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Abstract The binary descriptors are the representation of
choice for real-time keypoint matching. However, they suf-
fer from reduced matching rates due to their discrete na-
ture. We propose an approach that can augment their per-
formance by searching in the top K near neighbor matches
instead of just the single nearest neighbor one. To pick the
correct match out of the K near neighbors, we exploit statis-
tics of descriptor variations collected for each keypoint in an
off-line training phase. This is a similar approach to those
that learn a patch specific keypoint representation. Unlike
these approaches, we only use a keypoint specific score to
rank the list of K near neighbors. Since this list can be ef-
ficiently computed with approximate nearest neighbor algo-
rithms, our approach scales well to large descriptor sets.

Keywords Computer vision · Keypoint matching · Object
detection

1 Introduction

The binary descriptors (such as [5,21,10,1,22,11,18]) are
extensively used in real-time applications for object detec-
tion and augmented reality. In particular, they are fast to
compute and the distance between two descriptors can be
calculated in a few machine instructions. Given a query de-
scriptor, the latter property greatly speeds up the search for
the nearest neighbor within a set of reference descriptors.

Unfortunately, the binary descriptors are particularly sen-
sitive to larger changes in viewpoint and scale [20]. This is
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Fig. 1 The near neighbor rank distribution of the correct matches be-
tween BRIEF descriptors of the first and the third images of the Graffiti
data set. The nearest neighbor obtained by ranking matches according
to Hamming distance captures only 159 of the 848 possible correspon-
dences. Meanwhile, the first ten near neighbors include 517 correct
matches, a potential improvement by a factor of more than three. In
practice, as demonstrated by the results of Figure 4, 385 of these can
be recovered using the approach we propose, an actual improvement
by a factor of more than two.

mainly due to their discrete nature. For large binary descrip-
tor sets, the nearest neighbor may not even be unique. How-
ever, it is relatively easy to find the closest K near neighbors
by ranking the matches according to their descriptor dis-
tances. This list is more likely to contain the correct match
compared to the set that includes only the nearest neighbor.
In practice, this extra set of match hypotheses is rarely ex-
ploited.
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(a) (b)

Fig. 2 The matches between the first and the fourth images of the Graffiti and Boat sequences. (a) Considering only the nearest neighbor with the
Hamming distance. (b) Searching within the first ten near neighbors using the approach presented in Section 3.

In this paper, we propose a two step approach to key-
point matching with binary descriptors. In the first step, for
each query keypoint, we identify the list of the top K near
neighbors according to the Hamming distance. In the second
step, we rank these near neighbors according to a probabilis-
tic and keypoint specific match quality score. This score ex-
ploits precomputed data extracted from the reference image
during an offline training phase. We show that a keypoint
specific measure is more effective in ranking the match hy-
potheses than the Hamming descriptor distance as illustrated
in Figure 2.

To motivate our approach, we illustrate the existence of
correct matches beyond the nearest neighbor. Figure 1 shows
the number of correct matches between BRIEF descriptors
that fall into the first ten near neighbors. Although most of
the BRIEF matches obtained by the nearest neighbor match-
ing are wrong, the correct ones are not very far away in the
near neighbor list. The matches beyond the nearest neigh-
bor are only reachable if we can supplement the Hamming
distance with a secondary and more distinctive match score.

In designing this secondary match score, we make the
following observations: Most binary descriptors, even the
ones that optimize their representation, compute the same
features for every keypoint. As shown recently by [3], while
computationally appealing, globally optimizing the features
for all keypoints is not as effective as picking unique fea-
tures for each individual keypoint.There are a few existing
approaches that learn and use keypoint specific representa-
tions [8,9,19,3]. However, these require a separate distance
computation to each reference keypoint and can not be di-
rectly used with approximate nearest neighbor (ANN) algo-
rithms (such as Locality Sensitive Hashing [2], LSH).

