
 

 

Proceedings of the International Symposium of Mechanism and Machine Science, 2017 

AzC IFToMM – Azerbaijan Technical University 

11-14 September  2017, Baku, Azerbaijan 

 

 

150 
 

Radially Expandable Ring-Like Structure with Antiparallelogram 

Loops 
 

Şebnem GÜR1, Koray KORKMAZ2*, Gökhan KİPER3 

1, 2*Izmir Institute of Technology 

Department of Architecture 

E-mail: sebnemgur@iyte.edu.tr,  koraykorkmaz@iyte.edu.tr 
3 Izmir Institute of Technology 

Department of Mechanical Engineering 

E-mail: gokhankiper@iyte.edu.tr 

 

Abstract 

As they constitute a substantial percent of deployable 

structures, scissor mechanisms are widely studied. This 

being so, new approaches to the design of scissor 

mechanisms still emerge. Usually design methods 

consider the scissor elements as modules. Alternatively, it 

is possible to consider the loops as modules. In this paper, 

loop assembly method is used such that antiparallelogram 

loops are placed along a circle, to construct a deployable 

structure. The research shows that it is possible to 

construct radially deployable structures with identical 

antiparallelogram loops with this method. Then kinematic 

and geometrical properties of the construction are 

analyzed. It is found out that the links of such a structure 

turn out to be similar generalised angulated elements. 

Furthermore, similar loops are used for the construction 

and deployable rings are obtained. 
Keywords: Deployable ring-like structure, antiparallelogram 

loop, loop assembly method, radial expansion, angulated 

scissor element. 
 

 

1. Introduction 
 

 Deployable structures are mechanisms that can go 

under transformation in order to achieve a compact 

(stowed) and an open (deployed) configuration [1]. This 

change in size offers a great advantage in packing and also 

in mobility, therefore making them suitable for many 

applications varying from retractable roofs [2-4] to space 

antennas [5-7]. 

One of the most important units of deployable 

mechanisms are scissor-like elements (SLEs). SLE is 

composed of two straight bars connected with a revolute 

joint, which is perpendicular to the common plane of the 

bars, called pantographic elements [8]. In 1960’s Pinero 

published the first academic studies on deployable 

structures made of SLEs [9]. Later on the foldability 

conditions of SLEs were defined by Felix Escrig [10, 11]. 

Kinematics of deployable structures continued to be a 

research area for many others [12-14]. 

Angulated elements were first introduced by 

Hoberman [15, 16]. This new type of SLEs were able to 

subtend a constant angle. We observe the same property in 

Servadio’s foldable polyhedra [17]. Hoberman’s latter 

work, the Iris Dome [16], is nothing but a circular 

application of the angulated unit subtending constant 

angle between the unit lines, therefore capable of radial 

deployment. 

 Angulated units were further explored by You and 

Pellegrino [18] after the invention of Hoberman. They 

derived the geometric conditions of radial deployment and 

came up with two types of generalized angulated elements 

(GAEs): equilateral (type I) and similar (type II) GAEs. 

After You and Pellegrino, further research was conducted 

on the kinematics and mobility analysis of angulated 

elements [19, 20]. Kiper et al. [21] showed that the motion 

of the angulated elements in a radially expanding structure 

is the Cardan Motion. 

 Instead of using the angulated elements as modules 

for deployable structure design, Hoberman uses rhombus 

loops as modules [22]. This loop assembly method first 

places identical rhombus loops along a curve and then the 

link lengths are determined. Liao and Li [23] and Kiper 

and Söylemez [24] have found similar results 

independently from Hoberman. 

 

2. Loop Assembly Method 
 

In the literature there are three types of scissor units: 

transitional, polar and angulated units. When the scissor 

hinge is in the middle of straight bars, the result is a 

translational scissor. Maden et al. [25] have examined the 
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possible arrangements of different types of scissor units 

and provided formulations for their analysis and design. 

When several translational scissor units are assembled 

together in a row, the loops formed are rhombus loops 

(Fig. 1a). When the scissor hinge is not placed in the 

middle, polar units with kite loops are formed (Fig. 1b). 

 

 

 
Fig. 1: a) Rhombus loops formed with translational scissor units  

b) Kite loops formed with polar scissor units [26] 

 

Hoberman devised a methodology using the loops to find 

the form of the links. By aligning rhombus loops on a 

curve, he derives angulated elements (Fig. 2). He also 

found out that it was possible to achieve deployable 

structures using different scales of the same rhombus 

along a given curve. In this study we use another type of 

loop, antiparallelogram loop, to compose single degree of 

freedom (DoF) radially expanding deployable structures.

