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b Department of Electrical and Electronics Engineering, Faculty of Engineering, Boğaziçi University, İstanbul, Turkey
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Abstract

The sinusoidal frequency estimation from short data records based on Toeplitz autocorrelation (AC) matrix estimates suffer from
the dependence on the initial phases of the sinusoid(s). This effect becomes prominent when the impact of additive noise vanishes,
that is at high signal-to-noise ratios (SNR). Based on both analytic derivation of the AC lag terms and simulation experiments we
show that data windowing can mitigate the limitations caused by the phase dependence. Thus with proper windowing, the variance
of the frequency estimate is no more eclipsed by phase dependence, but it continues to decrease linearly with increasing SNR. The
study covers both the cases of a single sinusoid and two sinusoids closely spaced in the frequency with the Pisarenko frequency
estimator, MUSIC and principal component autoregressive frequency estimators. The trade-offs between the spectral broadening
and the achieved minimum variance level due to the data window are analyzed in detail.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Model-based frequency estimation methods are used extensively due to their computational advantages and high
resolution property. Especially, for short data records model-based spectral estimation techniques show superior per-
formance under adequate signal-to-noise ratio (SNR) conditions.

Although the methods that specifically make use of the Toeplitz autocorrelation (AC) matrix, that is the AC method
of linear prediction, exhibit good performance at low SNRs, they suffer from the dependence on the initial phase(s) of
the sinusoid(s). This phase dependence reveals itself at high SNR values as a phenomenon similar to noise floor effect.
In other words, even though the influence of the additive noise has been reduced to a negligible level, the accuracy of
the frequency estimate does not improve proportional to the ever increasing SNR.

An approach to obviate this handicap is to use the non-Toeplitz versions of the AC matrix, that is the covariance
method of linear prediction [1]. These non-Toeplitz spectrum/frequency estimation schemes show superior perfor-
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mance vis-a-vis their Toeplitz companions under phase uncertainty conditions. However, computing the eigenvalues
and eigenvectors of non-Toeplitz, that is, symmetric but arbitrary real matrices, is of O(M3) complexity [2] while
the complexity of Toeplitz matrices remains at order O(M2) [3], where the notation O(·) denotes the order of re-
quired complex multiplications and M is the size of the AC matrices. This complexity differential motivates us for
subspace-based frequency estimators utilizing Toeplitz AC matrix estimates.

In this work, we investigate the performance trade-offs of data windowing to reduce phase dependence, in other
words to promote the performance of AC methods up to the level of covariance methods, and the concomitant loss of
resolution. The highlights of our work lists as follows:

• A data windowing scheme is proposed that decreases the phase dependence of the AC lag estimates, which in turn
were responsible for the variance lower bound in the “Toeplitz” frequency estimation. The trade-offs between
power loss, resolution and variance reduction of the windows are demonstrated for the single and double tone
cases.

• The statistics of AC lag estimates with and without data windowing in the case of a single real sinusoid are
derived. This probability density function (pdf) is found to be the convolution of a Gaussian pdf due to additive
white Gaussian noise (AWGN) and a double-peaked pdf due to the phase dependence.

• The histogram of the Pisarenko frequency estimator (PISFE) for the single tone case is shown to have a double-
peaked form similar to the pdfs of AC lags in high SNR conditions. Windowing results in a similar mitigation
effect for PISFE as well. Consequently, the derived pdf of PISFE, which is based on the Gaussianity assumption
of the AC lags after data windowing, perfectly matches the simulated histogram.

The paper is organized as follows: In Section 2, the sinusoidal frequency estimation problem and the selected
frequency estimators, namely, PISFE, multiple signal characterization (or classification) (MUSIC) and the principal
component autoregressive (PC-AR) frequency estimators are briefly visited. In Section 3, the need for data windowing
is justified and the statistics of the AC lag estimates with and without data windowing are derived. The analytical
expressions for AC lags are compared with simulation results for validation. In Section 4, the pdfs of PISFE with
and without data windowing are derived and the related performance improvement is discussed. Section 5 covers the
simulation results with both single and two sinusoids to demonstrate the trade-offs in selecting a suitable data window.
Finally, conclusions are given in Section 6. Detailed derivations of the pdf of the phase-dependent component of AC
lags, the pdf of AC lags with data windowing and the pdf of PISFE are given in the appendices.

2. Frequency estimation problem and utilized model-based estimators

The signal model under consideration consists of multiple real sinusoids observed in AWGN, i.e.,

xk = sk + nk =
K∑

i=1

√
2Ai cos[ωikT + φi] + nk, k = 1,2, . . . ,N, (1)

where Ai , φi , and ωi are the non-random amplitude, the random phase angle uniformly distributed on (−π,π) and
the angular tone frequency of the ith real sinusoid, respectively, and T is the sampling period, {nk} is a real white
Gaussian noise sample sequence with zero mean and power σ 2

n and N is the number of data samples. We are interested
only in the angular frequency parameter. The other parameters are considered as nuisance factors. We assume without
loss of generality that the number of sinusoids is either known or can be estimated from the data. We also drop the
index of the sinusoidal parameters for the single sinusoid case and we will assume T = 1 throughout the paper in
order to simplify the notation.

In this work we assess three different frequency estimators, namely, PISFE, MUSIC, and PC-AR frequency esti-
mators. PISFE is an inherently Toeplitz sample AC matrix-based frequency estimator, generally used to estimate the
frequency of single sinusoids [4,5]. Its mathematical tractability enables us to derive its pdf (see Section 4), which in
turn makes it possible to obtain analytical quality expressions for the frequency estimates.

