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Abstract 

      This study focuses on one of  the immensely important 

problems in the theory of mechanisms and  machines - 

kinematic analysis of complex spatial mechanisms. The 

solution of  this problem is  related to the spatial 

transformations of coordinate systems. For this purpose 

we use quaternions, which are the most effective and 

versatile mathematical tools for spatial transformations. 

Using the principle of the transfer by Study-Kothelnikov 

the spatial transformation turning around point with 

respect to the quaternion expressions are compiled by 

biquaternions and these  equations correspond  to the 

transformation of coordinate system bypass circuit 

mechanisms. Using examined loop - closure equations for 

spatial 7R mechanism it were introduced the direct and 

inverse problem of 6R serial  manipulator. 

Keywords: quaternions, dual, numbers, mechanism, 

manipulator, transformations, analysis. 

 

1. Introduction 

The problem of analisis and sinthesis of spatial 

mechanisms by using quaternions algebra have been 

studied by several researchers. Mamedov[1] derived the 

formulas for relationship of quaternions with matrix 

mathematical apparatus for spatial transformation, and 

then using the principle of the transfer by Kothelnikov 

solved the problem of velocities and accelerations for 

different spatial mechanisms. F.M.Dimentberg [2] 

described the theory of screws, the algebra of dual 

numbers, performs a kinematic analysis of the spatial 

mechanisms on the basis of the screws algebra, describes 

the different groups of screws. In profound work 

V.N.Branets and I.P.Shmyglevskiy[3] describes in detail 

the shape of the quaternion algebra and their property as 

an operator of rotation spatial solid. The paper 

V.N.Branets and I.P.Shmyglevsky [3] describes in detail 

the shape of the algebra of quaternions and their property 

as an operator of the spatial turn of rigid body. It has been 

derived the equations of a rigid body kinematics in the 

quaternion presentation. The fundamental work of  

Kothelnikov [4] theory of screws are submitted in 

biquaternions presentation. It describes the essence of the 

important principle of mechanics - principle of 

"transference." The results are applied to some problems 

of mechanics and solid. Chevallier [5] discussed about 

dual quaternions in kinematics. Collins et.al. [6] studied 

the workspace and singular configurations of the 3- RPR 

parallel manipulator, where they also used quaternions. 

Larochelle [7] used planar quaternions to create synthesis 

equations for planar robots, and created a virtual reality 

environment that could promote the design of  spherical 

manipulators. Martines et. al. [8] presented quaternion 

operators for describing the positions,  angular velocity 

and acceletions for a spherical motion of a rigid body with 

respect to the reference frame. McCarthe et. al. [9] used 

Clifford algebra exponentials in the kinematics synthesis. 

Dai [10] reviewed theoretical development of rigid body 

displacement where he also mentions about quaternions 

and biquaternions. Roy et. al.[11] used quaternion 

interpolation in the finite element approximation of 

geometrically exact beam. Zupan [12] tried to implement 

rotational quaternions into the geometrically exact three 

dimensional beam theory and novel finite element 

formulation was proposed. Pennestri et.al. [13] used dual 

quaternions for the analysis of rigid body motions and 

tries to the kinematic modeling of the human joints. 

Cellodoni et.al. [14] investigated an elastic model of rod 

and carried out the group of rotations by using 

quaternions. Banavar et.al.[15] developed an analytical 

model of a novel spherical robot by using quaternion 

algebra. Liao et.al. [16] used biquternions in the inverse 

kinematic analysis of general 6R manipulators.  

2. A brief note about quaternions. 

      Quaternion is a complex number made up of  the  real 

unit 1 and three  imaginary units  

𝒊𝟏, 𝒊𝟐, 𝒊𝟑  with real elements:  

           𝝀 = 1𝜆𝑜 + 𝜆1𝒊𝟏 + 𝜆2𝒊𝟐 + 𝜆3𝒊𝟑                     (1) 

      Terms of multiplying the following units: 

1  𝒊𝟏 = 𝒊𝟏  1 = 𝒊𝟏,  1  𝒊𝟐 = 𝒊𝟐  1=𝒊𝟐,  1  𝒊𝟑 = 𝒊𝟑  1 = 𝒊𝟑, 

𝒊𝟏  𝒊𝟏 = −1,   𝒊𝟐   𝒊𝟐 = −1,   𝒊𝟑   𝒊𝟑= −1, 

𝒊𝟏  𝒊𝟐 = −𝒊𝟐  𝒊𝟏 = 𝒊𝟑, 𝒊𝟑   𝒊𝟏=−𝒊𝟏   𝒊𝟑= 𝒊𝟐, 

𝒊𝟐   𝒊𝟑 = −𝒊𝟑   𝒊𝟐 = 𝒊𝟏,  1  1 = 1, 

Rules multiplying the imaginary units stored using 

Fig.1 : the multiplication of two unit located  on  the  

clockwise, obtained  the third  unit with the sign "+", 

while  in  the  reverse direction unit is obtained with the 

sign "-".                                                                                      

 
Figure 1. Rules multiplying the imaginary units 
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      These rules indicate that the multiplication by 1 does 

not change the quaternion, so in the future in terms of the 

quaternion first term 𝜆𝑜 will be designated without unity. 

       Units  𝒊𝟏, 𝒊𝟐, 𝒊𝟑  can be identified by the three-

dimensional vector space and consider the coefficients of 

these units as a component of the vector. Accordingly, the 

quaternion can be  represented as the sum of the scalar 

and vector parts: 

𝝀 = 𝑠𝑞𝑎𝑙 𝝀 + 𝑣𝑒𝑐𝑡 𝝀 

      The multiplication of quaternions has associative and 

distributive properties with respect to addition: 

(𝝀𝟏𝝀𝟐)𝝀𝟑= 𝝀𝟏(𝝀𝟐𝝀𝟑),   𝝀𝟏(𝝀𝟐 + 𝝀𝟑) =  𝝀𝟏𝝀𝟐 +  𝝀𝟏𝝀𝟑,, 

but multiplication of quaternions is not commutative. 