In contrast to these, at the second matching stage, we
have only K possible match hypotheses (corresponding to
the K near neighbors). We employ a keypoint specific rep-
resentation to rank these and recover correct matches that
did not make it to the top initially. For each reference key-
point ki in the K near neighbor list, our score computation
relies on a precomputed statistical model of the variations of
the descriptor bits for keypoint ki. Since the list of K near
neighbors can be computed efficiently with ANN methods,
our approach also scales well to larger descriptor sets.

Our main contributions can be summarized as follows:

– We propose a method that is able to find keypoint matches
within the list of K near neighbors at negligible addi-
tional computational cost at run-time.

– We demonstrate that, despite learning a separate repre-
sentation for each individual keypoint similar to [8,9,
19,3], our approach does not require a brute-force search
in a large descriptor set when coupled with the LSH [2]
approach to compute the list of K near neighbors.

– We show that our approach is relatively descriptor in-
dependent and it extends the matching range of several
binary descriptors: BRIEF [5], ORB [21], BRISK [10],
FREAK [1], and LATCH [11], which has recently been
shown to outperform state-of-the-art binary descriptors.

2 Related Work

As discussed in the introduction, a keypoint specific match-
ing approach is shown to perform better than matching with
a generic descriptor [3]. One way to achieve this is to com-
pute a descriptor specifically adapted to a given patch. [8]
proposed selecting a patch specific set of binary features
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that are robust to changes in intensity levels as well as small
translation and rotations. More recently, [3] proposed to learn
a combined set of generic features and a locally optimized
binary mask that picks the best features depending on the
image patch. While both approaches greatly improve the
matching performance, they both require a brute force search
in the reference collection, therefore they are not suitable for
real-time operation on large data sets.

Similarly, the keypoint classification approaches of [9,
19] train keypoint specific classifiers and compute a prob-
ability distribution over all reference keypoints at run-time.
Moreover, they require large amounts of memory per key-
point to store the learned probabilities.

Despite using a probabilistic model similar to that of [9,
19], our approach only makes use of these probabilities for
the first ten match candidates. When matching a single key-
point against a database of a thousand reference keypoints,
the required number of probability calculations are two or-
ders of magnitude less than those required by Random Ferns.

The combination of a generic initial query followed by
candidate specific filtering is quite common in the image
retrieval literature [7,12]. For image retrieval, the filtering
in the second stage depends on the geometric consistency
between the query image and the candidate results. Our ap-
proach has a very similar pipeline where the geometry check
is replaced by a probabilistic observation probability.

3 A Two Step Approach to Match Keypoints

The usual approach for matching keypoints involves locat-
ing the nearest neighbor keypoint in descriptor space. In-
stead of this one-shot approach, we first rank the list of pos-
sible matches by their inverse descriptor distance and pick
the first few tens of near neighbors to the query in the de-
scriptor space as possible match candidates. We then evalu-
ate each candidate based on detailed statistics of the texture
around the specific candidate. Figure 3 gives an overview of
the proposed approach.

We learn the statistical model for each keypoint in an
offline training stage by simulating affine deformations and
observing the change in the descriptor bits. In the follow-
ing, we describe the way the descriptor statistics are col-
lected during training and how to score the multiple match
hypotheses based on this data.

3.1 Modeling Descriptor Variations

The binary descriptor bits are not fully invariant to changes
in perspective and lighting. Which bits are more prone to
variation depends on the texture around each keypoint. If
there is a strong gradient near one of the pixels that are
part of the computation of the bit’s value, then that bit is

q q

(a) Generic features (b) Patch Specific Features

q q

(c) Proposed Approach

Fig. 3 (a) Given a query descriptor q, if the descriptor uses the same
features for each patch then it is possible to use an ANN approach to
limit distance computation only to a subset of the reference descriptors
(dashed circle). (b) Some approaches learn and employ a patch specific
representation that is more distinctive and robust. (c) We propose a two
step approach that combines the advantages of both by limiting the
patch specific scoring to the list of K near neighbors.

more likely to flip. Due to the complex nature of these inter-
actions, bit variations are better captured by a probabilistic
conditional model such as

P(D |C = ki) = P(d1,d2, . . . ,dS |C = ki) , (1)

where D and C are two random variables corresponding to
the descriptor value and the keypoint identity. C = ki means
that the distribution is computed for keypoint i, d j is a binary
random variable representing the jth descriptor bit, and S is
the descriptor size in bits.

