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ABSTRACT 
 
In this paper, we consider the performance of the  Pisarenko 
harmonic decomposition method  which is a special case of 
MUSIC algorithm for a single tone detection problem in 
additive white Gaussian noise environment. The detection 
process consists of comparing Pisarenko harmonic 
decomposition frequency estimate (PISFE) to the known tone 
frequency, and declare �tone present" if the two values are 
sufficiently close. We derive the conditional  probability density 
function of the PISFE under both detection hypotheses and use 
them to evaluate the performance of the PISFE detector. 
Simulation and numerical results allow the choice of an 
optimum threshold for a frequency detection band setting given 
a false alarm rate  PF. The receiver operating characteristics of 
the PISFE is obtained computing the corresponding detection 
probability PD .  It is shown that the PISFE detector is a constant 
false alarm rate (CFAR) detector  with respect to SNR for fixed 
tone frequency, but not a CFAR detector with respect to tone 
frequency for the given problem. The performance of the PISFE 
type  detector is compared with both matched filter (MF) and 
autoregressive (AR) detectors  and the analysis is supported by 
an extensive simulation work.  Applications to FSK tone 
detection  problem is discussed briefly. 
 
I. INTRODUCTION 
 
Detecting the presence of sinusoidal tones in noise and 
estimating their parameters is a problem commonly encountered 
in such diverse areas as communications systems, geophysics, 
vibration analysis, acoustics and biomedical applications. 
Typically, however, the limited number of discrete time 
observations and the low signal to noise ratio (SNR) handicap 
the tone detection problem . 
 
The optimal linear processor for the tone detection problem in 
the presence of additive noise is the well-known matched filter 
which has been in use for many years [1,2]. For this classical 
method, the tone is detected by comparing the output of the 
matched filter at the decision instant with a prespecified 
threshold. If the matched filter output exceeds the threshold, 
then the tone is declared to be present; otherwise the decision is 
the ``noise only" (null hypothesis) case. However the matched 
filter does not prove to be a robust solution in that the detection 
performance depends upon the exact knowledge of the 

waveform and is also sensitive to several effects like interfering 
signals, impulsive noise, and nonlinear distortion.  
 
As a consequence many alternative techniques to matched filter 
detection have been proposed in the literature to solve the tone 
detection problem more efficiently [3,4,5]. Tone detectors based 
on parametric spectrum estimation have received significant 
attention mostly due to their robustness features [6-13,25,26]. In 
this class of methods, the spectrum is estimated through some 
parametric approach, such as autoregressive method, and the 
peak of the resulting spectrum is compared against a threshold. 
Also the parametric expression of the AR spectrum ( e.g., the 
AR polynomial) is solved for the zeroes and the detection is 
based on testing whether these zeroes fall in certain 
predetermined intervals. If a peak or ( a zero radius) is found to 
exceed a preselected detection threshold, then a tone is declared 
to be present ; otherwise the decision is the null hypothesis. 
         
In another technique, applicable also to multitone situations, the 
detection problem is based on the estimates of the tone 
frequencies and on testing whether these estimates fall in 
predetermined intervals [13]. A few of typical parametric 
frequency estimators that can be used for tone frequency 
estimation are Maximum Likelihood (ML), Maximum Entropy 
(ME), Prony and Pisarenko methods [12,14,23-24]. The ML 
technique is statistically the most efficient method [21]. 
However in a multi-tone environment (e.g., FSK or 
multifrequency coding (MFC) detector applications), the ML 
method becomes computationally burdensome as one has to go 
through a multidimensional nonlinear optimization. Standard 
methods for FM demodulation such as limiter-discriminators, 
zero crossing detectors, and differential or product detectors can 
also be used to estimate the frequency of noisy sinusoids [22]. 
Finally frequency estimation from discrete-time observations 
using autoregressive (AR) models has been studied under the 
names of linear prediction, maximum entropy estimation, and 
maximum likelihood whitening filter [12,14, 23-24]. 
 
