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Abstract 

 

When a mechanism is operated in its so-called 

Eigenmotion, the energy input to accelerate and decelerate 

the links of this mechanism is equal to zero. Therefore 

only the remaining forces like process forces, friction 

forces et cetera have to be overcome and the Eigenmotion 

results to be very energy-efficient. First this paper 

presents the underlying equations for the calculation of the 

Eigenmotion of a slider-crank-mechanism. Afterwards the 

derivation of an equivalent mechanical system of the 

mechanism is shown. Finally a method to synthesize an 

energy-efficient slider-crank-mechanism is presented. The 

dynamic synthesis is therefore formulated as a constrained 

optimization problem.  
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1. Introduction 

 Mechanisms form part of many different production 

machines, e.g. weaving machines, printing machines or 

packaging machines. The energy-efficiency of their built-

in mechanisms is crucial for the profitability of these 

machines. The following equations hold for plane 

mechanisms with a rotating input link (crank). The 

necessary power PD to drive such a mechanism is the 

product of the drive torque TD and the input velocity φ̇: 

 

PD = TD ∙ φ̇ 

 

The drive torque can be written as follows [1]: 

 

TD = Tkin + Tpot + Tdiss + Tproc 

 

Tkin is the torque which is necessary to overcome the 

resistances from accelerating and decelerating the links of 

the mechanism. Tpot is the necessary torque to overcome 

the resistances which result from gravity or springs. Tdiss 

and Tproc comprise the resistances following from 

dissipation effects and process forces. The torque Tkin, can 

be derived from the kinetic energy Ekin of the mechanism 

using the Lagrange Equations of 2nd kind [2]: 

 

Tkin =
d

dt
(
∂Ekin
∂φ̇

) -
∂Ekin
∂φ

 

 

It is evident that the torque Tkin vanishes for a constant 

kinetic energy of the mechanism. The concept of driving a 

mechanism in its so-called Eigenmotion uses this fact. 

The Eigenmotion is the specific motion of the crank that 

results in a constant kinetic energy of the mechanism over 

the whole period of motion. [1; 3; 4] 

 The classical dimensional synthesis of mechanisms 

aims to finding the optimal kinematic parameters for a 

mechanism driven with a constant input motion [5; 6]. 

The goal of the methods of dynamic balancing is to find 

the optimal mass parameters for a mechanism with given 

kinematic parameters [1; 3]. The dynamic synthesis 

combines both concepts. It aims to finding the optimal 

mass and kinematic parameters of a mechanism [7]. 

 The equations show that driving a mechanism in its 

Eigenmotion can decrease the necessary input torque and 

can result in lower energy consumption. Bench tests 

confirmed the effectiveness of driving a mechanism in its 

Eigenmotion with regard to energy consumption [8]. 

 In this paper the synthesis of an energy-efficient 

slider-crank-mechanism is presented. First, the underlying 

equations of the slider-crank-mechanism are shown. The 

equation of the Eigenmotion of the slider-crank-

mechanism is derived. Afterwards an equimomental 

system of the slider-crank-mechanism is presented. The 

Eigenmotion of the mechanism is rewritten for this 

equimomental system. The synthesis of a mechanism with 

a particular Eigenmotion is formulated as an optimization 

problem. The parameters of the equimomental system of 

the slider-crank-mechanism are taken as the design 

parameters of the optimization. The formulation of the 

objective function as well as the formulation of the 

optimization constraints is shown. The optimization 

results for an exemplarily synthesis are presented.  

2. The Slider-Crank-Mechanism 

 The kinematic parameters and the mass parameters of 
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the slider-crank-mechanism are shown in Fig. 1.  

 
Fig. 1.  The slider-crank-mechanism 

 

The slider-crank-mechanism consists of three links. The 

crank (index ‘1’) is driven by a motor with the drive 

torque TD. The input angle is denoted by φ. The output of 

the mechanism is the stroke s of the slider (index ‘3’). 

Crank and slider are connected by the coupler (index ‘2’). 

The offset of the slider is denoted by e. The coordinate 

systems are highlighted in blue color. The coordinate 

system ‘0’ is frame fixed. The other two Coordinate 

systems are body-fixed. The coordinate systems are right-

handed, hence the z-axes point out of the image plane. 

The mass properties of the links are highlighted in red. 

The position of the center of gravity (CG) of the links is 

represented in the body-fixed systems. The superscript 

indicates the corresponding coordinate system. Positions 

of the center of gravity without superscript are formulated 

in the coordinate system ‘0’.  