The single-dimensional noise-subspace of PISFE is responsible for the rather poor performance of this estimator.
Therefore, we look at two alternative frequency estimators, MUSIC and PC-AR, which use higher dimensional noise-
subspaces. MUSIC is the widely used generalization of Pisarenko harmonic decomposition concept and it reduces to
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PISFE when the dimension of noise-subspace is unity [6]. PC-AR frequency estimator [1] is based on signal-subspace
quantities in contrast to MUSIC and PISFE. We use MUSIC and PC-AR frequency estimators to show that the advan-
tages of data windowing, proven analytically for PISFE, generalizes to more powerful frequency estimators. In order
to obtain the MUSIC and PC-AR frequency estimators, the Toeplitz sample AC matrix must first be constructed as

RM =

⎡
⎢⎢⎢⎣

r(0) r(−1) · · · r(−M + 1)

r(1) r(0) · · · r(−M + 2)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

r(M − 1) r(M − 2) · · · r(0)

⎤
⎥⎥⎥⎦ , (2)

where r(k) denotes the kth autocorrelation coefficient of the input samples and is estimated as

r(k) = 1

N − k

N−k∑
i=1

xixi+k. (3)

3. The description of the phase dependence

Consider the sample AC coefficients, given via the AC method as in (3). For a single sinusoid at angular frequency
ω, the AC lag estimates are given by (assume A = 1 without loss of generality)

rx(l) = 1

N − l

N−l∑
k=1

{
cos(ωl) + cos

(
ω(2k + l) + 2φ

)+ (√
2 cos(ωk + φ)nk+l

)
+ (√

2 cos
(
ω(k + l) + φ

)
nk

)+ nknk+l

}
.

The large sample statistics of rx(l) was derived in [7,8] which were shown to be Gaussian distributed with mean and
variance

μx(l) = cos(ωl) (4)

and

σ 2
x (l) = σ 4

n

N

(
1 + 4

σ 2
n

cos2(ωl)

)
, (5)

respectively, for l = 0, . . . ,N − 1. For small sample sizes let us express rx(l) as

rx(l) = rx,h(l) + rx,g(l), (6)

where

rx,h(l) = 1

N − l

N−l∑
k=1

cos
(
ω(2k + l) + 2φ

)
,

and where rx,g(l) corresponds to the sum of all the remaining terms in rx(l), that is the deterministic component
cos(ωl) and the last three components which contain AWGN terms. In this study, we neglect the dependence of
rx,h(l) and rx,g(l) and derive the pdf of rx(l) under the assumption that they are statistically independent. Indeed the
sample crosscorrelation coefficients of rx,h(1) and rx,g(1) are found to be −0.0022, −0.00075, and −0.00058 at 0,
20, and 40 dB SNRs, respectively. These negligible values justify our independence approximation. Furthermore we
assume that the additive noise components dominate the rx,g(l) term and that the effect of phase is secondary. The
pdf of the sum of two independent random variables in (6) is obtained as the convolution of the pdfs of the individual
component variables. The pdf of rx,h(l) is derived in Appendix A as

f
(l)
Rx,h

(rx,h) = 1

πdx(l)
√

1 − (rx,h(l)/dx(l))2
for −dx(l) < rx,h(l) < dx(l), (7)

where

dx(l) = 1

N − l

∣∣∣∣∣
N−l∑

exp
{
j
(
ω(2k + l)

)}∣∣∣∣∣. (8)

k=1
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The term, rx,h(l), which takes a convolutive role in the pdf of the Toeplitz AC lag estimates given in (7), is a direct
outcome of the phase dependence. This pdf has the form of the derivative of the arcsinω scaled with the factor dx(l).
Notice first, that dx(l) determines the support of the pdf in (7), and second, that the support will tend to zero slowly
due to the factor 1/(N − l). As for the second term in (6), rx,g(l), we assume it to have a Gaussian distribution, valid
for large sample sizes, with mean μx(l) and variance σ 2

x (l). So, the pdf of rx(l) is found as the convolution

f
(l)
Rx

(rx) =
dx(l)∫

−dx(l)

exp
{− 1

2
(rx(l)−τ−μx(l))2

σ 2
x (l)

}
πdx(l)

√
1 − (τ/dx(l))2

√
2πσ 2

x (l)
dτ. (9)

In Figs. 1 and 2 we plotted the pdf of rx(1) together with the simulations histogram with 100,000 independent runs
of a single sinusoid in AWGN where ω = π/4 rad and N = 50. In Fig. 1, we have SNR = 5 dB whereas it is 30 dB in
Fig. 2. We observe close matching of the histogram and the Gaussian pdf (mean μx(1) and variance σ 2

x (1)) in Fig. 1,
even though this pdf was derived using the central limit theorem (CLT), which is actually valid for large sample sizes
[7,8]. For the 5 dB SNR value, the pdf computed using (9) perfectly matches the Gaussian pdf. For some higher SNR
value, say 30 dB, the pdf of rx(1) as depicted in Fig. 2 no longer resembles to a Gaussian form. In fact, its shape is

Fig. 1. Pdf of rx(1): low SNR case, solid line: analytic computation, histogram lines: histogram obtained by simulation (ω = π/4 rad, N = 50,
SNR = 5 dB, 100,000 noise realizations).

Fig. 2. Pdf of rx(1): high SNR case, a: pdf of rx,g(1) (only Gaussian component, analytic computation), b: pdf of rx(1) (analytic computation),
c: histogram obtained by simulation, d: pdf of (rx,h(1) + cos(ω)) (shifted phase-dependent component, analytic computation) (ω = π/4 rad,
N = 50, SNR = 30 dB, 100,000 noise realizations).
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governed by the pdf of the phase-dependent term rx,h(1) whose support is independent from SNR level. This behavior
makes it impossible for the variance of the AC lag estimates to tend to zero as the SNR increases unboundedly. The
asymptotic lower bound in this case is given by the variance of rx,h(l). This behavior will consequently cause an error
floor on the variance of the frequency estimates. The pdf of rx(1) computed by (9) and the simulation histogram again
match closely as shown by the curves “b” and “c” in Fig. 2. In this figure the pdfs of the individual Gaussian and phase-
dependent components are also plotted, which use, respectively, the Gaussian pdf assumption and expression (7) with
l = 1.

