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Abstract

In the frequency estimation of sinusoidal signals
observed in impulsive noise environments, techniques
based on Gaussian noise assumption are unsuccess-
ful. One possible way to find better estimates is to
model the noise as an alpha-stable process and to use
the fractional lower order statistics of data to esti-
mate the signal parameters. In this work noise and
signal subspace methods, namely MUSIC and Princi-
pal Component-Bartlett, are applied to fractional lower
order statistics of sinusoids embedded in alpha-stable
noise. The simulation results show that techniques
based on lower order statistics are superior to their
second order statistics-based counterparts, especially
when the noise exhibits a strong impulsive attitude.

1. Introduction

Most of the work on the frequency estimation prob-
lem assumes that the additive noise has Gaussian dis-
tribution. This is partly because of the nice properties
of the Gaussian model which allows for simplification of
the theoretical work and decreases the computational
complexity in signal parameter estimation. As long as
the noise distribution can fit approximately to a Gaus-
sian model, in particular for the tails of the distribu-
tion, one can obtain good estimators with the Gaussian
noise assumption. But if the noise process belongs to a
non-Gaussian, especially a heavily-tailed, distribution
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class or when the noise is of impulsive nature, param-
eter estimators which are based on Gaussian noise as-
sumption break down.

Impulsive noise processes can be modeled using sta-
ble distributions. If a signal can be thought of as the
sum of a large number of independent and identically
distributed random variables, the limiting distribution
will be in the class of stable distributions according
to Generalized Central Limit Theorem [5], and stable
distributions cover Gaussian distribution in the limit.

If the additive noise has a heavily-tailed distribution
which is successfully modeled by alpha-stable distribu-
tions, the performance of covariation-based frequency
estimators is better than that of the traditional esti-
mators which are based on second order statistics.

In this work subspace-based estimation methods us-
ing covariations are considered. In Section 2, the SαS
distributions are briefly discussed. In Section 3, the ap-
plication of fractional lower order moments (FLOM) to
frequency estimation problem is presented. Section 4
covers the results of the simulation experiments. Fi-
nally conclusions are in Section 5.

2. SαS Distributions

An important sub-class of stable distributions are
symmetric alpha-stable (SαS) distributions. The char-
acteristic function of SαS variables is given by:

φ(ω) = exp {jδω − γ|ω|α} (1)

where α is the characteristic exponent (0 < α ≤ 2), δ
is the location parameter (−∞ < δ <∞) and γ is the
dispersion (γ > 0). Without losing generality we may
take the location parameter δ = 0 as in the zero mean
Gaussian noise assumption case. This assumption will



lead to the characteristic function:

φ(ω) = exp {−γ|ω|α} . (2)

For SαS processes only the moments of order p <
α exist. So the estimation methods based on second
order statistics of the data cannot be applied. One
solution is to use FLOM of the process [5]. The so-
called covariations [4] of two random variables are used
instead of second order moments in the analysis. The
covariation of two jointly SαS real random variables
with dispersions γx and γy are given as:

[X,Y ]α =
E[XY <p−1>]

E[|Y |p]
γy (3)

where γy = [Y, Y ]α is the dispersion of random variable
Y and Y <p−1> = |Y |p−2Y .

3. Frequency Estimation Problem

In the frequency estimation problem the signal
model assumed consists of multiple sinusoids

sn =
K

∑

k=1

Ak sin {ωkn + θk} (4)

observed in additive SαS noise

xn = sn + zn, n = 1, · · · , N. (5)

where Ak is the amplitude, ωk is the angular frequency,
and θk is the phase of the kth real sinusoid. K is the
number of sinusoids and N is the sample size. xn and
zn are realizations of observation sequenceXn and SαS
noise sequence Zn, respectively.
When the noise samples are independent and identi-

cally distributed, the observation sequence can be mod-
eled as a stable AR-process:

Xn = a1Xn−1 + · · ·+ aMXn−M + b0Zn. (6)

This leads to the Generalized Yule-Walker Equation
when Xn−m is given as [5]:

E[Xn|Xn−m] = a1E[Xn−1|Xn−m] + · · ·

+aME[Xn−M |Xn−m], (7)

E[Xn+l|Xn] = λ(l)Xn (8)

where m = 1, · · · ,M . If λ(l) denotes the covariation
coefficient of Xn+l with Xn, one can find the AR-
parameters by solving the following linear set of equa-
tions:

Ca = λ (9)

with

C =











λ(0) λ(−1) · · · λ(1−M)
λ(1) λ(0) · · · λ(2−M)
...