The coordinate system ‘2’ is rotated about the angle ψ 

about the z-axis of the coordinate system ‘0’. The angle ψ 

can be calculated as follows: 

 

ψ = arcsin (
l1 sin(φ) -e

l2
) 

 

The stroke of the slider s reads: 

 

s = l1 cos(φ) + l2√1-
(l1 sin(φ) -e)

2

l2
2  

 

The derivatives of the angle psi and the stroke s can be 

calculated as follows. 

 
dψ

dt
=
dψ

dφ
φ̇ =

l1cos (φ)

l2√1-
(l1 sin(φ) -e)

2

l2
2

φ̇ 

 

ds

dt
=
ds

dφ
φ̇ = -l1 sin(φ) φ̇-

(l1 sin(φ) -e)l1 cos(φ)

l2√1-
(l1 sin(φ) -e)

2

l2
2

φ̇ 

 

In order to calculate the Eigenmotion of the mechanism, 

the kinetic energy has to be set up. The kinetic energy of 

the mechanism can be written as the sum of the kinetic 

energy of its three links: 

 

Ekin = Ekin,1 + Ekin,2 + Ekin,3 

 

  
The kinetic energy of a rigid body can be split into a 

translational (T) and a rotational (R) part: 

 

Ekin,i = Ekin,Ti + Ekin,Ri 
 

Hence the kinetic energy of the crank can be written as: 

 

Ekin,T1 =
1

2
m1( xCG,1

21 + yCG,1
21 )φ̇2 

 

Ekin,R1 =
1

2
J1φ̇

2 

 

The kinetic energy of the coupler is: 

 

Ekin,T2 =
1

2
m2 ((

dxCG,2
dφ

)
2

+ (
dyCG,2
dφ

)
2

) φ̇2 

 

Ekin,R2 =
1

2
J2 (

dψ

dφ
)
2

φ̇2 

 

The slider has only translational kinetic energy due to the 

translational guiding. Therefore its kinetic energy consists 

of only one term: 

 

Ekin,T3 =
1

2
m3 (

ds

dφ
)
2

φ̇2 

 

The reduced mass moment of inertia is defined as follows: 

 

Jred(φ) =
2 ∙ Ekin
φ̇2

 

 

It is the fictive mass moment of inertia of a rotating disk 

with the same kinetic energy as the mechanism [9]. The 

reduced mass moment of inertia is a function of the input 

angle φ. It depends on the kinematic parameters and the 

mass parameters. It can be written as the sum of the 

reduced mass moments of inertia of the links: 

ϕ

TD

x2

x1

y1
y2

m2, J2, 2xCG,2, 2yCG,2

m1, J1, 1xCG,1, 1yCG,1

m3

l2l1

e

s

y0

x0
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Jred(φ) = Jred,1 + Jred,2(φ) + Jred,3(φ) 
 

These reduced mass moments of inertia of the links are:  

 

Jred,1 = J1 +m1( xCG,1
21 + yCG,1

21 ) 

 

Jred,2(φ) = m2 ((
dxCG,2
dφ

)
2

+ (
dyCG,2
dφ

)
2

) + J2 (
dψ

dφ
)
2

 

 

Jred,3(φ) = m3 (
ds

dφ
)
2

 

 

The Eigenmotion of a mechanism is defined as its 

intrinsic motion in the case of constant kinetic 

energy [1; 9]. It is denoted by the index ‘e’: 

 

Ekin =
1

2
Jred(φ)φė

2 = const. =
1

2
Jred(φ0)φ0̇

2 

 

It is [1; 9]: 

 

φ̇e =
φ̇0√Jred(φ0)

√Jred(φ)
=

C

√Jred(φ)
 

 

The numerator of the equation is constant and denoted 

by C. The period time T of the Eigenmotion can be 

calculated by [9]: 

 

T =
1

C
∫

1

√Jred(φ̃)

φ0+2π

φ0

dφ̃ 

3. The Equimomental System 

 The reduced mass moment of inertia depends on the 

kinematic properties and the mass properties of a 

mechanism. Using dynamically equivalent systems for the 

particular links of the mechanism, the reduced mass 

moment of inertia can be reformulated. In the following, 

the equivalent systems of the crank and the coupler shall 

be presented. Afterwards the equimomental system of the 

complete slider-crank-mechanism is presented. The 

Eigenmotion of the mechanism is reformulated in terms of 

the parameters of the equimomental system. Information 

on equimomental systems can be found in [4; 10]. 

 First, the equimomental system of the crank is 

defined. The reduced mass moment of inertia of the crank 

is constant. It depends on four parameters, which can be 

replaced by a mass mA1 as shown in Fig. 2. 