These techniques except the ML,  are suboptimal although they 
are computationally attractive. The merits and difficulties of 
various estimation techniques are discussed in detail in [12]. 
Previous studies have indicated that the tone detection 
performance of parametric spectrum based methods are inferior 
to matched filter performance and even to that of the 
periodogram in additive white Gaussian noise [5,6,8-10,13]. 
However these tone detectors exhibit a robust behaviour. Also it 
is well known that the periodogram is optimal only for one 
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cisoid in additive white Gaussian noise, otherwise it is 
suboptimal. 
 
A robust tone detector based upon AR spectrum peak 
thresholding or pole radius thresholding and AR frequency 
estimation (ARFE) have been analyzed in [8-11, 13]. In this 
work we investigate a detector, called PISFE, based upon 
Pisarenko frequency estimation, where frequency estimates can 
be obtained by solving for the zeroes of the polynomial whose 
cofficients are the elements of the minimum eigenvector of the 
autocorrelation matrix. This PISFE based tone detector is 
sensitive against constant Doppler shifts like Kay's robust 
detector but in contrast has the advantage that it can be used for 
multitone situations, e.g., FSK, MFC or dual tone 
multifrequency receiver (DTMF) applications. 
 
We limit the analysis to a single tone in additive white noise 
since for multi-tones the analysis becomes tedious. The 
properties of the PISFE detector are given in section 2. The  
performance of the PISFE detector is discussed in sections 3 and 
4 using the expressions of the conditional probability density 
function of the estimated frequency. An FSK detector based on 
PISFE is considered in section 5. 
 
II. PISFE DETECTOR AND ITS PROPERTIES  
 
In this section, we investigate a tone detector based on the 
PISFE. The signal under consideration is a single sinusoid 
sampled uniformly in the presence of additive white Gaussian 
noise, i.e.,  

          [ ] NknTkAx kk ,.......2,1cos2 =++= φω       (1) 
where A is a non-random amplitude, φ is a random phase angle 
uniformly distributed on (-π,π), ω is the tone frequency, T is the 
sampling period, {nk} is a real white Gaussian noise sample 
sequence with zero mean and power 2

nσ  and N is the number of 
data samples.  
 
For a single tone case, the PISFE frequency estimate is obtained 
in terms of the autocorrelation coefficients by assuming T=1 as 
follows [14, 16]: 

( )ψω arccos� =        (2) 
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From Eq. (2), it can be seen that the estimated tone frequency 
depends on the autocorrelation coefficient at lag 1 and 2 and 
does not depend on the signal waveform. For a single tone case, 
this result is very practical related to the computational 
complexity. 
 
The proposed tone detection scheme consists of obtaining the 
PISFE estimate via Eq. (2) and testing whether its value lies in a 
preselected band. In other words, our tone detection by 
estimation scheme is applicable to dual tone multifrequency 
situations where tones can occur only at certain predesigned 
values. The performance of the PISFE detector is parameterized 
by the number of discrete samples N, the signal to noise ratio, 

and the detection band size and the tone frequency that 
determine both the probability of detection PD and false alarm 
PF. The hypothesis testing of "tone present" (H1) versus "noise 
only"  (H0) based on a PISFE frequency estimate is as follows; 

0
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where δω  is the preselected detection band and the tone 
frequency  ω is one of the allowed multifrequencies. 
 
For large number of data samples N, it can be shown that the 
performance of the PISFE  detector is [8,13] 
 
• dependent on the random phase angle φ in the tone and the 

tone frequency ω, but; asymptotically independent of the 
random phase angle φ i.e., as ∞→N , the PISFE detector 
does not depend on it asymptotically.  

• independent of the noise power 2
nσ  under H0, i.e., it is a 

constant false alarm rate (CFAR) detector; 
• independent of the signal form, provided that the signal 

autocorrelation function (ACF) is unchanged. 
 
The proofs of the first and third properties of the PISFE detector 
given above are similar to those given by Kay in [8]. The second 
property, i.e. the CFAR property, follows from the fact that, in 
the ``noise only" case, the elements of the minimum eigenvector 
are independent of the ACF at lag zero and hence of the noise 
power. In fact, this can be offered by any parametric method 
based on measuring the distance between a spectral peak and a 
reference frequency, since the probability density function of the 
spectral components will not change with the noise level. 
Additionally, in the literature there are other standard noise level 
control techniques (note that we are speaking about CFAR with 
respect to noise level, and not with respect to noise distribution) 
such as using automatic gain control loops or variable thresholds 
with classical procedures (as the periodogram). 
 
