
Chapter 7:  

Statistical Analysis Data Treatment and 
Evaluation 



  In the jury room, we can 

make two types of errors.  

 An innocent person can 

be convicted, or  

 a guilty person can be 

set free.  

It is a more serious error to 

convict an innocent person than 

to acquit a guilty person. 

 The picture here is the 

Norman Rockwell Saturday 

Evening Post cover ,The 

Holdout from February 14, 

1959. One of the 12 jurors 

does not agree with the 

others, who are trying to 

convince her. 

 



 Similarly, in statistical tests to determine whether two 
quantities are the same, two types of errors are possible: 

 

A type I error occurs when we reject the hypothesis that two 
quantities are the same, when they are statistically identical.  

 

A type II error occurs when we accept that they are the same 
when they are not statistically identical. 

 

 
The characteristics of these errors in statistical testing and the 
ways we can minimize them are among the subjects of this 
chapter 



1. Defining a numerical interval, the confidence interval, around the mean of a set 
of replicate results within which the population mean can be expected to lie with 
a certain probability. This interval is related to the standard deviation of the mean. 
 

2. Determining the  number  of  replicate  measurements  required  to  ensure  that  
an experimental mean falls within a certain range with a given level of probability.  
 

3. Estimating the probability that (a) an experimental mean and a true value or (b) 
two experimental means are different. This test is particularly important for 
discovering systematic errors in a method and determining whether two samples 
come from the same source. 
 

4. Determining at a given probability level whether the precision of two sets of 
measurements differs. 
 

5. Comparing the means of more than two samples to determine whether 
differences in the means are real or the result of random error. This process is 
known as analysis of variance.  
 

6. Deciding whether to reject or retain a result that appears to be an outlier in a 
set of replicate measurements. 

The most common applications of statistical data treatment : 



7A Confidence intervals 
 

 In most quantitative chemical analyses, the true value of the mean, µ,  
cannot be determined because a huge number of measurements 
(approaching infinity) would be required.  

 However, the interval surrounding the experimentally determined mean, x, 
can be determined within which the population mean µ is expected to lie 
with a certain degree of probability. This interval is known as the confidence 
interval. The limits of the interval are called confidence limits.  

 

- For example, we might say that it is 99% probable that the true population 
mean for a set of potassium measurements lies in the interval 7.25 ± 0.15 % 
K. Thus, the probability that the mean lies in the interval from 7.10 to 7.40 % 
K is 99%. 
 

 The size of the confidence interval, which is computed from the sample 
standard deviation, depends on how well the sample standard deviation, s, 
estimates the population standard deviation, . 



 In each of a series of five normal error curves, the relative frequency is plotted as a 
function of the quantity z. The shaded areas in each plot lie between the values of -z 
and +z that are indicated to the left and right of the curves.  

 The numbers within the shaded areas are the percentage of the total area under the 
curve that is included within these values of z. 

 (a) 50% of the area under any Gaussian curve is located between -0.67 and +0.67 ; 

(b) 80% of the total area lies between -1.28 and +1.28  and  

(c) 90% of the total area lies between -1.64  and +1.64 . 

(d) ) 95% of the total area lies between -1.96  and +1.96 . 

(e) ) 99% of the total area lies between -2.58  and +2.58 . 

 

Finding the confidence interval when   is known or s is a good 
estimate of   

  The confidence level (CL) is the probability that the true mean lies within a certain 
interval and is often expressed as a percentage. 

Figure 7-1c the confidence level is 90% and the confidence interval is from -1.64 to +1.64 



 The probability that a result is outside the confidence interval is often called 
the significance level. 

 

 If we make a single measurement x from a distribution of known , we can 
say that the true mean should lie in the interval x  z with a probability 
dependent on z. 

 

 

 However, we rarely estimate the true mean from a single measurement. 
Instead, we use the experimental mean    of N measurements as a better 
estimate of . 
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we replace x with x bar  and s with the standard error of the mean, /N,  



Values of z at various confidence levels are found in Table 7-1. 

The relative size of the confidence interval as a function of N is shown in 
Table 7-2. 







Finding the confidence interval  when  is unknown 
 In case of limitations in time or in the amount of sample available, a single 

set of replicate measurements must provide not only a mean but also an 
estimate of precision. 

  s calculated from a small set of data may be quite uncertain.  