3.1. Data windowing to alleviate the effects of phase dependence

We suggest data windowing (or tapering) to alleviate the effect of phase dependence on the frequency estimators
based on Toeplitz sample AC matrix. We point out that the phase dependence becomes observable only at large
SNRs and that it should be considered as a leakage phenomenon in the classical sense, that is, the smearing of power
spectrum due to discontinuities in the periodic boundaries [9]. For a pure sinusoid, one can observe that the distribution
of leakage in the power spectrum is a function of the tone phase. Based on the Wiener–Khinchine relationship between
the AC lags and the power spectrum, the frequency estimation using AC lags is equivalent to DFT-based methods.
Thus one can argue that, data windowing which is the standard leakage control technique in DFT-based spectra,
should be effective in mitigating the leakage disturbance due to phase dependence in the AC lags. On the other hand,
AC lags-based frequency estimation shares computational advantage and also partly the high resolution property of
model-based estimators when compared to DFT analysis-based methods as it will be shown in the sequel.

When the data terms in (1) are multiplied by the window coefficients {wk, k = 1, . . . ,N}, we denote the win-
dowed process samples as {yk, k = 1, . . . ,N}, so that the AC lag terms {rx(l), rx,h(l), rx,g(l)} are now denoted as
{ry(l), ry,h(l), ry,g(l)}. Obviously, for the rectangular window one has {yk ≡ xk, k = 1, . . . ,N}. The statistics of the
AC lags for windowed data are derived in Appendix B. The mitigation of the phase-dependence reveals itself in the
shape of the AC lag pdfs. In fact the windowing causes simply the shrinking of the support of the phase-dependent
variable rx,h(l). After windowing, the support of the phase-dependent term, ry,h(l), is given by

dy(l) = 1

N − l

∣∣∣∣∣
N−l∑
k=1

wkwk+l exp
{
j
(
ω(2k + l)

)}∣∣∣∣∣, (10)

where j = √−1. For a rectangular window an analytic closed form expression can be found easily. For a general win-
dow, though analytical expression cannot be obtained, the multiplicative windowing factors in (10) become bounded
by

0 � wkwk+l � 1. (11)

Finally, this term becomes approximately equal to 1 in the middle of each window and it tends to zero at the boundaries
of the taper. For all reasonable window functions, the condition in (11) will hold and dy(l) will get smaller the
smoother the data window is. The computed values of {dy(l), l = 1,2,3} for N = 50 and ω = 0.5 rad are listed in
Table 1, which justify our claim.

The AC lags of the windowed data will still have a Gaussian part ry,g(l) with mean and variance given by (B.2)
and (B.6), respectively. In conclusion, with data windowing, the pdfs of both the rx,h(l) and rx,g(l) terms maintain
their shape, but with modified parameters dy(l), μy,g(l), and σ 2

y,g(l).
Restating the phase dependence problem in the frequency estimation, the pdf of rx(l) appears as a twin-peaked

function, especially at high SNR and small sample-size-values. Recall that the separation of the peaks in (7) is given
by dx(l) value (a direct evidence of phase dependence), and the two Gaussian humps have widths proportional to the

Table 1
{dy(i), i = 1,2,3} for the data windows (N = 50, ω = 0.5 rad)

Window name Rectangular Hamming Raised cosine Blackman–Harris

dy(1) 0.025173 0.00016380 2.2832E–06 6.3767E–08
dy(2) 0.039352 0.00028108 2.9835E–06 6.6067E–08
dy(3) 0.044294 0.00035629 5.6746E–06 6.9180E–08
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Table 2
Some common data windows

Window name Discrete-time function wk (k = 0, . . . ,N − 1)

Rectangular (uniform) 1

Hamming 0.54 + 0.46 cos( 2π
N

k)

Raised cosine (Hann, with α = 2) 0.5 + 0.5 cos( 2π
N

k)

Blackman–Harrisa 10
32 + 15

32 cos( 2π
N

k) + 6
32 cos( 4π

N
k) + 1

32 cos( 6π
N

k)

a The given Blackman–Harris type window is designed to achieve continuous first fifth order derivatives at the boundaries [11].

additive noise variance. There are three ways to merge the twin peaks into one that remove the evidence of phase
dependence. The first method is to increase the number of samples such that the valley width between peaks shrinks
with rate 1/(N − l). In the second method, merging can be attained with excess Gaussian smearing (dominance of
the Gaussian term in the convolution), as would happen at low SNRs, e.g., in Fig. 1. Finally the third method, as
proposed in this paper (curves “b” and “c” in Fig. 2), is windowing, where {dy(l), l = 1, . . . ,M}, the supports of

f
(l)
Ry,h

(ry,h), shrink and finally the small gap is filled by the Gaussian smear (convolution). Thus, improvement in the
phase dependence is obtained without sacrificing SNR or being obliged to take more data, however, one sacrifices
resolution.

The window types used in this work are given in Table 2.

4. The pdf of PISFE

Since PISFE allows analytical derivation of its pdf, we used it as a test case to illustrate the mitigation of the
phase dependence via windowing. For a single sinusoid case, PISFE is obtained in terms of the AC coefficients as
follows [10]:

ω̂PISFE = arccos(ψ), (12)

where

ψ = r(2) +√
r2(2) + 8r2(1)

4r(1)
.