This representation requires 2S parameters per keypoint
and since S is usually larger than or equal to 64, directly
modeling the joint probability of the descriptor bits is not
feasible. Following the representation proposed by [19], we
split the descriptor into N groups of M bits such that S =

M×N and assume independence between these:

P(D |C = ki) =
N

∏
j=1

P(D j |C = ki) , (2)

where D j represents the values of the bits in group j. This
representation has N× 2M parameters. We use several set-
tings with M = 4,6, and 8. For 256 dimensional descriptors,
these yield between N = 32 and 64. Larger M values yield a
very large number of parameters and around M = 12, we ex-
perimentally found that the matching performance degrades.
Moreover, a large M means greater memory consumption.
In the next section, we provide experimental results for M
between 4 and 8. N is determined by fixing M and taking
N = descriptor size

M .
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Fig. 4 The recognition rates for BRIEF increase as we consider more
near neighbors (NN). This is especially true for Graffiti, where the
baseline performance (K = 1) is low and the test images exhibit both
scale and rotation changes. The difference between considering the first
ten NN or all NNs is relatively low. At K = 10, the number of correct
matches for Graffiti–3 increases to 385. This is still less than the maxi-
mum potential number 517 (See Figure 1), but substantially better than
159, the nearest neighbor baseline.

The descriptor bits can be assigned to groups in many
ways. The simplest possibility is to assign the consecutive
descriptor bits to the same group. For descriptors like BRIEF,
this is a natural choice as there is no reason to favor one
grouping scheme over another. For descriptors like BRISK
with more structure, an optimization over possible group-
ings might be beneficial. In practice, we found that the con-
secutive grouping works well for all descriptors and we use
it in the rest of the experiments.

For each keypoint, we generate training samples using
the affine deformation model proposed by [16]. This is not
too restrictive since most keypoint detectors assume a lo-
cally affine model. In all the experiments, we use the same
set of training parameters, scale changes between 1√

2
and

√
2, in-plane rotation varies between −30 and +30 degrees,

tilt amount (θ in [16]) varies between 0 and 60 degrees, and
tilt angle (φ in [16]) varies between 0 and 180 degrees.

We generate roughly 200000 images, yielding an equiv-
alent number of training descriptors for each keypoint. For
each bit group, the probabilities of Equation 2 are inferred
by counting the number of times training descriptors assume
a particular value. For example, for bit groups of size 4, we

have 16 possible outcomes. We count the number of times
each outcome is observed within the training set and nor-
malize by the total number of training samples. To counter
the adverse effect of zeros in the estimated probabilities, we
start counting from one as suggested by [19], which is equiv-
alent to assuming 2M pseudo-samples for each keypoint tak-
ing on every possible descriptor value within a bit group.
This is usually referred to as Laplace smoothing [13] and
corresponds to assuming a Dirichlet prior when a Bayesian
estimate is made for the probabilities of Equation 2 [4].

3.2 Keypoint Specific Scoring of Match Hypotheses

For each keypoint, we first obtain the list of K near neigh-
bors based on the Hamming distance between the descrip-
tors. This list is then sorted according to a score specific to
the particular candidate keypoint each near neighbor repre-
sents.

We have experimented with various functions to score
each hypothesis by combining the descriptor statistics and
the original Hamming distance in several different ways.
The best results have been obtained when the score is the
negative Hamming distance between the query and refer-
ence descriptor plus the logarithm of the probability of ob-
serving the query descriptor according to Equation 2:

score(Q,ki) =−
∣∣Q−Di∣∣

H + log
N

∏
j=1

P(Q j |C = ki) , (3)

where Q is the query descriptor, Di is the reference descrip-
tor i, and |X −Y |H is the Hamming distance between X and
Y .

Since the second term involves ki, its direct evaluation
would require a number of operations linear in the reference
data set size. Our main insight is that computing these for the
first K near neighbors is sufficiently effective in recovering
many more matches than using only the nearest neighbor.