  Thus, confidence intervals are necessarily broader when we must use a small 
sample value of s as our estimate of . 

  To account for the variability of s, we use the important statistical parameter 
t, which is defined in exactly the same way as z , except that s is substituted 
for .  

 For a single measurement with result x, we can define t as 

 

 For the mean of N measurements  
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The t statistic is often called Student’s t. Student was the name used by W. S. 

Gossett because Guinness did not allow employees to publish their work, Gossett 

began to publish his results under the name “Student.” He discovered the t 

distribution through mathematical and empirical studies with random numbers. 
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* Like z, t depends on the desired confidence level as well as on the number of 
degrees of freedom in the calculation of s.  

 t approaches z as the number of degrees of freedom becomes large. 

* The confidence interval for the mean of N replicate measurements can be 
calculated from t as  

 
N
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7B Statistical aids to hypothesis testing 
 

 The hypothesis tests are used to determine if the results from these 
experiments support the model.  

  If they do not support, the hypothesis is rejected.  

  If agreement is found, the hypothetical model serves as the basis for further 
experiments.  

 Experimental results seldom agree exactly with those predicted from a 
theoretical model.  

 Statistical tests help determine whether a numerical difference is a result of a 
real difference (a systematic error) or a consequence of the random errors 
inevitable in all measurements.  

  Tests of this kind use a null hypothesis, which assumes that the numerical 
quantities being compared are the same. 

  We then use a probability distribution to calculate the probability that the 
observed differences are a result of random  error.  

 



 

Usually, if the observed difference is greater than or equal to the difference 
that would occur 5 times in 100 by random chance, (a significance level of 0.05), 
the null hypothesis is considered questionable, and the difference is judged to 
be significant.  

 

Other significance levels, such as 0.01 (1%) or 0.001 (0.1%), may also be 
adopted, depending on the certainty desired in the judgment.  

When expressed as a fraction, the significance level is often given the symbol α. 
The confidence level, CL, as a percentage is related to α by CL=(1- α) x 100% 

Some examples of hypothesis tests that scientists often use include the comparison  

(1) the mean of an experimental data set with what is believed to be the true value, 

(2) the mean to a predicted or cutoff (threshold) value, and  

(3) the means or the standard deviations from two or more sets of data.  

The sections that follow consider some of the methods for making these 

comparisons.  



Comparing an Experimental Mean with a  Known Value 
 In many cases the mean of a data set needs to be compared with a 

known value. 

 In such cases, a statistical hypothesis test is used to draw 
conclusions about the population mean  and its nearness to the known 
value, which we call 0. 

 

There are two contradictory outcomes in any hypothesis test:  

1. The null hypothesis H0, states that  = 0.  

2. The alternative hypothesis Ha can be stated as:  

• reject the null hypothesis in favor of Ha if   0.  

• OR if  <  0 or  > 0.  



Large Sample z Test 

If a large number of results are available so that s is a good estimate of , the z 
test is appropriate. The procedure that is used is summarized below: 

 

1.      State the null hypothesis: H0:  = 0 

 

2. Form the test statistic:  

 

 

3. State the alternative hypothesis Ha and determine the rejection region:  

 * For Ha:   0, reject H0 if z  zcrit or if z  -zcrit (two-tailed test) 

 * For Ha:  > 0, reject H0 if z  zcrit (one-tailed test) 

 * For Ha:  < 0, reject H0 if z  -zcrit (one-tailed test) 
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Note that for Ha:   0, we can reject for either a positive value of z or 
for a negative value of z that exceeds the critical value.  

 

This is called a two-tailed test since rejection can occur for results in 
either tail of the distribution.  

 

For the 95% confidence level, the probability that z exceeds zcrit is 0.025 
in each tail or 0.05 total.  

 

Hence, there is only a 5% probability that random error will lead to a 
value of z  zcrit or z  -zcrit. The significance level overall is  = 0.05. 

 

If instead our alternative hypothesis is Ha:  > 0, the test is said to be a 
one-tailed test. In this case, we can reject only when z  zcrit. 



(a) Two-tailed test for Ha:   0.  
Note the critical value of z is 1.96.  