The pdf of PISFE is obtained from the pdf of the intermediate random variable ψ using the transformation

f
(
ω̂PISFE

)=
√

1 − cos2(ω̂PISFE)f	

(
cos
(
ω̂PISFE

))
. (13)

The pdf of ψ is derived in Appendix C. The derivations are based on the CLT so the pdf expression is expected to be
valid only for large N (e.g., N � 50). The pdf is

f	(ψ) = 4K1e
−A4/2

A2(ψ)

[
B1(ψ)u(ψ)

(1 + A1(ψ))
+ B2(ψ)u(−ψ)

(1 − A1(ψ))

]
, (14)

where u(·) represents the unit step function. The remaining definitions are given as

K1 = 1

2πσ1σ2

√
1 − ρ2

,

A0(ψ) = (2ψ2 − 1)/ψ,

A1(ψ) = A0(ψ)/

√
A2

0(ψ) + 8,

A2(ψ) = 1

(1 − ρ2)

[(
A0(ψ)

σ2

)2

+ 1

σ 2
1

− 2ρA0(ψ)

σ1σ2

]
,

A3(ψ) = 2

(1 − ρ2)

[
ρ

σ σ

(
μ(2) + A0(ψ)μ(1)

)− μ(1)

σ 2
− A0(ψ)μ(2)

σ 2

]
,

1 2 1 2
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A4 = 1

(1 − ρ2)

[(
μ(1)

σ1

)2

+
(

μ(2)

σ2

)2

− 2ρμ(1)μ(2)

σ1σ2

]
,

B1(ψ) =
[

1 + A3(ψ)

4

√
2π

A2(ψ)
exp

A2
3(ψ)

8A2(ψ)

(
erf

(
A3(ψ)√
8A2(ψ)

)
− 1

)]
,

B2(ψ) =
[

1 + A3(ψ)

4

√
2π

A2(ψ)
exp

A2
3(ψ)

8A2(ψ)

(
erf

(
A3(ψ)√
8A2(ψ)

)
+ 1

)]

with {μ(i), i = 1,2} and {σ 2
i = σ 2(i), i = 1,2} representing the means and variances of the first two AC lags given

by (4) and (5), respectively, and

ρ = cov(r(1), r(2))

σ1σ2

is their correlation coefficient, where

cov
(
r(1), r(2)

)=
(

4Aσ 2
n

N

)
cos(ω) cos(2ω) (15)

is their cross-covariance. Finally, erf(·) denotes the error function.
We performed simulations with and without data windowing and also calculated analytically the corresponding

pdf using (13) and (14). In the calculation of the pdf of PISFE, the pdf of the AC lags are modeled by the Gaussian
densities with means and covariances defined by (4), (5), and (15) for the non-windowed data and by (B.2), (B.6),
and (B.7) for the windowed data, respectively. In other words, the phase dependence was intentionally ignored in
contrast to the simulation results. The normalized angular frequency ω = π/4 rad, the sample size N = 100 and the
number of the independent runs in the simulation is 100,000. The results in Fig. 3 depict how, without data windowing,
the phase-dependent effect emerges, even at the not very high SNR of 20 dB. The mismatch between the analytical
pdf and the simulation histograms is due to neglecting the phase-dependence effect. On the other hand, when a data
window is utilized, the analytical pdf and the histogram match perfectly. When the computed pdfs with and without
data windowing are compared, one can see a performance degradation introduced by the data window as the width of
the pdf is increased. However, one should consider that the computed pdf with no data window is hypothetical since
the Gaussianity assumption on the pdfs of the AC lag estimates fails, which in turn makes the pdf expression of PISFE
based on this assumption invalid.

We used arbitrarily a Blackman–Harris (BH) type data window [9,11] defined in Table 2 which eliminated the
splitting of the pdf.

Fig. 3. Pdf of PISFE with and without data windowing versus normalized angular frequency, a: analytic computation for non-windowed data, b: his-
togram for non-windowed data simulation, c: analytic computation for windowed data, d: histogram for windowed data simulation (ω = π/4 rad,
N = 100, SNR = 20 dB, BH data window).
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5. Choice of the data window

Two important design parameters in spectrum estimation are the zero-bias and small-variance properties of the
windows. Since the known bias introduced by windowing from the AC lags is removed, we can concentrate on the
variance aspects of windowing for frequency estimation. We recall that the impact of bias with respect to variance to
the mean square frequency error is much lower, anyway, for the estimators considered. The basic trade-offs of data
windowing are as follows: For the single sinusoids, the trade-off is between the decrease in the effective SNR and
the minimum required variance level of the estimate. For multiple sinusoids, resolution capability becomes another
design parameter.

Windows like the BH window in Table 2 have very smooth endpoint transitions but in turn they may considerably
decrease the signal power and the resolving capability of the frequency estimator. On the other hand, the rectangular
window (refer to Table 2), i.e., no data window at all, does not cause any power loss but possesses a much higher vari-
ance lower bound. One should then choose a window compromising these two contradictory design objectives. Assum-
ing that ry,h(l) and ry,g(l) are independent, the variance of their sum is lower bounded by the sum of variances of each
component. So, in Table 3, we calculate analytically the variances of the phase-dependent components {ry,h(l), l =
1,2,3} for four window varieties and sample sizes N for ω = 0.5 rad. The first column, in fact, represents the absence
of windowing. For each sample size and windowing function, the column of three numbers top to bottom correspond
to ry,h(1), ry,h(2), and ry,h(3). The variances are calculated using (7) with support limits calculated using (10).

Table 3 depicts that, in general, for every window, the variance of the phase dependent AC lag component decreases
with increasing sample size and, for a fixed sample size, the variance drops as a smoother window is used. The
computed values of the support limits {dy(l), l = 1,2,3} for N = 50 and ω = 0.5 rad, listed in Table 1, are in
accordance with the variance figures of the second row in Table 3. The variance figures smaller than −100 dB are
given in bold font to discriminate the cases where we assume that the residual phase dependence is negligible. It
is important that without data windowing, i.e., with a rectangular data window, the variance figures are as high as
approximately −60 dB even for a very large sample size of N = 1000. This means that phase dependence problem
cannot be solved with increased sample size.