III. BEHAVIOR OF THE PISFE PDFS  
 
The conditional probability density functions (pdf's) of the 
PISFE tone  frequency ω�  for both of the hypotheses are 
obtained from the pdf of the intermediate random variable ψ  
under the corresponding hypothesis either H0 or H1 using the 
transformation 

( ) ( ) ( )( )ωωω ψ �cos�cos1� 2
iHi pHp −=     (4) 

where i=0,1 denotes the hypothesis number. The conditional 
pdf's of ψ are derived in the Appendix. The derivations are 
based on the Central Limit Theorem (CLT) so the pdf 
expressions are expected to be valid only for large N (e.g. N > 
50). The pdf's are given for "the noise only"  hypothesis, H0, as : 
 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )ψ
ψψ

ψ
ψψ

ψ −
−

+
+

= u
AA

K
u

AA
K

Hp
21

1

21

1
0 1

4
1

4  

   (5) 
 
while for the "signal present" hypothesis H1 one obtains : 
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where u(.) represents the unit step function. The remaining 
definitions are given as: 
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with σ1
2, σ2

2 and ρ representing the variances and the 
correlation coefficient of the autocorrelation lags r(1) and r(2), 
respectively and erf(.) denotes the error function. 
 
Simulations were carried out on the ( )1� Hp ω   to verify the 

agreement with Eq. (6). Fig. 1 shows a plot of the ( )1� Hp ω  
and the histogram obtained from the simulations. This histogram 
is generated using 100.000 realizations of x{k}, as in Eq. (1) 
with N=50. Each frequency  estimate is obtained by estimating  
r(1) and r(2) and then inserting these into Eq. (2). The figure 
depicts that the analytic expression for the pdf in Eq(6) closely 
matches the simulation results.  

 
 
Figure 1. Pdf of the PHD frequency estimate for the H1 
hypothesis versus frequency, solid line :  analytic computation, 
histogram lines: histogram obtained by simulation (ω1=π/4, 
N=50, µ=0dB,  100.000 noise realizations). 
 

 
 
Figure 2. Pdf of the PHD frequency estimate for the H0 
hypothesis  versus frequency, solid line :  analytic computation, 
histogram lines: histogram obtained by simulation (N=50, 
100.000 noise realizations) 
 
In order to make a meaningful comparison of simulation results 
and Eq. (5), in addition to ``signal plus noise" case, ``noise only" 
case derived pdf has also been tested using simulations, as 
illustrated in Fig. 2. The normalized histogram of frequency 
estimates agrees with Eq. (5) once again. 
 
From equations (5) and (6), one may observe the following : 
• ( )0� Hp ω does not depend upon the noise power 2

nσ . 

• ( )1� Hp ω does not depend upon the signal waveform but 
only upon its first two autocorrelation coefficients (see 
Appendix). 
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Figure 3. Variations of the tone detection performance of the 
PISFE detector versus tone frequency for constant probability of 
false alarm (PF=1E-4, N=100, µ = 0 dB). 
 
 
IV. ANALYSIS OF THE TONE DETECTION 
PERFORMANCE OF THE PISFE DETECTOR  
 
Like any other detector, the performance of the PISFE tone 
detector can also be investigated through ROCs, that is by 
plotting the PD versus PF  for varying values of  N and  µ. 
 