 

 
 

Fig. 2. Assembly of rhombi loops on a circle [22] 

 

An antiparalellogram is also called a crossed 

parallelogram or a contraparallelogram. It is made up of 

two equal short and two equal long sides, in which long 

sides cross each other. During the motion the crossing 

point moves on the long edges and always stays on the 

mirror symmetry axis of the loop (Fig. 3). 
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Fig. 3. Motion of antiparallelogram loop 

 

In our study, we align antiparallelogram loops along a 

circle, similar to Hoberman’s method. There are several 

variations of arrays in order to connect the loops at joints. 

Placing the loops in alternating order on the circle (sort of 

glide reflection along the circle) yielded a radially 

deployable structure (Fig. 4). 

 

 
Fig. 4. Antiparallel loops along a circle 

 

 
Fig. 5.  Deployable antiparallelogram ring mechanism 

In Fig. 5 it is seen that there is only one joint on each 

radial axis from the center, unlike the angulated scissor 

ring-like structures developed by Hoberman. Therefore it 

is not possible to locate the center with a single loop, but 

two loops are necessary so that the positions of three 

joints defines a circle. The relation between the subtended 

angle θ and kink angles  +  of the links can be observed 

with a geometrical analysis (Fig. 6). Also, due to 

alternating order of the loops, there are always even 

number of loops in the assembly.  

 

 
Fig. 6. Geometrical analysis of antiparallelogram ring 

mechanism 

 

Initially AB arm of link ABC and DE arm of link 

DEF are parallel to each other. Let EAB = . Since |AB| 

= |DE| and |AE| = |BD|, all inner angles of ABDE 

antiparallelogram are equal to . Let AEF = . It is seen 

from Fig. 6 that DEF = AEG =  + , i.e. the kink 

angles of both types of angulated elements, DEF and 

AEG, are equal to each other. BOE = 2, being an outer 

angle of triangle OAB. A line through the intersection 

point O and parallel to AB and DE divides BOE and 

also the subtended angle  into two. The loop has mirror 

symmetry about this line. Such lines will be called unit 

lines. Since DE is parallel to the unit line through O, the 

angle between the radial axis through E and DE is equal to 

/2. Similarly one can conclude that the angle between EF 

and the radial axis through E is equal to /2. So, /2 +  + 

 + /2 = , that is, the kink angles are  +  =  – . 

Since identical loops are used to construct the 

mechanism, the two type of angulated links DEF and 

AEG have link lengths |DE| = |EF| and |AE| = |EG|. Also 

the kink angles of both type of angulated elements are 

equal. Therefore, the angulated elements are similar (type 

II) GAEs (Fig. 7). When the desired number of loops and 

the circle radius at the initial configuration is specified, 

one of the side lengths can be chosen freely and the other 

side length is dependent.  
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Fig. 7. Similar (type II) GAEs - |AE|/|DE| = |EC|/|EB| and 

 =  

 

Next, we construct a ring with similar loops, instead 

of identical loops. For this construction, a random 

sequence of three different angles, ,  and , are used to 

divide the circle into sections. When the mechanism is 

drawn in Solidworks® it is seen that this construction also 

yields a deployable ring structure (Fig. 8). 

 Geometric principles of the mechanism can be found 

similar to the construction with identical loops (Fig. 9). 

The short edges of each loop are parallel to the unit lines 

passing through the center of the circle and crossing point 

of the loop. The unit lines bisect the corresponding 

subtended angles ,  and . Again, similar GAEs are 

used with identical kink angles. This time, the kink angles 

are determined by two adjacent subtended angle values. 

For example, FED = AEI =  + 2 =  – (/2 + /2). 

For the example in Fig. 8, there are 6 different pairs of 

angulated elements (Fig. 8b). Within each pair, two 

angulated links have the same kink angle and proportional 

arm lengths, i.e. they construct a similar GAE.

  
 

a)                                                                                b) 

Fig. 8: a) Deployable antiparallelogram ring mechanism with similar loops b) Link typology of the mechanism 

 

3. Conclusions 
 

 Our study showed that it is possible to achieve 

deployable rings using antiparallelogram loops in 

alternating order on a circle using loop assembly method. 

The links resulted from the assembly are Type I GAE’s 

with identical kink angles. Furthermore, the kink angles 

can be represented in terms of the subtended angles. It is 

seen that only one of the side lengths is independent when 

the number of loops and circle radius are given for the 

initial configuration. Unit lines of the loops do not pass 

through joints, but they are the symmetry axes of the 

loops. 

In the second stage of the study, we used similar 

loops to construct and that also yielded a deployable 

mechanism, again resulting with Type I GAE’s. In this 

construction the subtended angles varied. Once again, the 

kink angles can be represented in terms of the subtended 

angles.
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Fig. 9. Geometrical analysis of antiparallelogram ring mechanism with similar loops 
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