 
Fig. 2.  The equimomental system of the crank 

The mass m1A is placed at the position of the connecting 

joint between the crank and the coupler. It holds: 

 

m1A =
J1 +m1( xCG,1

21 + yCG,1
21 )

l1
2  

 

Second, the equimomental system of the coupler shall be 

defined. The assumption is made, that the center of 

gravity of the coupler lies upon the connecting line 

between the two joints of the coupler. Hence the 

equimomental system according to Fig. 3 can be used. 

 
Fig. 3. The equimomental system of the coupler link 

The mass parameters m2, J2 and 2xCG,2 are replaced by the 

parameters m2A, m2B and J2v. The original system and the 

equimomental system have to have the same mass and the 

same mass inertia about the center of gravity. Furthermore 

the position of the center of gravity has to be the same. 

Taking into account these conditions, the mass parameters 

of the equimomental system can be derived. It is: 

 

m2A =
m2(l2- xCG,2

2 )

l2
 

 

m2B =
m2 xCG,2

2

l2
 

 

J2v = J2 +m2 xCG,2
2 ( xCG,2

2 -l2) 

 

m1, J1,
1xCG,1, 

1yCG,1

m1A

l1l1

m2, J2, 
2xCG,2

m2A m2BJ2v
l2

l2
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The slider only possesses translational kinetic energy. 

Therefore only m3 has to be taken into account. Fig. 4 

finally shows the equimomental system of the complete 

slider-crank-mechanism. 

 
Fig. 4.  The equimomental system of the mechanism 

The point masses m2A and m3A are located on the same 

position. They can be replaced by a mass moment of 

inertia J1v. It holds: 

 

J1v = (m1A +m2A)l1
2 

 

The point masses m2B and m3 also lie on the same 

position. The can be replaced by the mass m3v: 

 

m3v = m2B +m3 

 

Using the mass properties J1v, J2v and m3v of the 

equimomental system, the Eigenmotion of the slider-

crank-mechanism can be written as follows. 

 

φ̇e =
C

√J1v + J2v (
dψ
dφ
)
2

+m3v (
ds
dφ
)
2

 

 

In order to reduce the number of parameters the following 

dimensionless parameters are introduced: 

 

ι2v =
J2v
J1v
,   μ3v =

m3vl1
2

J1v
 

 

Using these parameters the Eigenmotion can be rewritten 

as follows: 

 

φ̇e =
C̃

√1 + ι2v (
dψ
dφ
)
2

+
μ3v
l1
2 (

ds
dφ
)
2

 

 

The constant C͂ reads: 

 

C̃ =
C

J1v
2  

By adjusting C͂, the Eigenmotion can be normalized with 

respect to a period time T of one second. Normalizing the 

Eigenmotion is helpful in order to compare the 

Eigenmotion to other motions. The normalized 

Eigenmotion is dependent on the following parameters 

listed within the parameter vector pe: 

 

pe = (l1, l2, e, ι2v, μ3v) 
4. The Dynamic Synthesis of the Slider-Crank-

Mechanism as an Optimization Problem 

 The goal of the dynamic synthesis is to find a slider-

crank-mechanism which is able to fulfill a desired motion 

when driven in its Eigenmotion. 

 In the following the task is formulated as an 

optimization problem. The goal of an optimization is to 

find the best set of design parameters x for a certain task. 

The task is formulated as an objective function f(x). The 

objective function is formulated in such way, that the best 

combination of parameters minimizes this function. 

Constraints, i.e. restrictions with respect to the 

combination of parameters, can also be taken into account. 

Constraints can be formulated as equality constraint 

equations h or as inequality constraint equations g and are 

also dependent on the design parameters. Acceptable 

combinations of the design parameters have to satisfy 

these constraint equations. The formal statement of the 

minimization formulation of an optimization problem is 

written as follows [11]: 

 

minimize f(x) 
subject to h(x) = 0, 

g(x) ≤ 0, 

x ∈ Χ ⊆ Rn. 

 

The vector h(x) contains all equality constraints 

meanwhile g(x) contains all inequality constraints. A 

maximization formulation can be transformed into a 

minimization formulation by multiplying the objective 

function by minus one. Algorithms to find solutions of 

optimization problems are called optimization algorithms. 