In Table 3, we observe some variance figures which do not obey the general trends mentioned above and should be
explained by different mechanisms. In the first category of these exceptional results, when (N − l) is nearly a multiple
of the period, π/ω, the phase dependence tends to vanish. This effect is observed in ry,h(1) in the rectangular window
case when N = 20 and 1000 and in the Hamming window case when N = 1000. Notice that in the rectangular window
case the variance of ry,h(1) when N = 20 and when N = 200 are nearly equal. The variances of ry,h(1), ry,h(2), and

Table 3
−10 log(variance) figures for the phase-dependent component of AC lags rx,h(1) (top), rx,h(2) (middle), and rx,h(3) (bottom) with data windowing
(ω = 0.5 rad)

Rectangular Hamming Raised cosine Blackman–Harris

N = 20 44.681 64.099 59.064 29.857
29.430 68.188 57.975 30.152
23.188 62.440 56.895 30.953

N = 50 34.992 78.907 116.023 147.102
31.111 74.079 113.699 146.794
30.083 72.006 108.115 146.394

N = 100 39.724 83.819 140.784 232.412
36.861 80.736 138.957 232.068
36.526 80.133 134.814 231.548

N = 200 43.934 88.024 165.346 307.083
42.565 86.604 163.824 306.904
43.468 87.454 160.715 306.121

N = 500 50.876 94.947 199.550 320.256
53.337 97.408 198.264 327.802
60.752 104.856 196.073 320.951

N = 1000 94.367 138.110 236.005 323.143
62.786 106.839 235.055 Not measurable
58.025 102.076 234.497 327.105
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ry,h(3) for a particular sample size and windowing function are within 2–5 dB away from these exception cases.
The second category of exceptions occurs when the sample size is too small, e.g., N = 20 as shown in the first row
of Table 3. In this case, the nonlinear factor wkwk+l in (10) prevents the cancellation of the contributions from each
period of the sinusoidal signals, which becomes more pronounced the smoother (the lossier in samples) the window is.
The respective variance figures for {ry,h(l), l = 1,2,3} are around 58 and 30 dB for raised cosine and BH windows.

The raised cosine window and BH window can be considered as successful in reducing the phase dependence. We
should note that the results given in Table 3 give information only about the phase dependence mitigation capability of
the windows. In order to demonstrate the resulting power loss and the possible trade-offs we perform simulation ex-
periments with these frequency estimators. First, we consider the trade-off between the signal power and the required
variance lower bound. In order to demonstrate this, we conduct simulations with a single sinusoid.

5.1. Trade-off between signal power and variance lower bound

The processing gain of a data window is given by the ratio of the SNRs before and after data windowing [9]:

SNRout

SNRin
= 1

N

[∑N
i=1 wi

]2∑N
i=1 w2

i

which attains its maximum for the case of a rectangular window. While any window, other than rectangular, will cause
a drop in SNR, it will also remove some phase dependence. We performed simulations to demonstrate this trade-off
between the variance lower bound requirement and the power loss due to data windowing. First, we consider the MSE
performance of PISFE as a function of frequency. Then we will consider the variance performance as a function of
the SNR. The curves in the later are obtained by averaging the results of 10,000 independent runs and N = 50.

In Fig. 4 we plot the mean square error (MSE) of the PISFE frequency estimate as a function of angular frequency.
Without windowing the MSE of PISFE fluctuates between −35 and −50 dB, mostly hovering between −40 and
−45 dB. Data windowing removes the frequency dependence and provides MSE gains dependent on the utilized
window. The highest gain is obtained with Hamming window usage, followed by raised cosine and BH window.
The smallest MSE values are approximately −55, −54, −47 dB for Hamming, raised cosine and BH windows,
respectively, which are obtained at angular frequencies π/4 and 3π/4 rad. In Fig. 4, the curve “c” shows the simulation
results of the reformed Pisarenko harmonic decomposition (RPHD) frequency estimator, proposed recently [12], as a
frequency estimator for single real sinusoids. This estimator is essentially obtained replacing the AC lags in (12) with
some data dependent statistic which can be considered as perturbed AC lag estimates. Its performance is superior to
PISFE with non-windowed data and attains bottomline MSE of −53 dB at π/2 rad. This result is only about 1 dB

Fig. 4. Variance of the PISFE frequency estimate with various data windows and variance of RPHD versus normalized angular frequency, a: PISFE
(Hamming window), b: PISFE (raised cosine window), c: RPHD, d: PISFE (BH window), e: PISFE (no window), f: CRLB (SNR = 20 dB, N = 50).
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Fig. 5. Variance of the PISFE frequency estimate with various data windows and variance of RPHD versus SNR, a: PISFE (rectangular window,
i.e., no window), b: PISFE (Hamming window), c: PISFE (raised cosine window, i.e., Hann window, α = 2), d: PISFE (BH window), e: CRLB,
f: RPHD (ω = 0.5 rad, N = 50).

smaller than the MSE of PISFE with raised cosine window and just equal to the MSE of PISFE with Hamming
window. At other frequencies, the latter two estimators are superior to the RPHD. While PISFE with BH window
depicts a performance with the least dependence on frequency, it causes at the same time the highest power loss
among all of the PISFE variants with data windowing. The plotted curves are the averages of 1000 independent runs
at N = 50. We should also note that the MSE of PISFE obtained via numerical integration using the derived analytical
pdf expression closely matches the simulation results in the angular frequency ω interval of [0.16,2.98] rad.

In Fig. 5, the variance of PISFE is plotted against SNR for ω = 0.5 rad. At low SNR values, the phase dependence
is eclipsed and a performance loss of 1.5 dB in the variance figures are observed due to the power loss caused by
data windowing for SNR < 10 dB. As the SNR improves, the rectangular window case shown by curve “a” fails to
follow the linear trend of the Cramer–Rao lower bound (CRLB). Instead it saturates quickly at around SNR = 15 dB,
and the flattening at a level of −40 dB, is the outcome of the phase dependence limitation. On the other hand, the
curves of windowed cases “b,” “c,” and “d,” show the improved elimination of the phase dependence. In fact, the
saturation points reveal themselves for the Hamming, raised cosine and BH windows, respectively, at 30, 75, and 115
dB SNR values. Similarly the noise floors of these windowed estimates gets realized at −70, −110, and −150 dB,
respectively. The performance in the case of raised cosine window is 6 dB inferior to the CRLB and the compromise
for an additional improvement in phase dependence offered by BH window is the loss of signal power of about
another 6 dB. The performance of RPHD, as shown in curve “f” is similar to the non-windowed PISFE estimator
for SNR < 10 dB, but in contrast, it follows the trend of the CRLB curve as SNR increases. However, it can never
approach the CRLB curve by less than 12 dB. This RPHD performance is worse than the BH-windowed PISFE one.
These simulation results are valid for any ω with possible singular point exceptions for PISFE without windowing
[4,13] as can be seen in Fig. 4. One should notice that the variance lower bounds attained by windows are strongly
correlated with the variances of the phase-dependent AC lags as given in Table 3. At these high SNR values, AWGN
becomes negligible when compared to the phase-dependent indeterminacy.

