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Abstract 

In this paper, a sliding mode based self-tuning PID 

controller is proposed for second order systems. While 

developing the controller, it is assumed that the system 

model has a part which contains nonlinear terms similar to 

PID structure. The controller and update rules for PID 

parameters are obtained from Lyapunov stability analysis. 

Numerical simulations are conducted on a Twin-Rotor 

Multi-Input Multi-Output System (TRMS) model to show 

the performance of the proposed controller. 
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1. Introduction 

 PID control is the most preferred control technique in 

industrial applications due to its simple structure and 

convenience in implementation [1]. However, the 

effectiveness of the PID controller is based on the 

accurate selection of its parameters. Despite the good 

performance results in linear systems, the selection of the 

parameters might be very difficult and time wasting with 

the rise of nonlinearities of the system. To deal with this 

problem many approaches of self-tuning PID controllers 

have been presented till today. These approaches can be 

divided into two main categories: i) model based 

approaches and ii) rule-based approaches. In model based 

approaches, the tuning mechanism is based on the 

knowledge of the system model [2]. In rule based 

approaches, the  tuning  is  based  on  some  optimization  

or  estimation rules without model knowledge, which 

basically mimics an experienced operator’s behavior [2]. 

A good survey can be found in [2] on this topic. 

 In the literature, many studies can be found on self-

tuning PID controller and its applications. In [3], An et. al. 

presented a self-tuning method for PID controllers based 

on the theory of adaptive interaction for the quadrotor 

system. In [4], a self-tuning PID control scheme based on 

support vector machine (SVM) and particle swarm 

optimization (PSO) were presented. Jiang and Jiang 

proposed a fuzzy based self-tuning PID controller for 

temperature control [5]. Zheng et. al. used fuzzy module 

to tune PID controller parameters according to the error 

and change in error [6]. In [7] and [8], genetic algorithm 

was utilized to tune the PID parameters. Na presented a 

study on water level control of a nuclear steam generator 

with PID controller of which parameters were tuned by 

model predictive control (MPC) [9].  In [1], least squares 

support vector machine identifier was utilized to tune 

parameters of PID controller. Fan et. al. used neural  

network to tune PID controller for  position  tracking  of  a  

pneumatic artificial muscle [10]. Gundogdu and 

Komurgaz presented a self-tuning algorithm for PID 

controller based on adaptive interaction approach [11]. In 

[12], Howell and Best used continuous action 

reinforcement learning automata (CARLA) method to 

tune the PID controller parameters while controlling 

engine idle-speed. In [13], Shih and Tseng designed a 

self-tuning PID controller by using integral of time-

weighted absolute error (ITAE) optimal control principle 

and the pole-placement approach to control position of a 

servo-cylinder. Dong and Mo presented model reference 

adaptive PID controller for motor control system with 

backlash [14]. In [15], Chamsai et. al. presented an 

adaptive PID controller combined with sliding mode 

controller for uncertain nonlinear systems. Chang and Yan 

proposed an adaptive PID controller based on sliding 

mode controller for uncertain chaotic systems [16].  Kuo 

et.  al. presented an adaptive sliding mode controller with 

PID tuning method for a class of uncertain systems [17]. 

 In this paper, a sliding mode based self-tuning PID 

controller is proposed for uncertain second order systems.  

Different from the literature, it is assumed that the model 

contain nonlinear terms similar to PID structure. The 

controller and update rules for PID parameters are 

obtained from Lyapunov stability analysis. Numerical 

simulations are conducted on a Twin-Rotor Multi-Input 

Multi-Output System (TRMS) model to test the 

performance of controller and parameter update rule. 

 The  rest  of  the  paper  is  organized  as  follows;  the  

system model  is  presented  in  Section  2.  Control and 

parameter update rule design are presented in Section 3. 

Numerical simulation results are given in Section 4. 
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Finally concluding remarks are presented in Section 5. 

