SSF + SSE
(N-2)=(I-2)+(N-1)
* Dividing the sums of squares by their corresponding degrees of freedom, we can

obtain quantities that are estimates of the between-groups and within-groups

variations called mean square values.
* Mean square due to factor levels: MSF = SSF/I -1

* Mean square due to error: MSE = SSE/N - 1



* The quantity MSE is an estimate of the variance due to error (%), while
MSF is an estimate of the error variance plus the between-groups variance
(02 + 0%)

* If the factor has little effect, the between-groups variance should be small
compared to the error variance.

* Thus, the two mean squares should be nearly identical under these
circumstances. If the factor effect is significant, MSF is greater than MSE.

* The test statistic is the F value, calculated as F = MSF/MSE

Source of Sum of Degrees of Mean Square  Mean Square
Variation Squares (55)  Freedom (df) (MS) Estimates F
P g » SSF : . b
E-f.h’-i."i.ﬂ. groups SSF [ MSF P MSF
(factor effect) F—1 MSE
Within eroups . i SSE :
thin groups SSE N-1  MSE=— ot
(error) N-—=1

Total S5T N-=1



Example 7-9

Five analysts determined caleium by a volumetric method and obtained the
amounts (in mmeol Ca) shown in the table below. Do the means ditfer signifi-
cantly at the 95% confidence level?

Trial No. Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5
1 10.3 9.5 12.1 9.6 11.6
2 9.8 8.6 13.0 8.3 12.5
B 11.4 8.9 12.4 8.2 11.4
Solution

First, we obtain the means and standard deviations for each analyst. The mean for
analyst 1 is x; = (10.3 + 9.8 + 11.4)/3 = 10.5 mmeol Ca. The remaining means are
obtained in the same manner: ¥, = 9.0 mmol Ca, ¥, = 12.5 mmol Ca, ¥, = 8.7
mmol Ca, ¥ = 11.833 mmol Ca. The standard deviations are obtained as described
in Section 6B-3. These results are summarized, as follows:

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5

Mean 10.5 9.0 12.5 8.7 11.833
Standard Dev. 0.818535 0.458258 (L.458258 0.781025 0.585947




The grand mean is found from Equation 7-8, where Ny = N, = Ny = Ny = N; = 3
and N =15:
3

= —(x; + ¥ + x5 + x; + X} = 10.507 mmol Ca = N, - N, — N, — N, —
B ™ xz(ﬁl)xl +(72)x2 +(F3)x3 SO +(Fl)x1

Hll

The between-groups sum of the squares is found from Equation 7-9:

SSF = 3(10.5 — 10.507)* + 3(9.0 — 10.507)* + 3(12.5 — 10.507)"
+ 3(8.7 — li.:}.ﬁ[:l?'jlJ + 3(11.833 — 10.507)
= 33.80267 _ = = I =
SSF= N, (x, —x)" + N, (x, =" + N, (o6, —%)" +....+ Ny (x, —x)°
Note that SSF has associated with it (5 — 1) = 4 degrees of freedom.
The error sum of squares 15 casiest to find from the standard deviations and

Equartion 7-11:

SSE = 2(0.818535)" + 2(0.458258)" + 2(0.458258)" +

2(0.781025)" + 2(0.585947)° N I A N o2 N, 2
= 4086667 SSE =2 (xy; =x) +2(xy;=%,) + D (x5, =x;) +ooot D (x, = X;)
j=1 j=l j=l Jj=1

The error sum of the squares has (15 — 5) = 10 degrees of freedom.
We can now calculate the mean square values, MSF and MSE, from Equations 7-13

and 7-14:
"
MSF = ﬂiﬂ = 8.450667 MSF=SSF/I-1
MSE = % = (1.40866T MSE = SSE/N - 1

The Fvalue obrained from Equation 7-15 is
F = MSF/MSE

_ 8.450667

= —— = .68
0.408667 ’



The F value obtained from Equation 7-15 is

8450667

= = 20.
0.408667 S

From Table 7-4, the F table, the critical value of F at the 95% confidence level for
4 and 10 degrees of freedom is 3.48. Since F exceeds 3.48, we reject ) at the 95%

confidence level and conclude thar there is a significant difference among the analysts.
The ANOVA table is:

Source of Sum of Degrees of Mean Square

Variation Squares (55) Freedom (df) (MS) F
Berween groups 33.80267 4 8.450667 20.68
Within groups 4.086667 10 0.408667

Total 37.88933 14



Determining Which Results Differ

d There are several methods to determine which means are significantly
different.