The probability of false alarm PF, corresponding to the case 
where a tone is declared to be present when only noise is 
received, is a function of the tone frequency and the interval size 
δω and hence PF is simply given as: 

( )∫
+

−
=

δωω

δωω
ωω �� 0 dHpPF       (8) 

while one obtains for PD 

( )∫
+

−
=

δωω

δωω
ωω �� 1 dHpPD       (9) 

Hence, it can be expected that the detection performance will 
depend on the tone frequency. The detection interval δω can be 
solved for a given probability of false  alarm PF  and is found to 
be independent of the background noise power 2

nσ using Eq. 
(5). 
Recall that since  ( )0� Hp ω  is not a uniformly distributed pdf, 

it can be seen that for each constant δω, a different value of PF  
is obtained for different tone frequency ω. Also it can be  seen 
that decreasing δω is equivalent to decreasing PF and also the 
region where one declares H1 or "tone is present". Hence δω is 
decreased until one obtains the smallest possible value of PF . 
 
The detection performance of the PISFE detector is evaluated 
for varying ω in two distinct cases : 
• PF is held constant; hence the detection band is computed 

for each ω. 
• δω is held constant; hence PF is different for each  tone 

frequency ω. 

 
 
Figure 4. Variations of the tone detection performance of the 
PISFE detector versus tone frequency for constant detection 
band (δω=1.6E-4, N=100, µ = 0  dB). 
 
A. PF constant = 10-4 
 
Since ( )0� Hp ω  is not constant over 0 to 2π, the bandwidth 

δω which will result in PF = 10-4 depends on ω. Also since the 
( )0� Hp ω  reaches their peak value near ωT=π/4, one can 

expect that δω is smaller for  frequencies around ωT=π/4. The 
bands that give PF = 10-4 are given in Table 1 for SNR= 0 dB 
and N=100.  The plots of  PD for different values of ω are given 
in Fig. 3. It can be seen that the  detection performance reaches 
its lowest value near ωT=π/4. At first sight, this result may 
appear as suprising since the detection performance is expected 
to be high near ωT=π/4 (as it will be shown later, this is true 
only when the detection 
band δω is held constant). The reason behind this observation is 
that δω is smaller for  frequencies near to ωT=π/4 because the 

( )0� Hp ω  reaches its peak  value near this frequency ; hence 

the smaller the δω is, the lower the probability of detection PD.  
 
B. Detection band δω is held constant 
 
The detection performance for a constant preselected δω = 1.6 x 
10-4 rad/sec is given for various values of ω in Fig. 4 for SNR= 
0 dB and N= 100.  
Note that PD reaches its peak near ωT=π/4. This is expected 
because of the fact that, the variance of the estimate takes its 
minimum value at this frequency [16] ; hence for a preselected 
δω, the hypothesis testing  results in a higher PD. 
 
The detection probabilities of the PISFE, AR and the 
periodogram type detectors are plotted versus SNR, with N as 
the parameter, in Figures 5 and 6 for PF = 10-4 and ωT=π/4. As 
in [8,13,25,26], the bank of matched filters detector is referred 
to as the periodogram detector. The simulation results indicate 
that the performance of the PISFE detector still remains poor 
compared to the AR and periodogram detectors. Like the other 
detectors PISFE detector consistently provides a higher 
detection probability for higher SNR values. Note that the 
performance of the PISFE detector seems to catch up with those 
of the AR and periodogram detectors with increasing number of 
data samples, N.  
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Figure 5. Comparison of the tone detection performance of 
PISFE, AR and periodogram type detectors, a: Periodogram  b: 
AR c: PISFE (ω = π/4, PF = 1E-4,  N=100, 500 noise 
realizations). 

 
 
Figure 6. Comparison of the tone detection performance of 
PISFE, AR and periodogram type detectors, a: Periodogram  b: 
AR c: PISFE (ω = π/4, PF = 1E-4,  N=1000, 500 noise 
realizations). 
 
V. ANALYSIS OF FSK TONE DETECTION  
 
The PISFE detection scheme can be extended in a 
straightforward manner to multitone cases, e.g.,to non-coherent 
FSK (NCFSK) detection. The observed sequence can be 
expressed as  