2. System Model 

 The following second order system is considered in 

this paper, 

 

                                 
21 )( xtx                                 (1) 

                         )()x()(2 tuftx                       (2) 

 

where x(t)  =  [x1 (t), x2(t)]T is  state  vector,  u(t)∈ R is 

control signal. The function f(·):R2→R is assumed in the 

form of 

 

 )()()()()( 121 txktxktxkxgxf idp .    (3) 

 

where g(·):R2 → R is unknown function,  kp, kd and ki are 

unknown system parameters. 

 Assumption 1:  It is assumed that the function g(·) is 

bounded as 

 

                                 )(xg                                (4) 

 

where ρ is known. 

 Assumption 2:  It is assumed that the system 

parameters, kp, kd and ki are in known bounded regions. 

 Assumption 3:  It is assumed that x(t) is available and 

continuous. 

3. Control and Parameter Update Rule Design 

 The objective of the controller is to utilize that )(1 tx  

track a desired trajectory while updating PID parameters. 

To achieve this objective, the error system is designed as 

follows, 

 

                            
111 )(~ xxtx d                              (5) 

                           
222 )(~ xxtx d                            (6) 

 

where xd1 and xd2 are desired trajectories.  To construct 

sliding mode controller, the filtered error signal is 

designed as 

                          1

2

12
~~2~ xxxs  .                    (7) 

 

 The derivative of (7), which will be utilized later, is 

          1

2

12
~~2~ xxxs   

  

               uxkxkxkgx idpd 1112
   

                1

2

1

2

1
~12 xxxd    .                         (8) 

 The control input is designed as 

                                 
RPID uuu                                (9) 

 

where uR is sliding part of the controller and 

                 111
~ˆ~ˆ~ˆ xkxkxku idpPID

                    (10) 

where pk̂ , dk̂  and ik̂  are estimates of kp, kd ve ki , 

respectively.  

 By substituting the (9) and (10) in (8), it is obtained as   

      1112

~~~
xkxkxkgxs idpd


 

              
Rdidddp uxkxkxk   111

ˆˆˆ 
 

               1

2

11
~22 xxxd                               (11) 

where 

    ppp kkk ˆ~
 , ddd kkk ˆ~

 , iii kkk ˆ~
 .      (12) 

  The Lyapunov function in (13) is utilized to construct 

update rules for PID gains and design uR 

            2222 ~

2

1~

2

1~

2

1

2

1
idp kkksV  .                (13) 

 The derivative of (13) is obtained as 

 iiddpp kkkkkkssV


 ~~~~~~


  

     
Rdidddpd uxkxkxkgxs   1112

ˆˆˆ( 
  

         
)ˆ(

~
)~22 11

2

11 ppd ksxkxxx


  
  

        )ˆ(
~

)ˆ(
~

11 iidp kxskkxsk


                    (14) 

 From (14), the update rules of pk̂ , dk̂  and ik̂  are 

selected as in (15) to eliminate the terms with gain errors. 

        
1

ˆ sxk p 


, 
1

ˆ xskd



 ,  1

ˆ xski


           (15) 

 After substitution of (15) in (14), V  is obtained as 

          sgxxxsV d  )~~2( 1

2

12   

                 Rdidddp suxkxkxks   )ˆˆˆ( 111
       (16) 

  The input signal uR should be designed to make  V   

negative. To achieve this purpose, uR will be investigated 

by separating into three terms as   

                           
321 uuuuR   .                         (17) 

u1, is designed as to eliminate first two terms in (16) as 

  )sgn(~~2 1

2

121 skxxxu d   , 
 Rk      (18) 

  To eliminate the term sg in (16), the condition in 

assumption 1 can be utilized. From (4) the following 

inequality can be obtained 

                       ssg  , R                           (19) 

 By using (19), u2 is designed as follows 
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                                
s

s
u 2 .                                  (20) 

 By substituting (18) and (20) in (16), V  is obtained 

as, 

                      3susLskV                             (21) 

where 

                  111
ˆˆˆ

didddp xkxkxkL  .                 (22) 

 An upper bound for L can be defined as 

             111 didddpm xkxkxkL  .   (23) 

where pk , dk  and ik  are upper bounds of kp, kd and ki, 

respectively. 