O The least significant difference method is the simplest method in which a
difference is calculated that is judged to be the smallest difference that is
significant.

W The difference between each pair of means is then compared to the least
significant difference to determine which means are different.

d For an equal number of replicates, N, in each group, the least significant
difference LSD is calculated as follows:

¥ :t\/ZXNMSE

g

where MSE is the mean square for error and the value of t has N — | degrees of
freedom.



EXAMPLE 7-10

For the results of Example 7-9, determine which analysts differ from each
other at the 95% confidence level.

Solution

First, we arrange the means in increasing order: 8.7, 9.0, 10.5, 11.833, and 12.5.
Each analyst did three repetitions, and so we can use Equation 7-16. From Table 7-3,
we obtain a ¢ value of 2.23 for the 95% confidence level and 10 degrees of freedom.
Application of Equation 7-16 gives us

2x MSE

LSD =1 =
= 1.16 &

LSD = 2.23

\/ 2 X 0.408667

We now calculate the differences in means and compare them to 1.16. For the various
pairs:

e ek 120 — 87 —3.8 (a significant difference).
Xandlargess — Xsmallesw — 11.833 — 8.7 = 3.133 (significant).
§3rdh,gm — Xl = 10.5 — 8.7 = 1.8 (significant).
M il — 0 — 8.7 =03 (no significant difference).

We then continue to test each pair to determine which are different. From these calcu-
lations, we conclude that analysts 3, 5, and 1 differ from analyst 4; analysts 3, 5, and
1 differ from analyst 2; analysts 3 and 5 differ from analyst 1; and analyst 3 differs
from analyst 5.



7D Detection of gross errors
» An outlier is a result that is quite different from the others in the data set.

» It is important to develop a criterion to decide whether to retain or reject the
outlying data point.

»The choice of criterion for the rejection of a suspected result has its perils. If
the standard is too strict so that it is quite difficult to reject a questionable
result, there is a risk of retaining a spurious value that has an inordinate effect
on the mean.

»|If we set a lenient limit and make the rejection of a result easy, we are likely to
discard a value that rightfully belongs in the set, thus introducing bias to the
data.

»While there is no universal rule to settle the question of retention or
rejection, the Q test is generally acknowledged to be an appropriate method for
making the decision.



The Q Test

» The Q test is a simple, widely used statistical test for deciding whether a

suspected result should be retained or rejected.

» In this test, the absolute value of the difference between the questionable
result x, and its nearest neighbor x, is divided by the spread w of the entire

set to give the quantity Q:

o

ol v
W . |
TABLE 7-5 — w ‘rl
Critical Values for the Rejection Quotient, Q* :5 z ig - i?
Qe (Reject if Q > Q) Q=dw
Namberof . . B If Q0 > Qi reject xg
Observations 90% Confidence 95% Conhdence 99%, Confhidence
3 0.941 0.970 0.994
i 0.765 0.829 0.926
5 0.642 0.710 0.821
§ 0.560 0.625 0.740
7 0.507 0.568 0.680
8 0.468 0.526 0.634
9 0.437 0.493 0.598
10 0.412 0.466 0.568

*Reprinted {(adapred) with permission from D. B. Rorabacher, Anal. Chem., 1991, 63, 139, DOI:

10.1021/ac00002a010. Copyright 1991 American Chemical Society.




The Q test for outliers

EXAMPLE 7-11

The analysis of a city drinking water for arsenic yielded values of 5.60. 5.64,
5.70, 5.69, and 5.81 ppm. The last value appears anomalous; should it be re-
jected at the 95% confidence level?

Solution

The difference between 5.81 and 5.70 is 0.11 ppm. The spread (5.81 — 5.60) is
0.21 ppm. Thus,

0.11
Q= 0.21 2

For five measurements, QQ_,, at the 95% confidence level is 0.71. Because
(.52 << (.71, we must retain the outlier at the 95% confidence level.



Other Statistical Tests

[ Statistical rules should be used with extreme caution when applied to samples
containing only a few values.

O The only valid reason for rejecting a result from a small set of data is the sure

knowledge that an error was made in the measurement process. Else, a cautious
approach to rejection of an outlier is wise.

Recommendations for Treating Outliers

1. Reexamine carefully all data relating to the outlying result to see if a gross error could have
affected its value. This recommendation demands a properly kept laboratory notebook containing
careful notations of all observations.