...
...

...
λ(M − 1) λ(M − 2) · · · λ(0)











,

a =











a1

a2

...
aM











, λ =











λ(1)
λ(2)
...

λ(M)











.

In the frequency estimation of sinusoids given by the
Equations 4 and 5 the sinusoidal signal component can
be assumed to be a stable AR process of order 2K. As
in the Gaussian additive noise case, the model orderM
of the AR model for the noisy signal should be selected
higher than 2K in order to allow sufficient additional
subspace dimension for the noise component. Assum-
ing that the signal and the noise components are stable
processes with the same characteristic exponent, their
covariation can be calculated as follows:

[xj , xk]α = [sj + ej , sk + ek]α (10)

= [sj , sk]α + [sj , ek]α

+[ej , sk]α + [ej , ek]α

where j, k = 1, . . . , N . Since the signal and addi-
tive noise are assumed to be independent, the cross-
covariation of noise and signal components with each
other is

[sj , ek]α = 0 (11)

[ej , sk]α = 0.

On the other hand the covariations of the signal com-
ponent and noise component with themselves are found
as:

[sj , sk]α = λ(j − k)γsk
(12)

[ej , ek]α = δj,kγek
(13)

where δj,k is the Kronecker delta.
The covariation matrix for alpha-stable processes

has the same meaning as that of the covariance ma-
trix for Gaussian processes. As one performs eigen-
decomposition of the covariation matrix, the larger
eigenvalues will correspond to signal subspace eigen-
vectors and the remaining eigenvectors will constitute
the noise subspace. So one can perform eigen-analysis
on the covariation matrix and then apply a suitable
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Figure 1. Sample variance and bias of PC-Bartlett
and ROC-Bartlett frequency estimators versus
normalized angular frequency, a) PC-Bartlett, b)
ROC-Bartlett (α = 1.0, p = 0.8 (ROC-Bartlett),
M = 20, GSNR = 5 dB, N = 50, 100 noise real-
izations, 20 phase realizations).

noise subspace or a signal subspace technique to esti-
mate the parameters. Note that the covariation matrix
is not symmetric. This makes the eigen-analysis more
complicated and renders many of the subspace-based
parameter estimation techniques developed for Gaus-
sian processes unsuitable for the general alpha-stable
processes.
One such technique applied to direction of arrival

estimation problem is the Robust Covariation-Based
MUSIC (ROC-MUSIC) [6]. In this work, we first ap-
ply ROC-MUSIC which is a noise subspace method
to frequency estimation in alpha-stable environments
problem and then we also apply Robust Covariation-
Based-Bartlett (ROC-Bartlett) which is a signal sub-
space method, to the problem.
The second order statistics-based principal compo-

nent Bartlett frequency estimate is obtained by the
peaks of the spectrum estimator [3]:

PC-Bartlett(ω) =
1

M

2K
∑

i=1

λi
∣

∣dHvi
∣

∣

2
(14)

where d is the complex sinusoidal vector d =
[1 exp {jω} · · · exp {jω(M − 1)}], and λi and vi are
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Figure 2. Bias of MUSIC and ROC-MUSIC fre-
quency estimators versus characteristic exponent
of alpha-stable noise, a) PC-Bartlett and MU-
SIC, b) ROC-Bartlett and ROC-MUSIC (ω =
0.76 rad/sec, M = 20, GSNR = 5 dB, N = 50,
100 noise realizations, 20 phase realizations).

ordered eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λM , and
the corresponding eigenvectors of M ×M autocorrela-
tion matrix. ROC-Bartlett is obtained by substituting
the covariation matrix for the autocorrelation matrix.