Indeed, by doing quaternion multiplication of  two  

quaternions  𝝀 and  𝝁  we obtain:   

                    𝝀 𝝁 = 𝜆𝑜𝜇0 − 𝜆1𝜇1 − 𝜆2𝜇2 − 𝜆3𝜇3 +  

                  +𝜆𝑜(𝜇1𝒊𝟏 +  𝜇2 𝒊𝟐 + 𝜇3𝒊𝟑) +                       (2)                             

              +𝜇0(𝜆1𝒊𝟏 + 𝜆2𝒊𝟐 +  𝜆3𝒊𝟑) + |
𝒊𝟏  𝒊𝟐   𝒊𝟑
𝜆1 𝜆2 𝜆3
𝜇1  𝜇2 𝜇3

|                                            

   From this expression it is clear that  𝝀 𝝁 = 𝝁  𝝀 only 

when disappear determinants. This is possible either when   

𝜆1 = 𝜆2 = 𝜆3 = 0, or  𝜇1 =  𝜇2 =  𝜇3 = 0, that is, when 

one of the factors is a scalar, or when 𝝀 = 𝑎 𝝁 (a  real 

number). From the last expression   as well we conclude 

that quaternion multiplication of two vectors containing 

the scalar and vector product of these vectors. Indeed, if in 

Eq.(2) to take 

 𝜆𝑜 = 𝜇0 = 0, we get: 

𝝀 𝝁 = −𝜆1𝜇1 − 𝜆2𝜇2 − 𝜆3𝜇3 +  |
𝒊𝟏  𝒊𝟐   𝒊𝟑
𝜆1 𝜆2 𝜆3
𝜇1  𝜇2 𝜇3

| 

The norm of a quaternion is the product  𝝀 on conjugate  

quaternion  𝝀̃(𝜆𝑜−𝜆1𝒊𝟏 − 𝜆2𝒊𝟐 −  𝜆3𝒊𝟑):     

𝝀  𝝀̃ = 𝝀̃ 𝝀 = 𝜆𝑜
2 + 𝜆1

2 + 𝜆2
2 + 𝜆3

2
 

   This expression is obtained based on the expression (2). 

The norm of a quaternion is denoted by |𝝀|  or  𝜆. If  |𝝀| = 

1, called the unity quaternion. 

       Any quaternion  (1) may be represented by a 

trigonometric form: 

𝝀 = 𝜆(𝑐𝑜𝑠𝜑 + 𝒆 𝑠𝑖𝑛𝜑) 
where  𝜆 norm of a quaternion; 

     Accordingly, trigonometric unit quaternion expression 

will be the following: 

𝝀 = 𝑐𝑜𝑠𝜑 + 𝒆 𝑠𝑖𝑛𝜑  

  e -  is unit vector of the vector part of the quaternion  𝝀:  

          e = 
𝑣𝑒𝑐𝑡 𝝀  

√𝜆1
2+𝜆2

2+𝜆3
2
  =  

𝜆1𝒊1+𝜆2𝒊2+ 𝜆3𝒊3

√𝜆1
2+𝜆2

2+𝜆3
2

,                 (3)               

𝑐𝑜𝑠𝜑 = 
λo

λo
2+λ1

2+λ2
2+λ3

2  ; sinφ= 
√λ1

2+λ2
2+λ3

2

λo
2+λ1

2+λ2
2+λ3

2    

 

Turning operation.  

       Quaternion algebra allows us to represent a spatial 

transformation in a simple form. Let  λ  and  r  are non-

scalar quaternions, then the value 

                                 r' = λ  r  λ̃                             (4) 

is also a quaternion scalar norm and part of which is equal 

to the norm and the scalar part of the quaternion r . Vector 

part vect 𝒓′ obtained by rotating vect 𝒓 around the cone 

axis by double angle 2 φ . Operation (4) changes only the 

vector part of the quaternion, so that operation can be 

regarded as the transformation operation   r   of the vector 

into the vector 𝒓′. Because the quaternion norm r  does 

not change transformation (4), the module of the vector 

part r as remains unchanged. This implies that 

transformation (4)  is orthogonal.   

    After  completing  quaternion multiplication  (4)  and 

equating  the  coefficients  of  the four units, we obtain the 

transformation (4) in the coordinates(for unit quaternions):   

𝑟1
′ = (𝜆0

2 + 𝜆1
2 − 𝜆2

2 − 𝜆3
2)𝑟1 + 2(𝜆1𝜆2 − 𝜆0𝜆3)𝑟2 + 

      +2(𝜆1𝜆3 + 𝜆0𝜆2)𝑟3 

𝑟2
′ = 2(𝜆1𝜆2 + 𝜆0𝜆3)𝑟1 + (𝜆0

2 + 𝜆2
2 − 𝜆1

2 − 𝜆2
2)𝑟2 +         

        +2(𝜆2𝜆3 − 𝜆0𝜆1)𝑟3                                                 (5) 

𝑟3
′ = 2(𝜆1𝜆3 − 𝜆0𝜆2)𝑟1 + 2(𝜆2𝜆3 + 𝜆0𝜆1)𝑟2 + 

       +(𝜆0
2 + 𝜆3

2 − 𝜆1
2 − 𝜆2

2)𝑟3 

        For example, let the vector r subjected to a sequence 

of transformations and rotations are defined  by  the 

quaternions 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏. The resulting quaternion for  

rotation is  determined by  λ:   

                      λ = λn  λn-1, … ,  λ1,                               (6) 

where quaternions 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏 expressed in the original 

coordinate system. Of course, encreesing the number of 

successive transformations the expression (6) becomes 

laborious.  

But if, quaternions are given as sequence of turns, using 

Rodrigues-Hamilton parameters, the resulting quaternion 

is determined by [3]: 

                           𝝀 = 𝝀𝟏  𝝀𝟐  , … ,  𝝀𝒏                                    

      The components of the quaternion in the basis, 

convertible by the same quaternion, is called Rodrigues-

Hamilton parameters. This quaternion components is 

equal in both coordinate systems because that quaternion 

determine  the transformation from one coordinate system 

to another. 