As for Fig. 5, a qualitative comparison of the estimators can be made by pointing out the trade-off between the
power loss and the SNR operation range. Here we focus on the SNR operation range beyond the value at which
the estimator variance curves cross each other. For example, at SNR = 10 dB the non-windowed PISFE starts to
saturate and it has the same variance as PISFE with Hamming window. So, the higher SNR operation limit of PISFE
is pushed from 10 to 31, 84, 110 dB and noise-free cases when PISFE with Hamming, raised cosine and BH windows
and RPHD, respectively, are used. The corresponding incremental power losses taking non-windowed PISFE as the
starting reference, are 1.3, 0.5, 6, and 1.3 dB, respectively. According to this comparison PISFE with raised cosine
window seems to be the best compromise since it extends the SNR operation range to a satisfactory level of 84 dB
with a total cost of 1.8 dB power loss.
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Fig. 6. Variance of PC-AR frequency estimate with various data windows versus SNR averaged on the frequency axis, a: rectangular window,
b: Hamming window, c: raised cosine window, d: BH window, e: estimator based on non-Toeplitz AC matrix estimates with rectangular window
(N = 50, M = 20).

In Fig. 6, we show similar considerations for the PC-AR frequency estimator. The curves reflect averaging over
different frequencies. The AC matrix is 20 × 20. In contrast to Fig. 5, we remark the following: (i) The loss of
signal power is much more evident, as one compares curve “a” vis-a-vis curves b, c, d in the 0–20 dB SNR range in
both Figs. 5 and 6; (ii) The PC-AR method with the Hamming window catches up with the Tufts–Kumaresan (TK)
frequency estimator [14] based on the non-Toeplitz AC matrix. The performance difference is only 2.5 dB at the
variance level of −60 dB. Due to the relatively low variance lower bound with Hamming window, the raised cosine
window is more preferable albeit at an additional power loss of 1 dB.

5.2. Resolving capability in the case of two close sinusoids

In the case of multiple sinusoids, the analysis for the single sinusoidal case is exactly applicable as long as these si-
nusoids are well resolved, that is the minimum frequency difference is significantly greater than the Fourier resolution
limit of 2π/N . If this is not the case, then one should consider the price paid for the phase dependence reduction, that
is, the loss of resolution. We set out to choose a window with smaller power loss in order to limit the loss of resolution.
But we found out that a choice based solely on the trade-off between the power loss and the variance lower bound was
satisfactory. Our experiments showed that raised cosine window leads to better resolution performance with respect to
both Hamming window and BH window when the frequencies were at the half the Fourier resolution limit. Therefore
we present in the sequel the results with raised cosine window.

To understand the effect of phase dependence on the resolution, we start considering the histograms of estimated
frequencies, when the sinusoidal frequencies differ by 2π/N (SNR = 40 dB). The location of the true frequencies are
shown by vertical lines in these figures. In the first two of them, Figs. 7A and 7B, we also see the histograms of the
estimated frequencies under raised-cosine and rectangular windows, respectively. The histograms clearly show that
without data windowing, the sinusoids are not resolved in every realization whereas they are resolved perfectly when
a data window is used. As a measure of resolution capability we adopt the resolution probability, where it is required
that the inequality(

ω̂1 − ω1
)2 + (

ω̂2 − ω2
)2

< min
((

ω̂1 − ωmid
)2 + (

ω̂2 − ωmid
)2

,2(ω2 − ω1)
2) (16)

be satisfied for resolved frequencies, and where {ω̂i , i = 1,2} and ωmid correspond to the estimate and the arith-
metic average of the sinusoidal frequencies {ωi, i = 1,2}, respectively, and min(·, ·) denotes the minimum of its
arguments. The first argument of the min(·, ·) function assures that the estimated peaks are not both located in the
vicinity of ωmid whereas the second argument serves to reject the outliers in the histograms as in Fig. 7B. This crite-
rion successfully classifies the frequency estimates into resolved and unresolved sets as shown by the histograms in
Fig. 7C. Note that, the histograms of the frequency estimates in Fig. 7A have a smeared form of the pdf of a phase-
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(A) The two frequency estimates (raised cosine data window)

(B) The two frequency estimates (no data window)

(C) The resolved (a and b) and unresolved (c) frequency estimates (no data window)

Fig. 7. Histograms of the MUSIC frequency estimates (ω1 = 1.5708 rad, ω2 = 1.6965 rad, ω2 − ω1 = 2π/N rad, N = 50, M = 20, 100,000 noise
realizations).
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noise-dependent component. Such a pdf was derived for the single sinusoidal case and it was shown in Fig. 2 with
curve “d.”

In Figs. 8A, 8B, and 8C, we plot the resolution probabilities of MUSIC frequency estimator with and without
data windowing against SNR, for two sinusoids where their frequency difference is 4π/N , 2π/N , and π/N rad,
respectively, going from a well resolved case toward an underresolved case of half of the Fourier resolution limit.
In these figures we plot the resolution probabilities of the non-windowed, windowed, and non-Toeplitz AC matrix-
based variants of the MUSIC frequency estimator. The data window is the raised cosine window which achieves
moderate phase dependence reduction at a small expense in the estimation variance. When the sinusoids are well
resolved, the phase-dependent variance is ineffective on the resolution of the frequency estimator and the use of a
data window only decreases the resolution probability of the frequency estimator. At a resolution probability of 0.9,
MUSIC frequency estimator based on the non-Toeplitz AC matrix estimate and the one utilizing the raised cosine
window require approximately 1.6 and 2.4 dB more signal power as compared to no data windowing. The slightly
inferior performance of the non-Toeplitz AC matrix based estimator with respect to the Toeplitz AC matrix based
estimator in Fig. 8A, is in accordance with the behavior of the PC-AR counterparts of these estimators in Fig. 6 for
SNR < 13 dB.