To demonstrate this and the effect of K on the recogni-
tion performance, we perform a preliminary experiment on
the Graffiti and Wall sequences [14,15]. We detect approxi-
mately 1000 keypoints on the reference image and transform
their coordinates to the rest of the images using the ground
truth homography. We compute BRIEF descriptors around
the reference and the test keypoints. For each test descriptor,
we compute the K near neighbors using Hamming distance
and then pick the best match according to Equation 3. We
measure and report the recognition rate as the percentage
of test keypoints that are matched to the correct reference
keypoints for various K values with bit group size M set to
8. The results are given in Figure 4. Regardless of descrip-
tor type, enlarging the near neighbor list yields improved
recognition rates. The improvement is less pronounced after
K = 10.
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4 Experiments

To test the ability of our approach in recovering the cor-
rect matches from the near neighbor list, we have performed
three sets of experiments. The first one follows the experi-
mental setup of Figure 4 and we report the recognition rate
over ground truth correspondences. The second one mea-
sures the inlier ratio as a function of the number of keypoints
matched in the test images. The final experiment measures
the recognition rate when there are a larger number of refer-
ence images and an approximate nearest neighbor algorithm
is used to compute the near neighbor list.

4.1 Recognition Rate over Ground Truth Correspondences

We repeat the experiments of Figure 4 for four data sets
and five descriptor types using K = 10 and three values for
the bit group size (M ∈ {4,6,8}). The results1 are shown in
Figure 5. Our approach increases the recognition rate par-
ticularly when the data set includes larger changes in per-
spective. For the Bikes sequence with only changes in blur
level, the improvement is less pronounced. This is expected
since the observation probabilities represent behaviour un-
der perspective changes. We have tried including blur in the
training data, but this did not yield noticeable improvement,
possibly because blur causes loss of discriminative power.

BRIEF lacks orientation estimation, as a result after the
test image 2 of the Boat sequence even the top ten near
neighbor list does not include enough correct matches and
our approach does not improve recognition rate. For descrip-
tors with orientation estimation such as ORB, the results are
improved by a large amount for the test image 3. The most
significant improvement is achieved for the Graffiti data set
which contains scale and perspective changes.

4.2 Improving the Inlier Ratio Characteristics

The previous experiments measure the classification perfor-
mance of the keypoint matching over ground truth corre-
spondences. As a more realistic test, we detect keypoints in
the test images and we match each one to the reference key-
points to yield a list of potential correspondences. We rank
these by their negative descriptor distance and measure the
ratio of the correct matches to the total number of matches.
This ratio is equal to the inlier ratio during the iterations of a
robust estimator such as PROSAC [6] and it is a measure of
the precision of the keypoint matching approach. The inlier
ratio values obtained as such directly influences the required

1 Note that for each descriptor type, we use different keypoint de-
tector and descriptor settings (either the OpenCV defaults or the setup
used by the authors). So, the figures in this paper should not be used
for performance comparison between different descriptors.

minimum number of PROSAC iterations to correctly calcu-
late the pose of an object by keypoint matching.

To show the benefits of keypoint specific scoring, we
perform three sets of measurements. First, as a baseline, we
rank the nearest neighbor matches using the Hamming dis-
tance. Second, we rank only the nearest neighbor matches
according to the scores of Equation 3. Finally, we both pick
the best match in the K near neighbor (KNN) list and rank
these correspondences according to Equation 3.

Table 1 lists the results obtained. The re-weighted near-
est neighbor (RNN) values shows the improvement brought
only by using the scores of Equation 3. This leads to higher
initial inlier ratios even though the final ratio at 500 matches
stays nearly the same. The KNN curves shows the addi-
tional improvement brought by searching beyond the nearest
neighbor. In almost all cases, considering the KNNs leads to
a higher inlier ratio over the best 500 keypoint matches.

For Graffiti, the weaker BRIEF performance compared
to BRISK and FREAK is more than offset by exploiting the
K near neighbors. For the other data sets, the BRIEF perfor-
mance is either too low (Boat) or too high (Bikes and Wall)
to lead to a real difference in performance.