Dual numbers. 

        The dual number is as follows: 

                                   𝐴 = 𝑎 + 𝛿𝑎0 

     where a - the main, a0- moment part of the dual umber, 

𝛿 - operator Clifford has property δ2 = 0. Dual  numbers 

are denoted by basic letters. Operations on dual numbers 

are made according to the formulas:   

                       𝐴 ± 𝐵 = (𝑎 ± 𝑏) + 𝛿(𝑎𝑜 ± 𝑏𝑜);   
 A ∙ B = a ∙ b + δ(aob + abo); 



 

 

Proceedings of the International Symposium of Mechanism and Machine Science, 2017 

AzC IFToMM – Azerbaijan Technical University 

11-14 September  2017, Baku, Azerbaijan 

 

 

89 

 

𝐴

𝐵
=
𝑎

𝑏
+ 𝛿

𝑎𝑜𝑏 + 𝑎𝑏𝑜

𝑏2
;    𝐴𝑛 = 𝑎𝑛 + 𝛿𝑛𝑎𝑜𝑎𝑛−1; 𝐴

1
𝑛

= 𝑎
1
𝑛 + 𝛿

𝑎𝑜

𝑛𝑎
𝑛−1
𝑛

 

    The function of the dual number is as follows: 

      𝐹(𝑋) = 𝑓(𝑥 + 𝛿𝑥𝑜) = 𝑓(𝑥) + 𝛿𝑥𝑜𝑓′(𝑥);                                                        
𝐹(𝑋, 𝐴1, 𝐴2, … , 𝐴𝑛) = 𝐹(𝑥, 𝑎1, 𝑎2, … , 𝑎𝑛) + 

+𝛿 (𝑥𝑜
𝑑𝐹

𝑑𝑥
+ 𝑎1

𝑜
𝑑𝐹

𝑑𝑎1
+ 𝑎2

𝑜
𝑑𝐹

𝑑𝑎2
+⋯+ 𝑎𝑛

𝑜
𝑑𝐹

𝑑𝑎𝑛
) 

  The trigonometric functions of the dual  number    X =
x + δxo can be expressed as follows: 

 sinX = sinx +  δxo cosx;   𝑐𝑜𝑠𝑋 = 𝑐𝑜𝑠𝑥 +

 𝛿𝑥𝑜 𝑠𝑖𝑛𝑥;   𝑡𝑔𝑋 = 𝑡𝑔𝑥 +  𝛿𝑥𝑜 
1

𝑐𝑜𝑠2𝑥
   

Dual quaternions, the transfer principle.  

       If in the expression (1) real numbers λo, λ1, λ2, λ3  

replaced by dual, we obtain an expression of the dual 

quaternion: 

  Λ = Λo + Λ1i1 + Λ2i2 + Λ3i3                      (7) 

 where Λк = λк +  δλк
0 ( k=0,1,2,3)  the components of the 

dual quaternion. Transform the expression (7): 

  𝜦 = (𝜆𝑜 + 𝛿𝜆0
0) + (𝜆1 + 𝛿𝜆1

0)𝒊𝟏 + (𝜆2 + 𝛿𝜆2
0)𝒊𝟐 +                   

  +(𝜆3 + 𝛿𝜆3
0)𝒊𝟑 = 𝜆𝑜 + 𝜆1𝒊𝟏 + 𝜆2𝒊𝟐 + 𝜆3𝒊𝟑 +             (8) 

+𝛿(𝜆0
0 + 𝜆1

0𝒊𝟏 + 𝜆2
0𝒊𝟐 + 𝜆3

0𝒊𝟑) = 𝝀 + 𝛿𝝀
0  

    Equation (8) is an expression of biquaternion. It should 

be noted that the expression "biquaternion" and "dual 

quaternion" very relative, so they are equivalent and 

means the same operator for most common spatial 

transformation. Like quaternions the biquaternion (unity) 

can be reduced to trigonometric form:  

                              Λ = cosΦ + E sinΦ       

where  E - the unit screw of  the biquaternion; Φ - dual 

argument (dual angle) biquaternion. 

Like the formulas (3):   

E = 
vect Λ  

√Λ1
2+Λ2

2+Λ3
2
  = 

Λ1i1+Λ2i2+ Λ3i3

√Λ1
2+Λ2

2+Λ3
2

 

  cosΦ   = 
Λo

Λo
2+Λ1

2+Λ2
2+Λ3

2; 

  sinΦ = 
√Λ1

2+Λ2
2+Λ3

2

Λo
2+Λ1

2+Λ2
2+Λ3

2  . 

In the fundamental paper [4] it is proved that all the 

formulas written for the quaternion are non-deployed 

biquaternion formulas. This principle is called the 

principle of "transference." For example, applying this 

principle to the rotation operation (4), we can write  

                                R' = Λ R  Λ̃ ,                                                      

 

where  screw R'  is obtained by moving the screw R along 

the unit screw E by the double dual angle 𝟐𝜱. 

3. Creation of closed-loop equations of the 7R spatial 

mechanisms. 

 

      As is known, that  the composition of  close-loop  

equations of  spatial mechanisms is a time-consuming task 

and the output equations of the relationship between the 

parameters of the mechanisms by performing  

multiplication in the  close-loop  equations is almost an 

impossible task for the complex spatial mechanisms with 

traditional spatial transformation operators, in particular 

using matrix form. As was shown in [1] the condition of 

closed form, single-loop spatial seven-bar mechanism 

(Figure 2) had been expressed by  biquaternions product 

as follow: 

                 𝛬1°𝐴1°𝛬2°𝐴2°… °𝛬7°𝐴7 = 1                   (9)  

where 𝛬𝑖 = 𝑐𝑜𝑠 𝛷𝑘 + 𝒊𝟑𝑠𝑖𝑛 𝛷𝑘 (𝑘 = 1,2, … ,7)  are 

biquaternions characterize movement in kinematic pairs, 

these biquaternions can be called as "variable",𝛷𝑘 =
 𝜑𝑘 + 𝛿𝜑𝑘

0 (see Figure 2); 

 Ai = cosBk + i2sin Bk(k = 1,2, … ,7) are biquaternions, 

characterizing link parametrers of mechanism, these 

biquaternions  can  also  be  called  "permanent",  

𝐵𝑘 = 
k
+ δ

k
 O

 (shown in Figure 2  for the 1st. link). In 

reference [1] it is shown that the equation (9) is the 

common for all single-loop arrangements (including the 

plane four-link mechanism).    