A distinction is made between global and local 

optimization. Local optimization algorithms seek only 

local solutions, that is sets of parameters for which the 

objective function is smaller than at all feasible parameter 

combinations nearby. Local optimization algorithms do 

not always find the global minimum. In case of 

optimization problems, where local optimization 

algorithms are not suitable to find the global minimum, 

global optimization algorithms have to be applied. More 

information on local optimization can be found in 

[11–13]. Contrary to local optimization algorithms, global 

optimization algorithms are designed to find a good 

solution over all input values. A variety of algorithms 

exists for global optimization. Metaheuristics are 

l1

m1A+ m2A

m2B+ m3

J2v

l2
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procedures to find good (global) solutions for 

optimization problems. However, the discovery of the 

globally optimal solution is not guaranteed. This is due to 

the fact, that these methods do contain some kind of 

stochastic optimization. Examples for metaheuristics are 

the Particle Swarm Optimization or the Genetic Algorithm 

(GA). Information on these metaheuristics can be found 

in [14–16]. 

 In order to conduct the dynamic synthesis of the 

slider-crank-mechanism the synthesis was formulated as 

an optimization problem. The set of design parameters 

contains the entries of the parameter vector pe and is 

complemented by the initial angle φ0. It reads: 

 

x = (l1, l2, e, ι2v, μ3v, φ0) 
 

The necessary steps within the optimization process are 

shown in Fig. 5. The process of evaluating the 

optimization function is depicted within the doted 

rectangle. Inside of the evaluation of the optimization 

function the Eigenmotion φ̇e is calculated for a set of 

design parameters. The Eigenmotion is calculated for the 

N points of the vector of normalized time t. The 

Eigenmotion is then integrated in order to achieve the 

crank angle of the Eigenmotion φe over the normalized 

time. The stroke of the slider-crank-mechanism in 

Eigenmotion se can then be calculated by inserting φe in 

the kinematic equations of the mechanism. In order to 

compare the stroke of the slider-crank-mechanism se in 

Eigenmotion to the desired ouput stroke sd the sum of 

least squares of the difference between both motions is 

calculated: 

 

f = ∑(se(i)-sd(i))
2

N

i=1

 

 

The vectors se and sd contain the values of the 

Eigenmotion and the desired motion over the normalized 

time. The optimization process is repeated for different 

sets of design variables until a stop criterion is reached. A 

stop criterion could be for example the value of f being 

under a certain, predefined treshold. 

 In order to achieve feasible solutions, constraints have 

to be taken into account. First of all, upper and lower 

limits (boundaries) of the design parameters have to be 

determined. The upper and lower boundaries of the design 

variables are also called box-constraints. Second, the 

kinematic chain of the slider-crank-mechanism has to be 

closable for any input angle φ. Further constraints 

concerning can be implemented. These constraints can 

concern the dimensions of the mechanism, like for 

example a relationship between the lengths of different 

links. Furthermore requirements concerning the output 

motion could be implemented as constraints. 

 
Fig. 5.  Flow-chart of the optimization process 

5. An Example of the Dynamic Synthesis of the Slider-

Crank-Mechanism 

calculate the Eigenmotion for 

and a period of T=1s 

(normalized time) 

integrate in order to derive

calculate the stroke of the slider

for one cycle in case of the input

angle 

compare the Eigenmotion to the

desired motion

End

create set of design parameters x

Is the

difference

acceptable

?

Start

Are the

constraints

satisfied

?

yes

no

yes

no
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 In the following an example of the dynamic synthesis 

of the crank-slider-mechanism is presented. Fig. 6 shows 

the desired output motion of the crank-slider-mechanism. 

The output slider should fulfill a descending motion from 

0.6 to 0.3 meters with approximately constant velocity 

between 0.6 and 0.9 seconds of normalized time.  

 
Fig. 6 : The desired output of the slider-crank-mechanism 

The upper and lower values of the design parameters were 

set as listed in Table 1.  

 

Table 1.  The boundaries of the design parameters 

parameter  lower boundary  upper boundary 

l1   0.10 m   1.00 m 

l2   0.10 m   1.00 m 

e  -0.50 m  -0.50 m 

ι2v  -0.05   0.00 

μ3v   0.00   0.75 

φ0   0.00   2π 

 

Apart of the box constraints and the closing condition of 

the linkage no more constraints were implemented. 

6. The Results of the Dynamic Synthesis 

 In order to solve the optimization problem a genetic 

algorithm was used. The output parameters of this 

optimization were used as input parameters for a local 

optimization algorithm. The local optimization was 

carried out by using a barrier-method. 

 The result of the optimization is shown in Fig. 7. It 

can be seen that the output motion of the resulting slider-

crank-mechanism in Eigenmotion is close to the desired 

output motion. 