For Boat, the baseline inlier ratios among the best 250
BRISK and FREAK correspondences are 44% and 45%, re-
spectively. The ten near neighbor inlier rates increase to 86%
and 83%, nearly doubling in each case. Such rates mean al-
most immediate convergence for PROSAC, requiring only
5 iterations to guarantee sampling of four inliers with 95%
probability, more than 20 times faster than the baseline.

4.3 Keypoint Matching with Locality Sensitive Hashing

For some vision tasks, the reference image collection is larger
than a single image. In this case, the number of reference
descriptors also increases and therefore it is impractical to
match keypoints with brute force descriptor search.To eval-
uate the performance of our approach in such a case, we
concatenate the descriptors from all reference images from
Graffiti, Boat, Bikes, Wall, plus the four other images. The
total number of reference descriptors is around 8000. As in
Section 4.2, we compute the inlier ratio curves but this time
we compute the list of ten near neighbors with LSH. We
use the FLANN [17] implementation of LSH available in
OpenCV with 12 tables, a key length of 20, and a multi-
probe level of 2. This yields an LSH precision of 90% (The
nearest neighbor found by LSH is the same as found by the
brute force search nine out of ten times).

As Table 2 shows, the resulting inlier ratios are lower
than those in Table 1 since the number of reference descrip-
tors is eight times greater. However, our approach recovers
matches that would have been lost if only the nearest neigh-
bor had been used. The improvement (usually a factor of
two) is more dramatic for Boat and Graffiti.
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Fig. 5 The recognition rate improves when we exploit the information in the first ten near neighbors as opposed to using just the nearest neighbor.
Note that the improvement is most significant when the recognition rate is low (3–6) and the number of matches may not be enough for correct
registration of the test image. The performance improves as M is increased from 4 to 8, however increasing M beyond 10 degrades performance
due to the exponentially increasing number of parameters in the probabilistic model that requires even more training data. Hence we limit our
experiments to M = 4 and M = 8.
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Table 1 Inlier ratio values when matching the third test image to the reference image in each image sequence. Results are obtained by ranking the
nearest neighbor matches only by the descriptor distance (NN), by the keypoint specific score of Equation 3 (Reweighted NN→ RNN), or ranking
the K near neighbor list matches by Equation 3 (KNN, with K ∈ {5,10,20}). For each dataset and descriptor combination, inlier ratios at 100, 250,
and 500 keypoint matches are listed. In general, keypoint specific ranking improves the inlier ratio for the best few hundred correspondences and
looking inside the ten near neighbor list yields improved inlier ratio at 500 keypoint matches.

Descriptor BRIEF BRISK FREAK LATCH ORB
# of Matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500

B
ik

es

NN 0.97 0.97 0.88 0.78 0.61 0.46 0.86 0.72 0.53 0.99 0.95 0.70 0.99 0.97 -

RNN-4 bits 0.93 0.90 0.85 0.84 0.73 0.51 0.85 0.79 0.58 0.96 0.95 0.70 0.98 0.97 -
RNN-8 bits 0.94 0.91 0.87 0.81 0.70 0.51 0.86 0.79 0.59 0.98 0.96 0.70 0.98 0.97 -
5NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.59 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
5NN-8 bits 0.95 0.92 0.88 0.80 0.76 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -

10NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
10NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -
20NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.63 0.96 0.96 0.72 0.99 0.97 -
20NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -

B
oa

t

NN 0.00 0.00 0.00 0.65 0.44 0.29 0.60 0.45 0.37 0.40 0.22 0.13 0.13 0.14 0.11

RNN-4 bits 0.00 0.00 0.00 0.94 0.63 0.35 0.87 0.75 0.48 0.54 0.27 0.14 0.51 0.28 0.15
RNN-8 bits 0.00 0.00 0.00 0.96 0.65 0.35 0.90 0.77 0.49 0.61 0.27 0.14 0.55 0.28 0.15
5NN-4 bits 0.00 0.00 0.01 0.96 0.78 0.52 0.85 0.80 0.65 0.66 0.44 0.23 0.64 0.46 0.29
5NN-8 bits 0.00 0.00 0.01 0.98 0.82 0.53 0.89 0.83 0.67 0.71 0.44 0.24 0.72 0.50 0.29