Using biquaternions as operators in spatial 

transformation  it is ability to simplify a drawing and the 

deployment of the loop-closure equations. 

 
Fig. 2.   The spatial 7R mechanism 

Let us consider the possibility of simplifying the equations 

in more detail.So the equation (9) can be written as 

follows: 

    (𝑐𝑜𝑠𝛷1 + 𝒊𝟑𝑠𝑖𝑛 𝛷1)  ⃘ (𝑐𝑜𝑠𝐵1 + 𝒊𝟐𝑠𝑖𝑛 𝐵1)  ⃘     

    (𝑐𝑜𝑠𝛷2 + 𝒊𝟑𝑠𝑖𝑛 𝛷2)  ⃘(𝑐𝑜𝑠𝐵2 + 𝒊𝟐𝑠𝑖𝑛 𝐵2)   ⃘···        

        ···  ⃘(𝑐𝑜𝑠𝛷7 + 𝒊𝟑𝑠𝑖𝑛 𝛷7)  ⃘ (𝑐𝑜𝑠𝐵7 + 𝒊𝟐𝑠𝑖𝑛 𝐵7) = 1 

Biquaternions multiplication in this equation it is possible 

to perform a variety of options. For example, if 

biquaternions distributed evenly on both sides of the 

equation, we get: 

 Λ1°𝐴1°Λ2°𝐴2°Λ3°𝐴3°Λ4 = 𝐴̃7°Λ̃7°𝐴̃6°Λ̃6°𝐴̃5°Λ̃5°𝐴̃4  (10) 

where   Λ̃7, Ã7, Λ̃6, Ã6, Λ̃5, Ã5, Ã4  biquaternions conjugate. 

Disclosed, for example the left side of the biquaternion 

product (10), we obtain the following expression: 
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a1 (Cβ3CΦ4 + i3Cβ3SΦ4 + i2Sβ3CΦ4 + i1Sβ3SΦ4) +   

 +a2(-Cβ3CΦ4- i3Cβ3SΦ4-i2Sβ3CΦ4-i1Sβ3SΦ4) +  
 +𝑎3(−𝐶 𝛽3𝐶Φ4−𝒊𝟑𝐶 𝛽3𝑆Φ4−  𝒊𝟐𝑆 𝛽3𝐶Φ4−  𝒊𝟏𝑆 𝛽3𝑆Φ4) + 

+𝑎4(−𝐶 𝛽3𝐶Φ4 − 𝒊𝟑𝐶 𝛽3𝑆Φ4 − 𝒊𝟐𝑆 𝛽3𝐶Φ4

− 𝒊𝟏𝐶 𝛽3𝑆Φ4) + 

+𝑎5(−𝒊𝟏𝐶 𝛽3𝐶Φ4+𝒊𝟐𝐶 𝛽3𝑆𝛷4 +
𝒊𝟑𝑆 𝛽3𝐶𝛷4 −𝑆 𝛽3𝑆𝛷4) +                               

+a6(  i1Cβ3CΦ4- i2C β3SΦ4 + i3S β3CΦ4- S β3SΦ4) +                                

+a7(-i1Cβ3CΦ4 + i2C β3SΦ4- i3S β3CΦ4 +S β3SΦ4) + 

+𝑎8(−𝒊𝟏𝐶 𝛽3𝐶𝛷4 + 𝒊𝟐𝐶 𝛽3𝑆𝛷4 − 𝒊𝟑𝑆 𝛽3𝐶𝛷4 +
𝑆 𝛽3𝑆𝛷4) + 

+𝑎9( 𝒊𝟐𝐶 𝛽3𝐶𝜙4+ 𝒊𝟏𝐶 𝛽3𝑆𝜙4 − 𝑆𝛽3𝐶𝜙4 − 𝒊𝟑𝑆 𝛽3𝑆𝜙4) +                                 

+𝑎10(𝒊𝟐𝐶 𝛽3𝐶𝛷4 + 𝒊𝟏𝐶 𝛽3𝑆𝛷4 −𝑆 𝛽3𝐶𝛷4 − 𝒊𝟑 𝑆 𝛽3𝑆𝛷4)
+ 

+𝑎11(−𝒊𝟐𝐶 𝛽3𝐶𝛷4 −
𝒊𝟏𝐶 𝛽3𝑆𝛷4 +𝑆 𝛽3𝐶𝛷4+𝒊𝟑𝑆 𝛽3𝑆𝛷4) +    

+𝑎12(−𝒊𝟐𝐶 𝛽3𝐶𝛷4 + 𝒊𝟏𝐶 𝛽3𝑆𝛷4 −
𝑆 𝛽3𝐶𝛷4+𝒊𝟑𝑆 𝛽3𝑆𝛷4) + 

+a13(i3Cβ3CΦ4- C β3SΦ- i1S β3CΦ4+i2S β3SΦ4) + 

+𝑎14(𝒊𝟑𝐶 𝛽3𝐶𝛷4 − 𝐶 𝛽3𝑆𝛷4 − 𝒊𝟏𝑆 𝛽3𝐶𝛷4 + 𝒊𝟐𝑆 𝛽3𝑆𝛷4)
+ 

+𝑎15(𝒊𝟑С𝛽3 𝐶𝛷4 −𝐶 𝛽3𝑆𝛷4 − 𝒊𝟏𝑆 𝛽3𝐶𝛷4 + 𝒊𝟐𝑆 𝛽3𝑆𝛷4)
+ 

+𝑎16(−𝒊𝟑𝐶 𝛽3𝐶𝛷4 +
𝐶 𝛽3𝑆𝛷4−𝒊𝟏𝑆 𝛽3𝐶𝛷4 − 𝒊𝟐𝑆 𝛽3𝑆𝛷4); 
where: 