 
Fig. 7.  The result of the dynamic synthesis 

 The resulting set of parameters of the optimization is 

listed in Table 2. The parameter φ0 is the value of the 

crank angle at the beginning of a cycle. It has no influence 

on the design of the mechanism. 

 

Table 2.  The solution set of parameters 

parameter  value 

l1 166.7 mm 

l2 557.0 mm 

e 333.3 mm 

ι2v -0.05 

μ3v   0.75 

φ0   3.6645 

 

The parameters ι2v and μ3v can be used to derive the 

geometry of the coupler and the crank. 

 It can be thought of different ways to derive feasible 

links from these parameters. In the following one 

approach is shown in order to derive members of the 

mechanism. First of all, the mass property J1v is set to a 

preliminary value (denoted by an asterisk): 

 

J1v
* = 1.0 kg ∙ l1

2 

 

Second, the geometry of the coupler link is set to be 

according to Fig. 8. 

 
Fig. 8. The predefined geometry of the coupler link 

0.0 1.00.5
0.0

0.6

1.2

normalized time [s]

st
ro

k
e

[m
]

desired motion

0.0 1.00.5
0.0

0.6

1.2
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st
ro

k
e

[m
]

desired motion

Eigenmotion
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l2d2 d2

2d2
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The coupler link is set to be rectangular with its center of 

mass in the middle of the connecting line between the two 

joints. The density of the material is denoted ρ2. Two 

geometric parameters d2 and the width of the link t2 are 

introduced. The value d2 and ρ2 are set to fixed values: 

 

d2 = 40 mm,   ρ2 = 2700
kg

m3
 

 

Using the preliminary value for J1v the mass of the coupler 

link can be calculated as follows: 

 

m2
* =

ι2v ∙ J1v
*

(
1
12
((l2 + 2d2)

2 + 4d2
2)-

l2
2

4
)

 

 

All values denoted by an asterisk are preliminary values 

which can be adjusted later. Now the preliminary mass of 

the slider can be calculated. It is: 

 

m3
* = μ3v

J1v
*

l1
2 -
m2
*

2
 

 

The mass of the output link is now set to a fixed value: 

 

m3 = 2.5 kg 

 

A correction factor for the mass parameters is calculated: 

 

f * =
m3

m3
*
 

Hence: 

J1v = f
* ∙ J1v

*  

 

The mass of the coupler link can then be calculated as 

follows: 

 

m2 = f * ∙ m2
* = 1.5730 kg 

 

In order to define the coupler geometry the width of the 

link has to be calculated. It is: 

 

t2 =
m2

ρ2((l2 + 2d2) ∙ 2d2)
= 11.4 mm 

 

After defining the coupler geometry, the crank geometry 

has to be derived. The point mass m1A according to 

chapter 3 can be calculated as follows:  

 

m1A =
J1v

l1
2 -
m2

2
 

The crank has to have the same dynamic effect with 

respect to the reduced mass moment of inertia as the point 

mass m1A. On the basis of geometry similar to the coupler 

geometry depicted in Fig. 8 the mass properties of the 

crank can be derived. The equation to calculate the mass 

reads: 

 

m1 = ρ1((l1 + 2d1) ∙ 2d1) ∙ t1 

 

The mass moment of inertia about the pivoting point in 

the frame can be set up as follows: 

 

m1A ∙ l1
2 =

m1

12
((l1 + 2d1)

2 + 4d1
2) + m1

l1
2

4
 

 

In order to derive the mass m1 from this equation, the 

value d1 is set to a certain value: 

 

d1 = 50 mm 

 

The density of the material of the crank is then set to: 

 

ρ1 = 7870
kg

m3
 

 

The width of the crank can then be calculated. It is: 

 

t1 =
m1

ρ1((l1 + 2d1) ∙ 2d1)
= 27.1 mm 

 

 The presented procedure of using the output values of 

the optimization in order to build feasible links is based on 

primitive geometries. Future work can be on the field of 

contemplating more complex geometries. 

7. Conclusion 

 In this paper the Eigenmotion of the slider-crank-

mechanism was presented. Therefore the underlying 

kinematic and dynamic equations were derived. An 

equimomental system of the slider-crank-mechanism was 

introduced in order to simplify the equations. 

 Subsequently a method for the dynamic synthesis of 

the crank-slider-mechanism was presented. Therefore the 

task was formulated as an optimization problem. The 

optimization problem was solved by the use of a genetic 

algorithm.  

 An example of the use of the method was shown. The 

results showed the suitability of the method to derive 

feasible mechanisms which can fulfill a desired output 

motion when moved in the Eigenmotion. In order to 

conclude the example, an approach of designing the links 

of the mechanism was presented. 
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