10NN-4 bits 0.00 0.00 0.02 0.96 0.80 0.56 0.85 0.81 0.67 0.68 0.50 0.27 0.67 0.50 0.34
10NN-8 bits 0.01 0.01 0.03 0.98 0.86 0.59 0.89 0.83 0.70 0.74 0.52 0.29 0.76 0.54 0.36
20NN-4 bits 0.00 0.00 0.01 0.96 0.80 0.59 0.85 0.81 0.67 0.69 0.51 0.29 0.67 0.50 0.37
20NN-8 bits 0.01 0.02 0.03 0.98 0.86 0.63 0.89 0.83 0.71 0.76 0.56 0.32 0.75 0.55 0.39

G
ra

ffi
ti

NN 0.28 0.21 0.16 0.61 0.36 0.23 0.53 0.40 0.30 0.43 0.27 0.17 0.37 0.26 0.18

RNN-4 bits 0.49 0.32 0.20 0.70 0.44 0.26 0.70 0.54 0.34 0.54 0.36 0.19 0.55 0.38 0.22
RNN-8 bits 0.54 0.34 0.20 0.72 0.44 0.26 0.72 0.54 0.35 0.53 0.37 0.19 0.59 0.39 0.22
5NN-4 bits 0.54 0.44 0.34 0.70 0.50 0.33 0.72 0.57 0.43 0.51 0.37 0.22 0.52 0.40 0.27
5NN-8 bits 0.67 0.52 0.37 0.72 0.53 0.35 0.73 0.61 0.43 0.54 0.39 0.24 0.54 0.42 0.29

10NN-4 bits 0.54 0.44 0.35 0.70 0.50 0.34 0.73 0.58 0.44 0.51 0.40 0.23 0.52 0.40 0.27
10NN-8 bits 0.68 0.54 0.41 0.72 0.53 0.36 0.74 0.62 0.46 0.55 0.41 0.26 0.53 0.42 0.30
20NN-4 bits 0.54 0.46 0.38 0.70 0.50 0.35 0.73 0.59 0.45 0.51 0.39 0.24 0.52 0.40 0.28
20NN-8 bits 0.69 0.56 0.45 0.72 0.54 0.38 0.74 0.62 0.47 0.55 0.41 0.27 0.53 0.43 0.31

W
al

l

NN 0.99 0.99 0.88 1.00 0.96 0.67 0.97 0.86 0.56 0.90 0.78 0.47 1.00 0.95 0.62

RNN-4 bits 0.99 0.99 0.90 1.00 0.97 0.73 0.98 0.91 0.61 0.89 0.84 0.52 1.00 0.96 0.64
RNN-8 bits 0.99 0.99 0.92 1.00 0.98 0.74 0.97 0.91 0.61 0.91 0.85 0.52 1.00 0.96 0.64
5NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.64 0.90 0.84 0.56 1.00 0.96 0.65
5NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.78 0.97 0.92 0.66 0.92 0.87 0.56 1.00 0.96 0.67

10NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
10NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.57 1.00 0.96 0.67
20NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.76 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
20NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.56 1.00 0.96 0.67

4.4 Computation Time

For 1000 reference and 928 query keypoints, using a brute-
force approach — that is when the descriptor distance to
each reference keypoint is calculated — the total time for
keypoint matching using only the nearest neighbor and Ham-
ming distance is 4.0 milliseconds (using the POPCNT in-
struction on a 64-bit laptop CPU). At K = 10, our approach
takes 4.2 milliseconds irrespective of the value of M. This
means that the overhead to compute the scores of Equation 3
for the top ten near neighbors is around 5% for 1000 refer-
ence keypoints. The absolute overhead is negligible even for

real-time applications and at the worst case it scales linearly
with K thus it will be halved at K = 5 and doubled at K = 20.