2. If possible, estimate the precision that can be reasonably expected from the procedure to be sure
that the outlying result actually is questionable.

3. Repeat the analysis if sufficient sample and time are available. Agreement between the newly
acquired data and those of the original set that appear to be valid will lend weight to the notion that
the outlying result should be rejected.

4. If more data cannot be secured, apply the Q test to the existing set to see if the doubtful result
should be retained or rejected on statistical grounds.

5. If the Q test indicates retention, consider reporting the median of the set rather than the mean.
The median has the great virtue of allowing inclusion of all data in a set without undue influence
from an outlying value. In addition, the median of a normally distributed set containing three
measurements provides a better estimate of the correct value than the mean of the set after the

outlying value has been discarded.



CHEM201-Analytical Chemistry I- Statistical Tables SRR 7
Values of t for Various Levels of Probability
TABLE 7-2 Degrees of
TABLE 7-1 Size of Conhidence Interval as a Freedom 80% 90% 95% 99% 99.9%
Confidence Levels for Various Function of the Number of . 3.08 6.31 17 63.7 637
Values of z Measurements Averaged - i 40 Y o i
5) 1.64 2.35 3.18 5.84 12.9
Conﬁdence Level, 0/0 z Number of Relative Size Of 4 1.53 2.13 2.78 460 8.61
= A Metieneis il A 5 1.48 2.02 2.57 4.03 6.87
68 100 ] L=l : i i % B o
80 1.28 : L 8 1.40 1.86 231 3.36 5.04
90 1.64 2 0.71 9 1.38 1.83 2.26 3.25 478
95 1.96 3 0.58 10 1.37 1.81 2.23 3.17 459
95.4 2.00 4 0.50 15 1.34 1.75 2.13 2.95 4.07
99 2.58 5 0.45 20 1232 1.73 2.09 2.84 3.85
99.7 3.00 6 0.41 40 1.30 1.68 2.02 2.70 3.55
99.9 3.29 10 0.32 60 1.30 1.67 2.00 2.62 3.46
) 1.28 1.64 1.96 2.58 3.29
TABLE 7-4
Critical Values of F at the 5% Probability Level (95 % confidence level) TABLE 7-5
Degrees of Degrees of Freedom (Numerator) Critical Values for the Rejection Quotient, Q*
Freedom R
(Denominator) 2 3 4 5 6 10 12 20 00 Q..ic (Reject if Q > Q)
3 19.00 19.16 19.25 19.30 19.33 19.40 19.41 19.45 19.50 Number of
3 955 928 9.12 9.01 894 879 874 866 853 Observations 90% Confidence 95% Confidence 99% Confidence
4 6.94 6.59 6.39 6.26 6.16 5.96 5.91 5.80 5.63 3 0.941 0.970 0.994
) DN 5.41 5919 5.05 495 474 468 456 4.36 4 0.765 0.829 0.926
6 5.14 4.76 4.53 4.39 4.28 4.06 4.00 3.87 3.67 5 0.642 0'710 0.821
10 4.10 3.71 3.48 333 390 2.98 291 297 2.54 : : :
12 380 349 326 311 300 275 269 254 230 6 0.560 0.625 0.740
20 349 310 287 271 260 235 228 212 1.84 7 0.507 0.568 0.680
% 3.00 2.60 257 2.21 2.10 1.83 175 1.57 1.00 8 0.468 0.526 0.634
9 0.437 0.493 0.598
TABLE 6-4 10 0.412 0.466 0.568
Error Propagation in Arithmetic Calculations
Type of Calculation Example* Standard Deviation of _y" Anova table
Addition or suberaction J=ahb=s = Vg +g+s (1 Source of Sum of Degrees of Mean Square  Mean Square
Multiplication or division y=aXblc 9 _ \/ (_f_ﬂ )z ) (f_b )z ) (_)2 @ Variation Squares (S5)  Freedom (df) (MS) Estimates F
y a b - -
Exponentiation y=a S S Between groups SSF I=1 MSF = SSE ot + ok MSF
; =x- O | (factor effect) N = & L MSE
Logarithm = log,oa = Sa Withi g . SSE .
y = log 5 0_434a (4) ithin groups Nei MSE = — ol
Antilogarithm y = antilog;ga W eerat) N
v s O) | Toul N-1




Suggested Problems to be solved from the end of the chapter 7:

2,3,4,6,8 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32