 𝑎1 = 𝐶𝜙1𝐶𝛽1𝐶𝛽2 𝐶(𝛷2 +𝛷3); 
𝑎2 =  𝐶𝜙1𝑆𝛽1 𝑆𝛽2 𝐶(𝛷2 − 𝛷3); 
 𝑎3 = 𝑆𝜙1𝐶𝛽1𝐶𝛽2 𝑆(𝛷2 + 𝛷3); 
𝑎4 = 𝑆𝜙1 𝑆𝛽1 𝑆𝛽2 𝑆(𝛷2 − 𝛷3); 
 𝑎5 = 𝐶𝜙1𝐶𝛽1 𝑆𝛽2 𝑆(𝛷2 − 𝛷); 
𝑎6 = 𝐶𝜙1𝑆𝛽1𝐶𝛽2 𝑆(𝛷2 +𝛷); 
𝑎7 = 𝑆𝜙1𝐶𝛽1 𝑆𝛽2 𝐶(𝛷2 −𝛷); 
𝑎8 = 𝑆𝜙1𝑆𝛽1 𝐶𝛽2 𝐶(𝛷2 +𝛷3); 
 𝑎9 = 𝐶𝜙1𝐶𝛽1 𝑆 𝛽2 𝐶(𝛷2 − 𝛷3); 
𝑎10 = 𝐶𝜙1 𝑆 𝛽1𝐶𝛽2 𝐶(𝛷 + 𝛷3); 
 𝑎11 = 𝑆𝜙1 𝐶 𝛽1 𝑆𝛽2 𝑆(𝛷2 − 𝛷); 
𝑎12 = 𝑆𝜙1 𝑆 𝛽1𝐶𝛽2 𝑆(𝛷 + 𝛷3); 
𝑎13 = 𝐶𝜙1𝐶𝛽1 𝐶𝛽2 𝑆(𝛷2 +𝛷3); 
𝑎14 = 𝐶𝜙1𝑆𝛽1 𝑆𝛽2 𝑆(𝛷2 − 𝛷3); 
𝑎15 = 𝑆𝜙1𝐶𝛽1 𝐶𝛽2 𝐶(𝛷2 +𝛷3); 
𝑎16 =  𝑆𝜙1𝑆𝛽1 𝑆𝛽2 𝐶(𝛷 − 𝛷3).  

The trigonometric expressions sıne and cosine functions 

are represended  by S and C, 

After some transformations, and grouping the terms in 1, 

i1, i2, i3, we will get: 

      𝐶𝜙1𝐶𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝛷2 + 𝛷3 + 𝛷4) − 

    −𝐶𝜙1𝐶𝛽1𝑆𝛽2𝑆𝛽3 𝐶(𝛷2 − 𝛷3 +𝛷4) − 

    −𝐶𝜙1𝑆𝛽1𝑆𝛽2𝐶𝛽3 𝐶(𝜙2 − 𝜙3 − 𝜙4) − 

    −𝐶𝜙1𝑆𝛽1𝐶𝛽2𝑆𝛽3 𝐶(𝜙2 + 𝜙3 − 𝜙4) − 

    −𝑆𝜙1𝐶𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝜙2 + 𝜙3 + 𝜙4) − 

    −𝑆𝜙1𝐶𝛽1𝑆𝛽2𝑆𝛽3 𝑆(𝜙2 − 𝜙3 + 𝜙4) −  

    −𝑆𝜙1𝑆𝛽1𝑆𝛽2𝐶𝛽3 𝑆(𝜙2 − 𝜙3 − 𝜙4) −     

    −𝑆𝜙1𝑆𝛽1𝐶𝛽2𝑆𝛽3 𝑆(𝜙2 + 𝜙3 − 𝜙4) + 

+𝒊𝟏[ 𝐶𝜙1𝐶𝛽1𝐶𝛽2𝑆𝛽3 𝐶(𝜙2 + 𝜙3 − 𝜙4) −  

     −𝐶𝜙1𝐶𝛽1𝑆𝛽2𝐶𝛽3 𝑆(𝜙2 − 𝜙3 − 𝜙4) − 

     −𝐶𝜙1𝑆𝛽1𝑆𝛽2𝑆𝛽3 𝑆(𝜙2 − 𝜙3 + 𝜙4) − 

     −𝐶𝜙1𝑆𝛽1𝐶𝛽2𝐶𝛽3 𝑆(𝜙2 + 𝜙3 + 𝜙4) −    
     −𝑆𝜙1𝐶𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝜙2 + 𝜙3 − 𝜙4) − 

     −𝑆𝜙1𝐶𝛽1𝑆𝛽2𝐶𝛽3 𝐶(𝜙2 − 𝜙3 − 𝜙4) −                             

     −𝑆𝜙1𝑆𝛽1𝑆𝛽2𝑆𝛽3 𝐶(𝜙2 − 𝜙3 + 𝜙4) −                 

     −𝐶𝜙1𝑆𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝜙2 + 𝜙3 + 𝜙4)] +                

+𝒊𝟐[ 𝐶𝜙1𝐶𝛽1𝐶𝛽2𝑆𝛽3 𝐶(𝜙2 + 𝜙3 − 𝜙4) −            (11)        