[ ]
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where it is assumed, without loss of generality, ω1>ω2 and φ is 
an arbitrary phase defined earlier. The PISFE detector for FSK 
type modulated signals with  non-equal powers uses the decision 
strategy: 
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When the powers are equal, i.e., A1= A2   the decision threshold 
becomes simply the average of the two frequencies ω1  and ω2 . 
The conventional  approach to NCFSK detection is to process 
the input signal with a pair of quadrature matched filters, tuned 
to the tone frequencies ω1  and ω2, respectively, and compare the 
envelopes. If the matched filter is implemented via a Fast 
Fourier Transform  (FFT),  µ0, the SNR at the output of a DFT 
bin, can be found as µ0 = µN /2  [19, 20]. Therefore with this 
correction, the error probability expression of the matched filter  
based NCFSK receiver can be written as [18] : 

02
1

, 2
1 µ−

= eP FSKe    (12) 

For the case of PISFE based FSK detector, the performance can 
be computed in terms of the total probability of error as ; 
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and the conditional probability densities ( )1� Hp ω and 

( )0� Hp ω  are defined as in Eq. (6) by setting 1� ωω = and  

2� ωω = , respectively.  
In Figures 7 and 8, the matched filter-based NCFSK error 
performance has been compared with PISFE schemes. The 
PISFE detector is inferior to matched filter detection and this 
discrepancy increases with increasing N. For example the 
degradation, is about 13-14  dB for N=100. 

 
 
Figure 7. Comparison of the error probabilities of PISFE and 
matched filter type detectors, a: NCFSK, b: PISFE (δω= π / 100, 
N=100). 
 
VI. CONCLUSIONS  
 
The performance of the PISFE detector using the frequency 
estimate for the tone signals in white noise has been evaluated, 
considering in particular the expressions of the probability of 
false alarm and the probability of detection as functions of the 
SNR, the number of discrete observations and the tone 
frequency.It has been justified that the proposed PISFE detector 
is a CFAR with respect to SNR for fixed tone frequency, but not 
CFAR with respect to tone frequency for a single tone in white 
Gaussian noise and that detection performance can be improved  
for the cases of unknown signal form and/or noise level . 
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APPENDIX  
 
To derive the conditional pdf's ( )1� Hp ω  and ( )0� Hp ω  , we 

start with finding the conditional pdf's  ( )1Hp ψ  and  

( )0Hp ψ . These pdf's can be obtained by using the statistics 
of r(1) and r(2) [16].  
For Ho : 
Using the variable transformation z1=ψ and z2=r(1) one can 
obtain the conditional pdf of ψ under Ho  

( ) ( )( )

( ) ( )( )
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Perfoming the integration one obtains the expression in Eq. (5).  
For H1 : 
Using the same variable transformation one obtains the pdf as 
the solution of the integral  
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Solving the integration the exression in Eq. (6) is obtained.  
   
REFERENCES 
 
1. W.W. Peterson, T.G. Birdsall and W.C. Fox, `` The Theory 

of Signal Detectability",  Trans. of the IRE, PGIT-4, pp. 
171-212, 1954.  

2. D.O. North, `` Analysis of the Factors which Determine 
Signal/noiseDiscrimination  in Radar", Proc. IRE, vol. 51, 
pp.1016-1028, July 1963.  

3. J. G. Gander, `` A Pattern Recognition Approach to Tone 
Detection", Signal Processing, vol. 1, Jan. 1979, pp.65-81.  

4. E.Del Re, `` On The Performance Evaluation of a 
Multifrequency-Tone Envelope Detector", Signal 
Processing , vol. 3, 1981, pp. 63-72.  

5. J.N.Denenberg, ``Spectral Moment Estimators. A New 
Approach to Tone Detection ",  BSTJ, Vol.55, No.2, Feb. 
1976, pp. 143-155.  

6. T. Dayson and S. Rao , `` Some Detection and Resolution 
Properties of Maximum  Entropy Spectrum Analysis ", 
Signal Processing , vol. 2, 1980, pp.261-270.  

7. E.K. Hung and R.W.Herring, `` Simulation Experiments to 
Compare The Signal  Detection Properties of DFT and 
MEM Spectra", IEEE Trans. Acoust. Speech, Signal 
Processing, vol. ASSP-29, pp.1084-1089, Oct. 1981.   

8. S.M. Kay, `` Robust Detection by Autoregressive Spectrum 
Analysis, " IEEE Trans.  Acoust. Speech, Signal 
Processing, vol. ASSP-30, pp.256-269, Apr. 1982.  