When the frequency difference equals 2π/N , the gain due to phase dependence suppression becomes more ef-
fective than loss due the spectral broadening. This happens at SNRs higher than 5 dB and the windowed MUSIC
frequency estimator attains unity resolution probability at SNR as low as 10 dB whereas the non-windowed estimator
can only achieve asymptotically a resolution probability of 0.78. Despite the spectral broadening caused by the data
window the resolution performance of the non-Toeplitz AC matrix-based estimator is about 2.5 dB inferior to that of
the windowed estimator for resolution probabilities greater that 0.5. This is due to the fact that the inferiority of the
non-Toeplitz AC matrix-based frequency estimators with respect to their Toeplitz AC matrix based counterparts at
low SNRs increases as the frequency difference of the sinusoids decreases and this effect is higher when compared to
the resolution loss due to data windowing. Fig. 8C depicts that when the frequency difference of the sinusoids is half
of the Fourier resolution limit, the windowed MUSIC frequency estimator can no longer attain unity resolution prob-
ability and saturates at a level of 0.87 whereas the non-Toeplitz AC matrix based frequency estimator achieves this
at SNR = 35 dB. The asymptotic resolution probability for the non-windowed Toeplitz AC matrix based frequency
estimator is as low as 0.58, in this case.

6. Discussion and conclusions

In this study we considered the phase dependence problem specific to the sinusoidal frequency estimation using
Toeplitz AC matrix estimates and proposed data windowing as a tool for mitigation of this effect. Lag windowing
(quadratic tapering [15]) is out of question for the phase dependence suppression problem. The only similarity between
the effects of data windowing (linear tapering [15]) and lag windowing on the AC lags is in the fact that the means
of the AC lags are multiplied by a constant factor due to data windowing, as given in (B.2). This could be also
accomplished by a corresponding lag window where the lag window coefficient for that particular AC lag is chosen
as equal to the factor of that AC lag in (B.2). However, when you multiply a random variable with a constant, what
you would expect will be just a corresponding scaling of the pdf of that random variable. This means that other than
a change in the support and magnitudes, the pdf will maintain its original form, particularly the twin-peaked form at
high SNR values in our case.

We should mention that data windowing would be also useful for the signal models with deterministic but unknown
phases. In those cases, the pdf of the phase-dependent AC lag component becomes a unit impulse which causes an
unknown deterministic shift when convolved with the Gaussian component of the pdf. The proposed method will also
decrease the amount of this bias in the AC lags.

The main conclusions of the paper can be listed as follows:

• The Toeplitz AC matrix estimates can be analyzed as a sum of two independent variates, a phase-dominated term
and a noise-dominated term. The pdf of the lag coefficient, computed as the convolution of the pdfs of the two
random variates, matches very well the experimentally determined histogram.

• The phase dependence phenomenon proves to be detrimental in small sample size and high SNR applications,
i.e., at least above 20 dB. For example for a very clean sinusoid at SNR = 40 dB, data windowing decreases the
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(A) ω2 − ω1 = 4π/N rad (twice DFT resolution limit)

(B) ω2 − ω1 = 2π/N rad (DFT resolution limit)

(C) ω2 − ω1 = π/N rad (half of the DFT resolution limit)

Fig. 8. Resolution probability of the MUSIC frequency estimators versus SNR, a: rectangular window (Toeplitz AC matrix), b: raised cosine
window (Toeplitz AC matrix), c: rectangular window (non-Toeplitz AC matrix) (ω1 = 1.57 rad, N = 50, M = 20).
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estimated frequency variance by a factor of 300 (25 dB). On the other hand windowing is not useful for SNRs
lower than 20 dB.

• In summary, the performance of frequency estimators based on Toeplitz AC methods improves with data win-
dowing approaching that of non-Toeplitz AC methods, albeit with some loss in signal power. However, since the
beneficial operational region of windowing is in the high SNR range, this loss in power is more than compensated
by the suppression of phase dependence. Recall again that the main motivation to save and promote Toeplitz AC-
based estimators to the level of non-Toeplitz varieties was their computational advantage. Windowing achieves
this with a small loss in resolution power.

Appendix A. Derivation of the pdf of rx,h(l)

We rewrite rx,h(l) from (6) as

rx,h(l) = 1

N − l

(
cos(2φ)

[
N−l∑
k=1

cos
(
ω(2k + l)

)]
︸ ︷︷ ︸

C(N,l)

− sin(2φ)

[
N−l∑
k=1

sin
(
ω(2k + l)

)]
︸ ︷︷ ︸

S(N,l)

)
(A.1)

= 1

N − l

√
C2(N, l) + S2(N, l)︸ ︷︷ ︸

dx(l)

cos

(
2φ − tan−1

(
S(n, l)

C(n, l)

))
︸ ︷︷ ︸

ζ

. (A.2)

The argument of cosine function in (A.2), ζ , is uniformly distributed in (0,2π). Let us define γ = cos ζ . One can
obtain the pdf of γ according to the rules of transforming random variables as

f
(γ ) = 1

π
√

1 − γ 2
, −1 � γ � 1. (A.3)

Since the multiplier of γ in (A.2) is a constant, one can easily obtain the pdf given in (7) through another variable
transformation.

Appendix B. PDF of the AC-lags after data windowing for the single sinusoidal case

Let yk = wkxk where {wk, k = 1,2, . . . ,N} represents a data window [9,11]. For a rectangular window function
the asymptotic pdf of

ry(i) = rx(i) = rx,h(i) + rx,g(i)

is the convolution of the pdf’s of rx,h(i) and rx,g(i) referred to as f
(i)
Rx,h

(rx,h) and f
(i)
Rx,g

(rx,g), respectively, under the

independence assumption. f
(i)
Rx,h

(rx,h) has the form in (7) and f
(i)
Rx,g

(rx,g) was found to be Gaussian with mean and
variance given by (4) and (5), respectively [8]. It can be shown easily that

f
(i)
Ry

(ry) = f
(i)
Ry,h

(ry,h) ∗ f
(i)
Ry,g

(ry,g),

where

ry(i) = ry,h(i) + ry,g(i).