     −𝐶𝜙1𝐶𝛽1𝑆𝛽2𝐶𝛽3 𝐶(𝜙2 − 𝜙3 − 𝜙4) −  
     −𝐶𝜙1𝑆𝛽1𝑆𝛽2𝑆𝛽3 𝐶(𝜙2 − 𝜙3 + 𝜙4) −             

     −𝐶𝜙1𝑆𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝜙2 + 𝜙3 + 𝜙4) − 

     −𝑆𝜙1𝐶𝛽1𝐶𝛽2𝑆𝛽3 𝑆(𝜙2 + 𝜙3 − 𝜙4) −  
     −𝑆𝜙1𝐶𝛽1𝑆𝛽2𝐶𝛽3 𝑆(𝜙2 − 𝜙3 − 𝜙4) − 

     −𝑆𝜙1 𝑆𝛽1𝑆𝛽2𝑆𝛽3 𝑆(𝜙2 − 𝜙3 + 𝜙4)                      
     −𝑆𝜙1𝑆𝛽1𝐶𝛽2𝐶𝛽3 𝑆(𝜙2 + 𝜙3 + 𝜙4)] + 

+𝒊𝟑 [ 𝐶𝜙1𝐶𝛽1𝐶𝛽2𝐶𝛽3 𝑆(𝜙2 + 𝜙3 + 𝜙4) − 

     −𝐶𝜙1𝐶𝛽1𝑆𝛽2𝑆𝛽3 𝑆(𝜙2 − 𝜙3 + 𝜙4) + 

     +𝐶𝜙1𝑆𝛽1𝑆𝛽2𝐶𝛽3 𝑆(𝜙2 − 𝜙3 − 𝜙4) − 

     −𝐶𝜙1𝑆𝛽1𝐶𝛽2𝑆𝛽3 S(𝜙2 + 𝜙3 − 𝜙4) − 

     −𝑆𝜙1𝐶𝛽1𝐶𝛽2𝐶𝛽3 𝐶(𝜙2 + 𝜙3 + 𝜙4) − 

     −𝑆𝜙1𝐶𝛽1𝑆𝛽2𝑆𝛽3 𝐶(𝜙2 − 𝜙3 + 𝜙4) − 

     −𝑆𝜙1𝑆𝛽1 𝑆𝛽2𝐶𝛽3 𝐶(𝜙2 − 𝜙3 − 𝜙4) − 

     −𝑆𝜙1𝑆𝛽1𝐶𝛽2𝑆𝛽3 𝑐𝑜𝑠(𝜙2 + 𝜙3 − 𝜙4)]   
     After deploying the right side of biquaternions 

expression (10) we obtain similar expression, which will 

be featured unknown angles   𝛷5, 𝛷6, 𝛷7. Equating the 

terms in 𝒊𝟏, 𝒊𝟐, 𝒊𝟑,1  we get four dual equation. There is a 

dual dependence on the norm of biquaternion between 

these equations. Therefore, from the four dual equations 

only three are independent. Thus, taking any three 

equations of four and dividing them into the main and 

torque parts, we get six real equations for determining  

angles, 𝜑2, 𝜑3, 𝜑4, 𝜑5, 𝜑6, 𝜑7, which are the main parts of 

the dual angles   𝛷2, 𝛷3, 𝛷4, 𝛷5, 𝛷6, 𝛷7.   

       As it can be seen, that to make use of quaternions 

significantly simplify and get the ultimate expression for 

the loop-closure conditions of the spatial seven link 

mechanism, which is known as most complex single-loop 

mechanisms. These expressions are universal for all 

single-loop mechanisms.  

       But the most important advantage of expression (11) 

is that they are linear with respect to the sines and cosines 

angles  𝛹1,  𝛹2, … , 𝛹8:      
    𝛹1 = 𝛷2 + 𝛷3 + 𝛷4;     𝛹5 = 𝛷5 +𝛷6 + 𝛷7                                                   

    Ψ2 = Φ2-Φ3 + Φ4;     Ψ6 = Φ5-Φ6 +Φ7        (12)  

    𝛹3 = 𝛷2 + 𝛷3 − 𝛷4;     𝛹7 = 𝛷5 + 𝛷6 − 𝛷7 

    𝛹4 = 𝛷2 −𝛷3 − 𝛷4;     𝛹8 = 𝛷5 −𝛷6 − 𝛷7                       

There are two dependencies between the unknown angles  

Ψ1, Ψ2, … ,Ψ8: 

 

      𝛹1 +𝛹4 = 𝛹2 + 𝛹3;   𝛹5 + 𝛹8 = 𝛹6 + 𝛹7          (13) 
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As a result, the mathematical model of single-loop spatial 

seven-bar mechanism is described by relatively simple 

equations, and therefore their numerical solution is not 

difficult. 

        If the terms of biquaternions leave to one side in 

equation (9) and perform the biquaternions multiplication, 

and then after equating the coefficients of the unit vectors  

1, i1, i2,  i3, we will get as unknowns the sines and cosines 

of the following angles: 

 𝛹𝑘 = 𝛷2 ±𝛷3 ± 𝛷4 ± 𝛷5 ± 𝛷6 ± 𝛷7,  
    𝑘 = 1,2, … ,32                                                 (14) 

Between angles (14) there are 26 corners dependencies 

such expressions (13). The resulting equations are also 

linear relatively unknown parameters, but in this case the 

number is much higher. Therefore, in the preparation of 

the closure equations the biquaternions advisable to 

distribute on both sides of the loop-closure equation.  

        Of course, the above very effectively and simply 

necessary in the preparation of loop-closure equations  for 

platform type multi-loop mechanisms.   

 

4. Kinematic analysis of serial  6R manipulator. 

 

       Consider the direct problem of 6R open spatial 

kinematic chain(Figure 3). In the direct problem it is given 

the set movements of the kinematic pairs. The problem is 

to determine the position and orientation of the gripper. 

