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Abstract

This paper reports a number of interesting observations regarding
the kinematics and singularities of a spatial parallel manipulator.
namely, the 3-RPS manipulator. It is well known in literature that the
manipulator has two operation modes. Recently, it was shown that
the forward kinematic problem of the manipulator is equivalent to
the intersection of a circle with a pair of quad-circular octic curves,
corresponding to the two operation modes. in the plane of the said
circle. In this work, some special points of these octic curves are
analysed and corroborated against the singularities of the manipula-
tor. The transition between the modes are also examined from the
perspective of the intersection of the octic curves. Finally, the con-
ditions leading to finite self motions of the manipulator are derived
and validated against those in the existing literature. The method of
analysis is intuitive, simple, and at the same time, quite capable of
retrieving existing results, as well as deriving fresh ones.

Keywords: 3-RPS manipulator, Singularity, Finite self-motion,
Double point, Quad-circular octic curve

1. Introduction

In the study of kinematics of manipulators one often encounters
circular curves. One of the most famous examples of this is the
coupler-curve of the planar four-bar mechanism, which is perhaps
the most well-known tri-circular sextic in existence, and deserves
a catalogue of its own [1]. The curve reappears in the problem of
forward kinematics of planar parallel manipulators, where the prob-
lem reduces to the intersection of a circle with a tri-circular sextic
curve [2]. Recently, a new circular curve has been associated with
the forward kinematics of a spatial manipulator, namely, the 3-RPS
manipulator. It was shown in [3], that all the poses of the manipula-
tor (for a given set of inputs) correspond to the points of intersection
of a circle with a quad-circular octic curve in the plane of the said
circle. Such a reduction of the forward kinematic problem affords a
unique geometric understanding, from the perspective of the geom-
etry of plane curves, which have been documented exhaustively in
many classical works, e.g. [4].

Armed with these known results, this work tries to investigate
the special geometric conditions that may occur, and the kinematic
consequences thereof. In particular, this work looks at the special
points of intersection, which covers the tangency of the octic curve

with the circle, and the double points in the octic curve itself, which
coincide with the point of intersection with the circle. It is interest-
ing to note that while all of these cases lead to the merger of the roots
of the forward kinematic univariate (FKU) (see [5] for a discussion
on the FKU of this manipulator), not all of them are associated with
the kinematic singularities of the manipulator. In other words, an
interesting question emerges from these observations: “When does
the (geometric) singularity of the constraint curves lead to a (kine-
matic) manipulator, and when does it not?” Only a rigorous ana-
lytical study can answer that question in a comprehensive manner.
While that is out of scope of this paper, it does document a number
of interesting situations, relating to the tangency condition, as well
as the three possible types of double points, namely: the cusp, the
crunode, and the acnode. At each of these situations, the follow-
ing geometric/algebraic/kinematic conditions are studied, with an
attempt towards correlating these conditions: the formal algebraic
condition for the E' singularity' of the manipulator, as given in [7]
(henceforth referred to simply as the “singularity™): the geometric
condition for the case 2 of the singularity reported in [8]; the co-
planarity of one of the legs with the moving platform (as shown in
an example in [5]); the condtion for obtaining a double root of the
FKU, derived in terms of the Stiidy parameters in this work. The
study and the results thereof are by no means complete. or conclu-
sive. They are presented here to document a few possibilities, as
hinted by the numerical examples, which need to be either proven or
dismissed formally through rigorous analytical studies in the future.

The rest of the paper is oragnised as follow: the geometry and the
forward kinematics problem of the 3-RPS manipulator are presented
in Section 2. The intersections of the octic curves with the circle
at the special points, and the kinematic consequences thereof are
studied via numerical examples in Section 3. A special case where
the manipulator exhibits finite self-motion is discussed in Section 4,
and the results are summarised in Section 5.

! According to Thom-Boardman classification of singularities of a differ-
ential map £, a point x belongs to the class X" if the kernel of D f(x). (i.e.,
the differential of f at x) is of dimension n [6].
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2. Geometry and kinematics of the 3-RPS manipula-
tor

The 3-RPS manipulator has three RPS-chains, each connected
at a vertex of the fixed platform bybyb3 by a rotary joint, and
to the moving platform p, p,ps, by a spherical joint, as depicted
in Fig. 1. The fixed and moving platforms are equilateral trian-
gles of circumradius b and a, respectively. A fixed frame of ref-

Fig. 1: Schematic of the 3-RPS manipulator

erence {A}, given by 04-X,¥4Z,, and a moving frame of refer-
ence {B}, given by op-XpgY pZp, are attached to the centroids of
the fixed and the moving platforms, respectively. The actuated pris-
matic joint variables I = [ ,12,13,]T and the passive rotary joint vari-
ables ¢ = ¢y ,:1)2,413]T constitute the configuration space of the ma-
nipulator. The forward kinematic (FK) problem of the 3-RPS manip-

Fig. 2: Kinematic sub-chains of the 3-RPS manipulator

ulator is to determine the pose of the moving platform p, p, p3, for
a given set of inputs I. The problem can be addressed by hypothet-
ically breaking the 3-RPS manipulator into two kinematic chains,
and then finding the conditions for the two chains to close simulta-
neously. It can be done by removing one of the spherical joints, as
shown in [3]. For instance, if the spherical joint at p, is removed, a
spatial RSSR closed chain is obtained, along with an open RP planar
chain, as shown in Fig. 2. The point p;, of the RSSR-chain and the
point p,., of the RP-chain coincide at the point p; to form the 3-RPS
manipulator shown in Fig. 1. By casting these geometric conditions
in terms of equations and subsequently solving them, the unknown
variable @ can be obtained. The details of the process are given
in [3]. The key points relevant to the present work are:

1. The surface traced by the point pg of the RSSR-chain,
when intersected by the plane of the RP chain forms the
curve o(x,z) =0, where a(x,z) decomposes into the following

factors:

a(x,z) = B(x,2)01(x,z)02(x,z), where

3 L 2\?

B= ((2b+x) +47 ) : )
. The perfect square factor B = 0 does not have any real in-
tersection with the circle C(x,z) = 0 traced by p, , except
when z = 0. This special case has been discussed in Section 4.