9. L.Pakula and S.M.Kay,`` Detection Performance of The 
Circular Correlation  Coefficient Receiver", IEEE Trans. 
Acoust. Speech, Signal Processing, vol. ASSP-34,  pp.399-
404, Jun. 1986.  

10. Y.T.Chan and R.P.Langford, `` Spectral Estimation Via 
The High-Order Yule  Walker Equations ", IEEE Trans. 
Acoust. Speech, Signal Processing, vol. ASSP-30,  pp.689-
698, Oct. 1982.  

11. B.Sankur, E.Anarõm and W.Steneart, `` DTMF Receiver 
based on Adaptive Spectrum Estimation", Int.Conf. on 
Dig.Sig.Proc. 1984, Florence, Italy.  

12. S.M.Kay, and L.S.Marple , `` Spectrum Estimation : A 
Modern Perspective ", Proc.  IEEE, Vol. Proc-69, Nov. 
1981, pp. 1380-1419. 

13. E.Anarõm, B.Sankur ``Robust Detection of Tone Signals by 
AR Frequency  Estimate", Signal Processing, vol. 30, 
March, 1993, pp.271-278 .   

14. Y.F.Pisarenko, `` The Retrieval of Harmonics from a 
Covariance Function",  Geophy. J.R. Astr. Soc., Vol.33, 
Jan. 1973, pp. 347-366.   

15. S.M.Kay, and L.S.Marple , `` Spectral Line Analysis by 
Pisarenko and Prony  Methods", Proc. IEEE, Vol. Proc-68, 
Mar.1980, pp. 419-420.  

16. E.Anarõm, Y. Istefanopulos, `` Statistical Analysis of The 
Pisarenko Type Tone  Frequency Estimator ", Signal 
Processing , vol. 24, 1991, pp. 291-298.  

17. A.Papoulis, Probability, Random Variables and Stochastic 
Processes, Mc Graw - Hill, New York, 1965. 

18. R.E. Ziemer, W.H.Tranter, Principles of Communications, 
Houghton Mifflin  Company , Boston ,1985, Ch.7, pp.379-
387.  

19. F. J. Harris, `` On the Use of Windows for Harmonic 
Analysis with the  Discrete  Fourier Transform ", Proc. 
IEEE, Vol. 66, No. 1, January 1978, pp. 53-83.  

20. C.W.Helstrom, Statistical Theory of Signal Detection, 
Elmsford, NY: Pergamon, 1968.  

21. D.C. Rife and R.R. Boorstyn, `` Single -Tone parameter 
Estimation from  Discrete Time Observations ", IEEE 
Trans. Information Theory, Vol. IT-20, No. 5,  September 
1974, pp. 591-598.  

22. S.A.Tretter, `` Estimating the Frequency of a Noisy 
Sinusoid by Linear  Regression", IEEE Trans. Information 
Theory, IT-31, pp. 832-835, 1985.  

23. S.M. Kay,`` Maximum Entropy Spectral Estimation Using 
the Analytic Signal", IEEE Trans. Acoust. Speech, Signal 
Processing, Vol. ASSP-26, No. 5,  October1978, pp.467-
469.   

24. D.W.Tufts, R.Kumerasan, ``Estimation of Frequencies of 
Multiple Sinusoids: Making Linear Prediction Performs 
Like Maximum Likelihood", Proc. IEEE,vol. 70,  pp. 975-
989, 1982.   

25. A.J. Barabell, ``Improving the Resolution Performance of 
Eigenstructure Based Direction Finding Algorithm", Proc. 
of 1983 IEEE Int. Conf. on ASSP, pp. 336-339, May 1983.   

26. B.D. Rao, K.V.S. Hari, ``Performance Analysis of Root-
MUSIC", IEEE Trans. on Acoust. Speech, Signal 
Processing, Vol. ASSP-37, pp. 1939-1949, December 
1989. 

 
Figure 8. Comparison of the error probabilities of PISFE and 
matched filter type detectors, a: NCFSK, b: PISFE (δω= π / 100, 
N=1000). 