 Hence, the following inequality can be written 

                              mLssL                                    (24) 

Remark 1:  In (23), Lm may go to infinity for 01 dx  

since integral term. But it should be kept in mind that the 

main interested term is |s|Lm. So if it can be proven that 

s(t) converge to 0, fast enough, then, it can be assumed 

that the term |s|Lm stays bounded. So Lm can be accepted 

as bounded. 

In the rest of the paper, it will be proven that s(t) converge 

to 0 with a tunable rate. 

From (24), 

                     3suLsskV m  .                      (25) 

 So, u3 can be obtained as 

                               mL
s

s
u 3                                    (26) 

 This leads 

                                skV  .                                   (27) 

 From (27), it can be said that s, pk̂ , dk̂  and ik̂ are 

bounded. To  show  that s(t) goes  to  zero  with  respect  

to  time,  s(t) should be investigated in deep by taking the 

time derivative of s2 as 

sss
dt

d
2

2

1

 

                
)( 1112 uxkxkxkgx idpd  

  

                    sxxxd )22 1

2

11     .              (28) 

 By substituting (9) and (15) in (28), it is obtained as, 

   sxkxkxksks
dt

d
ipp )

~~~
(

2

1
111

2

  .  (29) 

 If k is selected as       

                 111 xkxkxkk idp





                 (30) 

where  

                              ppp kkk 


                               (31) 

                              ddd kkk 


                               (32) 

                              iii kkk 


,                                 (33) 

where pk , 
dk  and 

ik  are lower bounds of kp, kd and ki, 

respectively, (29) is obtained as 

                             ss
dt

d
2

2

1
                             (34) 

which leads 

                                    ss    .                              (35) 

 From  (35),  it  is  seen  that  starting  from  any  initial  

condition,  the  state  trajectory  reaches  to  the  surface  

in  a  finite time smaller than /)0( ts   and then 

converges to xd(t) exponentially with a time constant 

equal to 1/λ [18]. 

 

4. Numerical Simulations 

 

 The performance of the control law in (9) and update 

rule in (15) were evaluated by conducting numerical 

simulation by using the dynamic model of a 2-DOF 

helicopter which is known as TRMS. 

During the simulation, the parameter values of input 

signal were  selected  as  λ=diag(30,30),  k=diag(1,1),     

ρ=[1 1]T, Lm = [1 1]T . The initial values of gain estimates 

were set to kp=[5 5]T , kd=[5 5]T and ki=[5 5]T. The  initial  

positions  of  the  axes  were x(0)=[0.5 0.5]T in radian and  

the  desired positions were selected as xd=[0.4 0.3]T in 

radian. 

In the numerical simulations, it was observed that the 

control law performed satisfactorily. The  position  errors  

and  the control  inputs  of  yaw  and  pitch  axes  are  

presented  in Figures 1, 2, 3 and 4, respectively. The PID 

gain estimates are given in Figures 5, 6 and 7. As can be 

seen in the figures, both the yaw and the pitch errors are 

driven to the vicinity of zero. 
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Fig. 1. Yaw axis position error 

 
Fig. 2. Pitch axis position error 

 
Fig. 3. Input signal for yaw axis 

 

 

 

5. Conclusions 

 

 In this paper, a sliding mode based self-tuning PID 

controller was designed for second order systems.  While 

designing the controller, it was assumed that the system 

model contain nonlinear terms similar to PID structure. 

The controller and update rule for PID parameters were 

obtained from Lyapunov stability analysis. The 

effectiveness of the controller and update rule were 

evaluated by conducting numerical simulation and 

achieved satisfactory results. 

 
Fig. 4. Input signal for pitch axis 

 

 
Fig. 5. Kp estimates for yaw axis (top) and pitch axis 

(bottom) 
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Fig. 6. Kd estimates for yaw axis (top) and pitch axis 

(bottom) 

 

 
Fig. 7. Ki estimates for yaw axis (top) and pitch axis 

(bottom) 
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