 

 

 

 

 

 

 

 

 

    
  

(b) One-tailed test for Ha:  > 0.  
The critical value of z is 1.64 so that 
95% of the area is to the left of   zcrit  
and 5% of the area is to the right.   
 

(c) One-tailed test for Ha:  < 0.  

The critical value is again 1.64 so that 5% 

of the area lies to the left of -zcrit.  

Figure 7-2 Rejection regions for the 95% confidence level. 





Small Sample t Test 
For a small number of results, we use a similar procedure to the z test except 
that the test statistic is the t statistic. 

1. State the null hypothesis: H0:  = 0 

2. Form the test statistic: 

    

 

2. State the alternative hypothesis Ha and determine the rejection region:  

• For Ha:   0, reject H0 if t  tcrit or if t  -tcrit (two-tailed test) 

• For Ha:  > 0, reject H0 if t  tcrit (one-tailed test) 

•  For Ha:  < 0, reject H0 if t  -tcrit (one-tailed test) 
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As an illustration, consider the testing for systematic error in an analytical method.  

In this case, a sample of accurately known composition, such as a standard 

reference material, is analyzed. Determination of the analyte in the material gives 

an experimental mean that is an estimate of the population mean. 



If the analytical method had no systematic error, or bias, random errors 
would give the frequency distribution shown by curve A. Method B has 
some systematic error so that xB,  

which estimates B, differs  

from the accepted value 0.  

The bias is given by 

 Bias = B - 0 

 

 

 

 

 

Figure 7-3 Illustration of systematic error in an analytical method. 

Curve A is the frequency distribution for the accepted value by a method 
without bias.  

Curve B illustrates the frequency distribution of results by a method that 
could have a significant bias due to a systematic error. 

 

 





* In many cases, it needs to be determined whether a difference in the 
means of two sets of data is real or the result of random error. 

 

* In some cases, the results of chemical analyses are  used to determine 
whether two materials are identical.  

 

* In other cases, the results  are used to determine whether two 
analytical methods give the same values or whether two analysts using 
the same methods obtain the same means. 

 

* Data are often collected in pairs to eliminate one source of variability 
by focusing on the differences within each pair. 

Comparison of Two Experimental Means 



The t Test for Differences in Means 
Differences in means can be computed with the z test, modified to take 
into account a comparison of two sets of data, if we have large numbers 
of measurements in both data sets.  

 

Typically, both sets contain only a few results, and we must use the t test. 

 

Let us assume that N1 replicate analyses by analyst 1 yielded a mean 
value of x1 and that N2 analyses by analyst 2 obtained by the same 
method gave x2.  

 

According to the null hypothesis, we can write H0: 1 = 2.  

 

The alternative hypothesis is Ha: 1  2, and the test is a two-tailed test. 

 



To get a better estimate of s than given by s1 or s2 (estimates of population 
standard deviation) alone, we use the pooled standard deviation. 

The std deviation of the mean of analyst 1 is 

 

The variance of the mean of analyst 1 is   

 

The variance of the mean of analyst 2 is  

 

 

The variance of the difference s2
d between the means is 

 

The std deviation of the difference between the means is 
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* Further assumption that the pooled standard deviation spooled is a better 
estimate of  than s1 or s2. 

 

 

 

 

The test statistic t is now found from 

 

 

 

 

If there is good reason to believe that the standard deviations of the two data 
sets differ, the two-sample t test must be used. 

 

However, the significance level for this t test is only approximate, and the number 
of degrees of freedom is more difficult to calculate.  
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The paired t test uses the same type of procedure as the normal t test 
except that we analyze pairs of data and compute the differences, d.  

 

The standard deviation is now the standard deviation of the mean 
difference. Our null hypothesis is H0: d - 0 

where 0 is a specific value of the difference to be tested, often zero. The 
test statistic value is  

 

 

 

Where  

 

The alternative hypothesis would be d  0, d > 0, d < 0 
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Paired Data 





Errors in Hypothesis Testing 

1. A type I error occurs when H0 is rejected although it is actually true. In some 
sciences, a type I error is called a false negative. The significance level  
gives the frequency of rejecting H0 when it is true. 

2. A type II error occurs when H0 is accepted and it is actually false. This is 
sometimes termed a false positive. 

 The probability of a type II error is given the symbol . 