5 Conclusion

We propose an approach that can be used in conjunction
with the binary descriptors to search for keypoint matches
beyond the nearest neighbor. Our approach strikes a bal-
ance between the keypoint specific representations and the
generic descriptors. By using a two step approach, we com-
bine the advantages of both and improve the robustness of
binary descriptors for real-time object detection applications.
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Table 2 With eight reference images, we measure the inlier ratio values when matching the third test image of each image sequence and LSH is
used to compute the near neighbor list. Similar to the results of Table 1, ranking the correspondences by Equation 3 improves the overall values.
Searching in the first ten near neighbors further increases the number of inliers that can be obtained.

Descriptor BRIEF BRISK FREAK LATCH ORB
# of Matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500

B
ik

es

NN 0.97 0.96 0.87 0.53 0.37 0.27 0.81 0.59 0.40 0.99 0.95 0.69 0.99 0.94 -

RNN-4 bits 0.93 0.90 0.84 0.66 0.49 0.33 0.84 0.68 0.46 0.96 0.95 0.69 0.98 0.96 -
RNN-8 bits 0.94 0.91 0.86 0.64 0.47 0.33 0.86 0.70 0.47 0.98 0.96 0.69 0.98 0.96 -

10NN-4 bits 0.94 0.91 0.83 0.70 0.52 0.40 0.83 0.71 0.51 0.96 0.96 0.71 0.99 0.97 -
10NN-8 bits 0.95 0.92 0.86 0.70 0.56 0.41 0.84 0.72 0.53 0.98 0.96 0.71 0.99 0.97 -

B
oa

t

NN 0.01 0.01 0.00 0.40 0.25 0.15 0.35 0.28 0.20 0.21 0.13 0.08 0.04 0.04 0.04

RNN-4 bits 0.00 0.01 0.00 0.72 0.34 0.17 0.74 0.48 0.27 0.41 0.18 0.09 0.25 0.12 0.06
RNN-8 bits 0.01 0.00 0.00 0.71 0.34 0.17 0.76 0.49 0.27 0.45 0.18 0.09 0.26 0.12 0.06

10NN-4 bits 0.00 0.00 0.00 0.88 0.59 0.35 0.76 0.68 0.50 0.59 0.31 0.17 0.46 0.28 0.17
10NN-8 bits 0.00 0.00 0.00 0.91 0.64 0.36 0.82 0.74 0.51 0.64 0.32 0.17 0.49 0.30 0.17

G
ra

ffi
ti

NN 0.14 0.10 0.07 0.59 0.34 0.21 0.47 0.31 0.22 0.39 0.21 0.13 0.32 0.20 0.15

RNN-4 bits 0.27 0.16 0.10 0.65 0.39 0.23 0.64 0.42 0.27 0.46 0.26 0.14 0.46 0.31 0.17
RNN-8 bits 0.29 0.18 0.10 0.69 0.41 0.23 0.66 0.43 0.27 0.47 0.26 0.14 0.48 0.31 0.17

10NN-4 bits 0.35 0.24 0.19 0.66 0.47 0.31 0.67 0.49 0.34 0.42 0.26 0.17 0.42 0.30 0.20
10NN-8 bits 0.46 0.33 0.23 0.70 0.48 0.32 0.68 0.52 0.37 0.49 0.29 0.17 0.46 0.33 0.21

W
al

l

NN 0.99 0.98 0.80 1.00 0.88 0.56 0.92 0.68 0.45 0.90 0.69 0.41 0.98 0.82 0.52

RNN-4 bits 0.99 0.96 0.86 1.00 0.97 0.60 0.96 0.80 0.52 0.89 0.81 0.45 0.98 0.94 0.56
RNN-8 bits 0.99 0.98 0.88 1.00 0.98 0.61 0.95 0.83 0.52 0.91 0.82 0.45 0.99 0.94 0.56

10NN-4 bits 0.99 0.96 0.86 1.00 0.95 0.66 0.96 0.81 0.59 0.90 0.83 0.50 0.98 0.92 0.59
10NN-8 bits 1.00 0.98 0.88 1.00 0.97 0.68 0.95 0.84 0.60 0.92 0.85 0.52 0.99 0.94 0.59
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