Biquaternions defining the position and orientation of the 

rigid body is denoted by X: 

       

 
Fig. 3. Spatial 6R manipulator 

                                                     

                 Χ = Χo + Χ1i1 + Χ2i2 + Χ3i3,              (15)     

Equation (15) can be expressed as the product of a 

quaternion: 

             Χ = Λ1  ⃘A1  ⃘Λ2  ⃘A2  ⃘, … , ⃘Λ6  ⃘A6  ,             (16) 

оr 

  𝜲 = (𝑐𝑜𝑠𝛷1 + 𝒊𝟑𝑠𝑖𝑛 𝛷1)   ⃘ ( 𝑐𝑜𝑠𝐵1 + 𝒊𝟐 sin𝐵1)  ⃘ 

          ⃘(𝑐𝑜𝑠𝛷2 + 𝒊𝟑𝑠𝑖𝑛 𝛷2)   ⃘ (𝑐𝑜𝑠𝐵2 + 𝒊𝟐𝑠𝑖𝑛 𝐵2)   ⃘ 

          ⃘(𝑐𝑜𝑠𝛷6 + 𝒊𝟑𝑠𝑖𝑛 𝛷6)  ⃘  (𝑐𝑜𝑠𝐵6 + 𝒊𝟐𝑠𝑖𝑛 𝐵6)    

where 𝜱𝒌  dual movement parameters in kinematic pairs, 

𝑩𝒌 dual number of links parameters (𝑘 = 1,2, … ,6),  
which are discussed above. Thus, the direct problem 

positions of the manipulator is to implement quaternion 

multiplication, that can be simplified as discussed above 

and are described by formulas (11).  

      Consider the inverse problem of 6R spatial serial 

manipulator. This problem can be formulated as follows. 

The position and orientation of the solid body(gripper) are 

determined by biquaternions as follow  

𝜲 = 𝛸𝑜 + 𝛸1𝒊𝟏 + 𝛸2𝒊𝟐 + 𝛸3𝒊𝟑 = 

= (𝑥𝑜 + 𝛿𝑥0
0) + 𝒊𝟏(𝑥1 + 𝛿𝑥1

0) + 𝒊𝟐(𝑥2 + 𝛿𝑥2
0) + 𝒊𝟑(𝑥3 +

𝛿𝑥3
0)                           

which determines the location of the moving coordinate 

system (𝒊𝟏, 𝒊𝟐, 𝒊𝟑) relative to the reference coordinate 

system ( 𝑰𝟏, 𝑰𝟐, 𝑰𝟑 ). Required to determine the movement 

in kinematic pairs, providing a predetermined position of 

the solid. We transform the expression (16) to the 

following form:   

𝜦𝟏  ⃘𝑨𝟏  ⃘𝜦𝟐  ⃘𝑨𝟐  ⃘𝜦𝟑  ⃘𝑨𝟑 = 𝜲  ⃘𝑨̃𝟔°𝚲̃𝟔°𝑨̃𝟓°𝚲̃𝟓°𝑨̃𝟒°𝚲̃𝟒     (17)                                                                

 We use equation (17) in the following  notation:                                                  

          Λ1  ⃘A1  ⃘Λ2  ⃘A2  ⃘Λ3  ⃘A3 = M                         (18) 

                                                  

           Ã6°Λ̃6°Ã5°Λ̃5°Ã4°Λ̃4 = N                          (19)                        

where                                                 

 M = Mo +M1i1 +M2i2 +M3i3 

                  N = N + N1i1 + N2i2 + N3i3 

      After  completing  quaternion  multiplication (18),  we 

obtain components of biquaternion M: 

𝑀𝑜 = 𝑐𝑜𝑠𝐵1𝑐𝑜𝑠𝐵2𝑐𝑜𝑠𝐵3 𝑐𝑜𝑠(𝛷1 +𝛷2 + 𝛷3) − 

      −𝑠𝑖𝑛𝐵1𝑠𝑖𝑛𝐵2𝑐𝑜𝑠𝐵3 𝑐𝑜𝑠(𝛷1 −𝛷2 + 𝛷3) − 

      −𝑐𝑜𝑠𝐵1𝑠𝑖𝑛𝐵2𝑠𝑖𝑛𝐵3 𝑐𝑜𝑠(𝛷1 +𝛷2 − 𝛷3) − 

      −𝑠𝑖𝑛𝐵1𝑐𝑜𝑠𝐵2𝑠𝑖𝑛𝐵3 𝑐𝑜𝑠(𝛷1 −𝛷2 − 𝛷3) 
𝑀1 = −𝑐𝑜𝑠𝐵1𝑠𝑖𝑛𝐵2𝑐𝑜𝑠𝐵3 𝑠𝑖𝑛(𝛷1 + 𝛷2 −𝛷3) − 

        −𝑠𝑖𝑛𝐵1𝑐𝑜𝑠𝐵2𝑐𝑜𝑠𝐵3 𝑠𝑖𝑛(𝛷1 − 𝛷2 −𝛷3) − 

        −𝑐𝑜𝑠𝐵1𝑐𝑜𝑠𝐵2𝑠𝑖𝑛𝐵3 𝑠𝑖𝑛(𝛷1 + 𝛷2 +𝛷3) + 

        +𝑠𝑖𝑛𝐵1𝑠𝑖𝑛𝐵2𝑠𝑖𝑛𝐵3 𝑠𝑖𝑛(𝛷1 −𝛷2 + 𝛷3) 
𝑀2 = 𝑐𝑜𝑠𝐵1𝑐𝑜𝑠𝐵2𝑠𝑖𝑛𝐵3 𝑐𝑜𝑠(𝛷1 + 𝛷2 + 𝛷3) − 

      −𝑠𝑖𝑛𝐵1𝑠𝑖𝑛𝐵2𝑠𝑖𝑛𝐵3 𝑐𝑜𝑠(𝛷1 − 𝛷2 + 𝛷3) + 

      +𝑐𝑜𝑠𝐵1𝑠𝑖𝑛𝐵2𝑐𝑜𝑠𝐵3 𝑐𝑜𝑠(𝛷1 + 𝛷2 − 𝛷3) + 

      +𝑠𝑖𝑛𝐵1𝑐𝑜𝑠𝐵2𝑐𝑜𝑠𝐵3 𝑐𝑜𝑠(𝛷1 − 𝛷2 − 𝛷3) 
𝑀3 = −𝑐𝑜𝑠𝐵1𝑠𝑖𝑛𝐵2𝑠𝑖𝑛𝐵3 𝑠𝑖𝑛(𝛷1 +𝛷2 − 𝛷3) − 

        −𝑠𝑖𝑛𝐵1𝑐𝑜𝑠𝐵2𝑠𝑖𝑛𝐵3 𝑠𝑖𝑛(𝛷1 − 𝛷2 − 𝛷3) + 

        +𝑐𝑜𝑠𝐵1𝑐𝑜𝑠𝐵2𝑐𝑜𝑠𝐵3 𝑠𝑖𝑛(𝛷1 + 𝛷2 + 𝛷3) − 

        −𝑠𝑖𝑛𝐵1𝑠𝑖𝑛𝐵2𝑐𝑜𝑠𝐵3 𝑠𝑖𝑛(𝛷1 − 𝛷2 + 𝛷3). 
      After  completing  quaternion  multiplication (19),  we 

obtain components of biquaternion N: 