 

 Making  smaller (0.01 instead of 0.05) would appear to minimize the type I 
error rate. However, decreasing type I error rate increases type II error rate 
because they are inversely related to each other. 



Comparison of Variances 

A simple statistical test, called the F test, can be used to test this 
assumption under the provision that the populations follow the normal 
(Gaussian) distribution.  

 

The F test is also used in comparing more than two means and in linear 
regression analysis. 

 

The F test is based on the null hypothesis that the two population 
variances under consideration are equal, H0:  21 = 2

2 

 

The test statistic F, which is defined as the ratio of the two sample 
variances (F = s2

1/s2
2), is calculated and compared with the critical value 

of F at the desired significance level.  

 

The null hypothesis is rejected if the test statistic differs too much from 
unity. 





The F test can be used in either a one-tailed mode or in a two-tailed 
mode.  
 
For a one-tailed test we test the alternative hypothesis that one variance 
is greater than the other.  
 
Hence, the variance of the supposedly more precise procedure is placed 
in the denominator and that of the less precise procedure is placed in the 
numerator.  
 
The alternative hypothesis is Ha:  1

2 = 2
2 

 
For a two-tailed test, we test whether the variances are different.  
 
The larger variance always appears in the numerator, which makes the 
outcome of the test less  certain; thus, the uncertainty level of the F 
values doubles from 5% to 10%. 





7C Analysis of variance 
 

 The methods used for multiple comparisons fall under the general 
category of analysis of variance, or ANOVA.  

 

  These methods use a single test to determine whether there is or is 
not a difference among the population means rather than pair wise 
comparisons as is done with the t test.  

 

  In case of a potential difference, multiple comparison procedures can 
be used to identify which specific population means differ from the 
others.  

 

Experimental design methods take advantage of ANOVA in planning and 
performing experiments. 

 



ANOVA Concepts 
In ANOVA procedures, difference in several population means is obtained by 
comparing the variances. For comparing I population means 1, 2,…I, the null 
hypothesis H0 is of the form H0= 1 = 2 = 3 = …. = I 

 

The alternative hypothesis Ha: at least two of the i’s are different. 

 

The following are typical applications of ANOVA: 

 

1.  Is there a difference in the results of five analysts determining calcium 
by a volumetric method? 

2.  Will four different solvent compositions have differing influences on the 
yield of a chemical synthesis? 

3.  Are the results of manganese determinations by three different 
analytical methods different? 

4.  Is there any difference in the fluorescence of a complex ion at six 
different values of pH? 



 In each of these situations, the populations have differing values of a 
common characteristic called a factor or sometimes a treatment.  

 

 In the case of determining calcium by a volumetric method, the factor of 
interest is the analyst.  

 

 The different values of the factor of interest are called levels.  

 

 For the calcium example, there are five levels corresponding to analyst 1, 
analyst 2, analyst 3, analyst 4, and analyst 5.  

 

 The comparisons among the various populations are made by measuring a 
response for each item sampled.  

 

 



Figure 7-4 Pictorial of the 

results from the ANOVA 

study of the determination 

of calcium by five analysts 

 The type of ANOVA shown is a single-factor, or one-way, ANOVA. 

  Each analyst does the determination in triplicate.  

  Analyst is considered a factor, while analyst 1, analyst 2, analyst 3, analyst 4, 
and analyst 5 are levels of the factor. 



Figure 7-5 This is a pictorial representation of the ANOVA principle.  

The results of each analyst are considered a group. The triangles (m) represent 
individual results, and the circles (d) represent the means.  

The variation between the group means is compared to that within groups. 



Single-Factor ANOVA 
Several quantities are important for testing the null hypothesis.  

One of these is the grand average, which is the average of all the data. 

 

 

 

 

where N1 is the number of measurements in group 1, N2 is the number in group 
2, and so on. 

 

The grand average can also be found by summing all the data values and dividing 
by the total number of measurements N. 
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To calculate the variance ratio needed in the F test, it is necessary to obtain 
several other quantities called sums of squares: 

1. The sum of the squares due to the factor, SSF, is 

 

 

2. The sum of the squares due to error ,SSE, is 

 

 

 

 

3. These two sums of squares are used to obtain the between-groups 
variation and the within-groups variation. The error sum of the squares is 
related to the individual group variances by 

 

 

4. The total sum of the squares SST is obtained as the sum of SSF and SSE: 

SST = SSF + SSE 
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* The total sum of the squares SST has N - 1 degrees of freedom.  