In the case of a general data window f
(i)
Ry,h

(ry,h) again has the form of (7), but now dy(i) is given by

dy(i) = 1

N − i

√√√√(N−i∑
k=1

wkwk+i cos
(
ω(2k + i)

))2

+
(

N−i∑
k=1

wkwk+i sin
(
ω(2k + i)

))2

. (B.1)

The distribution of ry,g(i)’s are again Gaussian due to the CLT with the first and second moments scaled according to
the windowing function. These moments can be derived based on the derivation in [8] for the non-windowed data.
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The mean of the ry(i) is

μy,g(i) = E

{
1

N − i

N−i∑
k=1

wkxkwk+ixk+i

}
= 1

N − i

N−i∑
k=1

wkwk+iμx,g(i), (B.2)

where μx,g(i) = E{rx,g(i)} = cos(ωi) + σ 2
n δi,j with

δi,j =
{

1 for i = j,

0 for i �= j.

The covariance of ry,g(i) and ry,g(j) can be calculated as

σ 2
y,g(i, j) ≡ cov

(
ry,g(i), ry,g(j)

)= E
{(

ry,g(i) − E
(
ry,g(i)

))(
ry,g(j) − E

(
ry,g(j)

))}
. (B.3)

Inserting (B.2) into (B.3) and expanding it one obtains

σ 2
y,g(i, j) = 1

(N − i)(N − j)

N−i∑
k=1

N−j∑
l=1

wkwk+iwlwl+i

× E
{(

(sk + nk)(sk+i + nk+i ) − μx,g(i)
)(

(sl + nl)(sl+i + nl+i ) − μx,g(j)
)}

, (B.4)

where {sk} is as in (1). Since the sequences {sk} and {nk} are independent the fourth order terms in the expectation are
calculated mainly as multiplications of second order terms, e.g.,

E{sksk+inlnl+j } = E{sksk+i}E{nlnl+j } = μs(i)σ
2
n δl,l+j .

One of the exceptions is the term E{sksk+i slsl+j }. Considering its contribution to the summation in (B.4) we may
replace this term by

E{sksk+i}E{slsl+j } = cos(ωi) cos(ωj).

The other exception is the term E{nknk+inlnl+j } which is given as [16]

E{nknk+inlnl+j } = σ 4
n {δk,lδk+i,l+j + δk,k+iδl,l+j + δk,l+j δl,l+k}.

After tedious steps one obtains

σ 2
y,g(i, j) = σ 2

n
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{
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(
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)
δk+i,l

+ μs

(
(k + i) − l

)
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(
(k + i) − (l + j)

)
δk+i,l+j

+ σ 2
n [δk,lδk+i,l+j + δk,k+iδl,l+j δk,l+j δl,k+i + δi,0δj,0]

}
. (B.5)

When i = j , (B.5) simplifies to

σ 2
y,g(i, i) = σ 2

y,g(i) = σ 2
n
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{
N−i∑
k=1

2w2
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2
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2
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n
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w2
kw

2
k+i

}
. (B.6)

For the rectangular window the asymptotic value of (B.6)

lim
N→∞σ 2

y,g(i) = σ 2

N

[
2 + 2 cos(2iω) + σ 2]= σ 4

N

(
1 + 4η cos(iω)2)

with η = 1/σ 2
n , attains the form given in [8]. In the derivation of the pdf of PISFE the covariances σ 2

y,g(1), σ 2
y,g(2),

and σ 2
y,g(1,2) = σ 2

y,g(2,1) are used. The first two of these covariances are obtained using (B.6). The others are found
using (B.5) as

σ 2
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n

(N − 1)(N − 2)
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]
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(
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k+2

)]}
. (B.7)
k=1



M.A. Altınkaya et al. / Digital Signal Processing 18 (2008) 249–266 265
Although these covariance expressions correspond to asymptotic values, they are observed to work well for short data
records of, e.g., N = 50. Finally, the windowing causes a bias in the AC lag estimates as seen in (B.2). This bias will
be removed by replacing ry(i) with

(N − i)ry(i)∑N−i
k=1 wkwk+i

.

Appendix C. Derivation of PISFE PDF

To derive the pdf of PISFE, f (ω̂PISFE), we start with finding the pdf f (ψ). This pdf can be obtained by using the
statistics of ry,g(1) and ry,g(2) assuming the effect of the phase dependence is made negligible with data windowing.
AC-lag estimates are approximately jointly Gaussian and their means and covariances are found in Appendix B. For
the ease of the notation we let ry,g(1) = r1 and ry,g(2) = r2. Using the variable transformation

z1 = r1, z2 = ψ

the Jacobian of the transformation J (z1, z2) is found as

J (z1, z2) = 1

4z1

[
1 + sgn(z1)A1(z2)

]
, (C.1)

where

sgn(z1) =
{1 for z1 > 0,

0 for z1 = 0,

−1 for z1 < 0.

So one obtains the joint density of z1 and z2

fZ1,Z2(z1, z2) = fR1,R2(z1, z1A0(z2))

| 1
4z1

(1 + sgn(z1)A1(z2))|
and the corresponding marginal density of ψ as

f	(ψ) =
∞∫

−∞

fR1,R2(z1, z1A0(ψ))

| 1
4z1

(1 + sgn(z1)A1(ψ))| dz1. (C.2)

This equation can be expressed as

f	(ψ) = K1

∞∫
−∞

exp

{
−1

2

[
A2(ψ)z2

1 + A3(ψ)z1 + A4
]}

dz1, (C.3)

which can be solved using integral tables [17, p. 302] resulting in the expression of (14).
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