4. Simulation Experiments

We have used ROC-MUSIC and ROC-Bartlett
methods to estimate the frequency of a single real sinu-
soid. The modified FLOM (MFLOM) estimator given
by [6]

Ĉ(k, l) =

∑N−M+1

i=1 Xk+i−1|Xl+i−1|
p−2Xl+i−1

∑N−M+1

i=1 |Xl+i−1|p
,

k, l = 1, · · · ,M, (15)

is defined for moment order p ∈ [0, 2] and it is used
to estimate the (k, l)th element of the sample covari-

ation matrix Ĉ. M denotes the order of AR-model.
We have applied SαS noise sequences with varying α
and γ parameters. To generate the SαS noise pro-
cess we used the method described by Tsihrintzis and
Nikias [7] which is a special case of the more general
method including the non-symmetric alpha-stable ran-
dom variable generation given by Chambers, Mallows
and Stuck [2]. The moment order p and the sample
size N were equal to 0.8 and 50, respectively. The AR-
model order was chosen as 20 in the simulations. The
generalized SNR, GSNR = 10 log ( 1

γN

∑N
n=1 |s(n)|

2) is
equal to 5 dB.
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Figure 3. Variance reduction of ROC-Bartlett
with respect to PC-Bartlett frequency estimator
versus GSNR averaged on the frequency axis, a)
α = 1.0, b) α = 1.4, c) α = 1.8, d: α = 2.0
(M = 20, N = 50, 100 noise and phase realiza-
tions).

4.1. Frequency Dependence of Bias and
Variance

In Figure 1 the sample variance and the bias of
PC-Bartlett and ROC-Bartlett frequency estimators
are plotted against the angular frequency for α = 1.0
(Cauchy distribution) and GSNR = 5 dB. The number
of noise realizations and phase realizations are 100 and
20, respectively, making a total of 2000 Monte Carlo
runs. The ROC-Bartlett has approximately 5 dB lower
sample variance than the PC-Bartlett.
The bias curves depict a symmetry around approx-

imately ω = 1.7 rad/sec. The ROC-Bartlett performs
much better than the PC-Bartlett. The difference of
their bias value is more than 0.4 rad/sec around ω =
0.2 rad/sec.

4.2. Dependence of Bias upon α

The bias behaviour of the estimators for ω = 0.76
rad/sec as a function of the characteristic exponent α
of the noise is shown in Figure 2. The figure indicates
that the bias gets smaller as α increases. When α = 1
the bias values are 0.45 rad/sec for PC-Bartlett and
MUSIC and it is less than 0.1 rad/sec for their ROC
versions. As this figure depicts for the single tone case
as in our experiments, MUSIC and Bartlett estimators
show exactly the same performance.

4.3. Dependence of Variance Reduction
upon the GSNR

In Figure 3, the variance reduction achieved by
ROC-Bartlett with respect to PC-Bartlett is plotted

against GSNR for different values of α. The num-
ber of Monte Carlo runs is 100, each with a different
noise and phase realization. The curve exhibiting the
highest gain belongs to α = 1.0 (Cauchy noise). This
gain is approximately 17 dB when GSNR = 20 dB.
The curves show that the variance increase introduced
by the ROC-Bartlett against PC-Bartlett is negligible
with the exception of Gaussian noise case where the
GSNR threshold of ROC estimator is higher with re-
spect to that of the second order statistics-based es-
timator. This behaviour validates the robustness of
FLOM-based subspace techniques and it is also shared
by the noise subspace technique ROC-MUSIC.

5. Conclusion

When the additive noise in the frequency estimation
problem can be modeled as an alpha-stable process,
the FLOM-based subspace techniques perform better
than their second order statistics-based counterparts.
Both ROC-MUSIC and ROC-Bartlett methods showed
superior performance with respect to MUSIC and PC-
Bartlett methods in our experiments, especially for low
α values.
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