*  Just as SST is the sum of SSF and SSE, the total number degrees of freedom  

N - 1 can be decomposed into degrees of freedom associated with SSF and SSE.  

*  Since there are I groups being compared, SSF has I - 1 degrees of freedom.  

This leaves N - I degrees of freedom for SSE. Or, 

   SST = SSF + SSE 

        (N - 1) = (I - 1) + (N - I) 

* Dividing the sums of squares by their corresponding degrees of freedom, we can 

obtain quantities that are estimates of the between-groups and within-groups 

variations called mean square values. 

* Mean square due to factor levels: MSF = SSF/I – 1 

* Mean square due to error: MSE = SSE/N - 1 



* The quantity MSE is an estimate of the variance due to error (2
E), while 

MSF is an estimate of the error variance plus the between-groups variance 
(2

E + 2
F) 

 

* If the factor has little effect, the between-groups variance should be small 
compared to the error variance.  

 

* Thus, the two mean squares should be nearly identical under these 
circumstances. If the factor effect is significant, MSF is greater than MSE. 

  

* The test statistic is the F value, calculated as F = MSF/MSE 





MSF=SSF/I-1 

MSE = SSE/N - 1 

F = MSF/MSE 





Determining Which Results Differ 
 There are several methods to determine which means are significantly 

different.  

  The least significant difference method is the simplest method in which a 
difference is calculated that is judged to be the smallest difference that is 
significant.  

  The difference between each pair of means is then compared to the least 
significant difference to determine which means are different. 

  For an equal number of replicates, Ng, in each group, the least significant 
difference LSD is calculated as follows: 

 

 

 

where MSE is the mean square for error and the value of t has N – I degrees of 
freedom. 
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7D Detection of gross errors 
An outlier is a result that is quite different from the others in the data set.  

 

It is important to develop a criterion to decide whether to retain or reject the 
outlying data point.  

 

The choice of criterion for the rejection of a suspected result has its perils. If 
the standard is too strict so that it is quite difficult to reject a questionable 
result, there is a risk of retaining a spurious value that has an inordinate effect 
on the mean.  

 

If we set a lenient limit and make the rejection of a result easy, we are likely to 
discard a value that rightfully belongs in the set, thus introducing bias to the 
data. 

  

While there is no universal rule to settle the question of retention or 
rejection, the Q test is generally acknowledged to be an appropriate method for 
making the decision. 



The Q Test 
 The Q test is a simple, widely used statistical test for deciding whether a 

suspected result should be retained or rejected. 

  In this test, the absolute value of the difference between the questionable 
result xq and its nearest neighbor xn is divided by the spread w of the entire 
set to give the quantity Q: 
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The Q test for outliers 
 

 

 

 

 

 

 

 



Other Statistical Tests 
 Statistical rules should be used with extreme caution when applied to samples 

containing only a few values.  

  The only valid reason for rejecting a result from a small set of data is the sure 
knowledge that an error was made in the measurement process.  Else, a cautious 
approach to rejection of an outlier is wise. 

Recommendations for Treating Outliers 
1. Reexamine carefully all data relating to the outlying result to see if a gross error could have 
affected its value. This recommendation demands a properly kept laboratory notebook containing 
careful notations of all observations. 

2. If possible, estimate the precision that can be reasonably expected from the procedure to be sure 
that the outlying result actually is questionable. 

3. Repeat the analysis if sufficient sample and time are available. Agreement between the newly 
acquired data and those of the original set that appear to be valid will lend weight to the notion that 
the outlying result should be rejected.  

4. If more data cannot be secured, apply the Q test to the existing set to see if the doubtful result 
should be retained or rejected on statistical grounds. 

5.  If the Q test indicates retention, consider reporting the median of the set rather than the mean. 
The median has the great virtue of allowing inclusion of all data in a set without undue influence 
from an outlying value. In addition, the median of a normally distributed set containing three 
measurements provides a better estimate of the correct value than the mean of the set after the 

outlying value has been discarded. 

 

 



CHEM201-Analytical Chemistry I- Statistical Tables 

Anova table 



Suggested  Problems to be solved from the end of the chapter 7: 

 

2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 