𝑁𝑜 =  𝑐𝑜𝑠𝐵6𝑐𝑜𝑠𝐵5𝑐𝑜𝑠𝐵4 𝑐𝑜𝑠(𝛷4 + 𝛷5 + 𝛷6) − 

      −𝑠𝑖𝑛𝐵1𝑠𝑖𝑛𝐵2𝑐𝑜𝑠𝐵3 𝑐𝑜𝑠(𝛷4 − 𝛷5 + 𝛷6) − 

      −𝑐𝑜𝑠𝐵6𝑠𝑖𝑛𝐵5𝑠𝑖𝑛𝐵4 𝑐𝑜𝑠(𝛷4 + 𝛷5 − 𝛷6) − 

      −𝑠𝑖𝑛𝐵6𝑐𝑜𝑠𝐵5𝑠𝑖𝑛𝐵4 𝑐𝑜𝑠(𝛷4 − 𝛷5 − 𝛷6) 
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𝑁1 =   𝑐𝑜𝑠𝐵6𝑠𝑖𝑛𝐵5𝑐𝑜𝑠𝐵4 𝑠𝑖𝑛(𝛷4 − 𝛷5 + 𝛷6) − 

       −𝑠𝑖𝑛𝐵6𝑐𝑜𝑠𝐵5𝑐𝑜𝑠𝐵4 𝑠𝑖𝑛(𝛷4 + 𝛷5 +𝛷6) + 

       +𝑐𝑜𝑠𝐵6𝑐𝑜𝑠𝐵5𝑠𝑖𝑛𝐵4 𝑠𝑖𝑛(𝛷4 − 𝛷5 −𝛷6) + 

       +𝑠𝑖𝑛𝐵6𝑠𝑖𝑛𝐵5𝑠𝑖𝑛𝐵4 𝑠𝑖𝑛(𝛷4 +𝛷5 − 𝛷6) 
𝑁2 =   𝑐𝑜𝑠𝐵6𝑐𝑜𝑠𝐵5𝑠𝑖𝑛𝐵4 𝑐𝑜𝑠(𝛷4 − 𝛷5 +𝛷6) − 

       −𝑠𝑖𝑛𝐵6𝑠𝑖𝑛𝐵5𝑠𝑖𝑛𝐵4 𝑐𝑜𝑠(𝛷4 + 𝛷5 − 𝛷6) + 

       +𝑐𝑜𝑠𝐵6𝑠𝑖𝑛𝐵5𝑐𝑜𝑠𝐵4 𝑐𝑜𝑠(𝛷4 + 𝛷5 −𝛷6) + 

       +𝑠𝑖𝑛𝐵6𝑐𝑜𝑠𝐵5𝑐𝑜𝑠𝐵4 𝑐𝑜𝑠(𝛷4 + 𝛷5 +𝛷6) 
𝑁3 = −𝑐𝑜𝑠𝐵6𝑠𝑖𝑛𝐵5𝑠𝑖𝑛𝐵4 𝑠𝑖𝑛(𝛷4 + 𝛷5 −𝛷6) + 

        +𝑠𝑖𝑛𝐵6𝑐𝑜𝑠𝐵5𝑠𝑖𝑛𝐵4 𝑠𝑖𝑛(𝛷4 − 𝛷5 − 𝛷6) + 

        +𝑐𝑜𝑠𝐵6𝑐𝑜𝑠𝐵5𝑐𝑜𝑠𝐵4 𝑠𝑖𝑛(𝛷4 + 𝛷5 + 𝛷6) + 

        +𝑠𝑖𝑛𝐵6𝑠𝑖𝑛𝐵5𝑐𝑜𝑠𝐵4 𝑠𝑖𝑛(𝛷4 − 𝛷5 + 𝛷6)     
 We write the expression (17) with (18) and (19): 

 M = Χ  ⃘N   

 After completing quaternion multiplication and equating 

the terms in 1, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑 get four dual expression: 

          𝑀𝑜 = 𝛸𝑜𝑁𝑜 − 𝛸1𝑁1 − 𝛸2𝑁2 − 𝛸3𝑁3                                                                     

          𝑀1 = 𝛸𝑜𝑁𝑜 − 𝛸1𝑁1 − 𝛸2𝑁2 − 𝛸3𝑁3                  (20)                                         

        𝑀2 = 𝛸𝑜𝑁𝑜 − 𝛸1𝑁1 − 𝛸2𝑁2 − 𝛸3𝑁3 

        𝑀3 = 𝛸𝑜𝑁𝑜 − 𝛸1𝑁1 − 𝛸2𝑁2 − 𝛸3𝑁3 

   Between equations (20), there is a dual relationship to 

the norm biquaternion. Discarding any of them get three 

independent dual equations that are equivalent to six real 

equations. From these six equations are determined 

unknown corners  φ1, φ2, φ3, φ4, φ5, φ6, , that is a major 

part of dual angles  Φ1, Φ2, Φ3, Φ4, Φ5, Φ6.. 

 

Conclusions 

    Preparation a new method for closed-loop equations of 

mechanisms that particularly effective and a must in the 

preparation of these equations for complex multi-loop 

spatial mechanisms. When using offered method greatly 

simplified outline of the closed-loop equations of spatial 

mechanisms, whereby it becomes possible to express 

these equations in  explicitly form. 
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