. The factors O;(x,z) describe quad-circular octic curves. The
FK problem, therefore, reduces largely to the computa-
tion of the intersection of the curves Oj(x,z) with the cir-
cle C(x,z) =0. It is also known that the constraint ideal
(0;,C) defines the ith operation mode of the manipulator [7].

The above geometric description of the FK problem of the 3-RPS

manipulator is analysed further in this work, from the perspective of

special situations, as explained in the following section.

3. Special points at the intersection of the octic
curves with the circle

Ordinarily, the octic curves O; = 0 are completely disjoint, i.e.,
in general, the modes are independent of each other. Further-
more, O; = 0 intersect the circle C = 0 at distinct points, each such
point leading to an assembly mode of the manipulator, inside the ith
operation mode. However, there are special cases, where it is pos-
sible for Oy =0, Oy =0 and C = 0 to share common point(s), and
so on. Some of these cases are discussed in the following. It may
be noted that a complete, exhaustive geometric study of all the spe-
cial cases, and their mathematical/physical consequence is beyond
the scope of the current work, and is a subject matter of ongoing
research.

In the following, three special cases of interest are described:

1. Points of tangency, Sy: The circle C = 0 is tangent to one of
the octic curves O =0or O, =0.

Transition points, S,: The octic curves Oy =0 and O, =0

share a common point, and the circle C = 0 also passes through

this point.

3. Double points, S3: One (or both) of the octic curves has a dou-
ble point, and the circle C = 0 passes through this point.

2.

A detailed description of these three geometric cases, and their kine-
matic consequence are presented in the Sections 3.1,3.2 and 3.3,
respectively.

3.1. Points of tangency, S;

The point p, = [x,,z]" is a double root, when the octic
curve O; = 0 of the operation mode 7 and the circle C = 0, share a
common tangent at the said point. One pair of double roots indicate
a merger of a pair of forward kinematic branches of the manipulator.

The algebraic conditions for the curves C =0, O; =0 to have a
common tangent at their intersection point p, are:

1. The said curves should pass through the simple point p,, im-
plying:

2)

3

2. The tangents of the curves C = 0, O; = 0 should have the same
slopes at the intersection point p,:

C(X,_,Z,) = 07
Oi(xnzt) =0.

ac| a0 _acl a0l _o
9x|p, 9z |p  9z|p Ix|p
= zthi(xt,z2) =0. (5)
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The algebraic condition for tangency in Eq. (4) reduces to
Eq. (5), in which the polynomial 4(x;,z ) is of degree 6 in x;, z.
The condition z; = 0 is a very special one, which aligns the
tangent at the point p, with the axis Xy itself. This special case
is not discussed in detail due to want of space; however, one
example of such a situation, where the manipulator can have
finite self-motions, is discussed in Section 4.

The variety S; is expressed in the architecture parameters a, b,
and the active joint variables /1, [, /3, after eliminating x;,z; from
Eqgs. (2,3,5). First, z is eliminated, as shown in the schematics (6)
and (7):

0,((;,,:)):8 )l’ fulw) =0, ©
h'((;,":)):o )ﬁ fulx) =0. )

These steps result in two polynomials fi,(x;), f2,(x) of degree 4

and 3 in x;, respectively. The symbol ‘—% X% denotes the elimination
of the variable z, from the polynomial equations preceding it.

The eliminant E; is obtained on eliminating the variable x;
from the polynomial equations fj, =0, f>, =0, as shown in the
schematic (8).

fl,—(xr)

= 0 XX
% E; =0, 8
forl) =0 ) %5 "
The eliminant E;; splits into a number of factors:
Ey, =(l — b)*(h +0)2 (- B) (b +B)* (L~ 1)? ©

x (b +1)? Cila,b,b, 1) Ti(a,b,l1, I, l3), i=1,2.

The factors (/j — I)? can be ignored, since by themselves, they do
not necessarily imply tangency between curves intersecting at p,.
The factor ¢; in Eq. (9) being the leading co-efficient of the poly-
nomial fi,(x;), its vanishing signifies the break-down of the elim-
ination process depicted in the schematic (8), hence §; = 0 is also
ignored in the following. The remaining factor, 7;, is of degree 24
inly, Ip, 3.

The polynomials 7y, 7, describing the two operation modes ex-
hibit a functional relation:

71(a) = ©a(—a).

This is analogous with the relation g (a) = g»(—a) between the two
factors g1, g, of the forward kinematic univariate (FKU) of the ma-
nipulator, reported in [5]. Together, these conditions signify that the
m-screw motion mentioned in [7] is equivalent to the inversion of the
top platform.

An example of such a case is obtained for the parameter val-
ues? a=9/5,b=1,1; = —41/10,1 =23/10, I3 = 5.262. The oc-
tic curves O; = 0, O = 0 and the circle C = 0 are shown for these
numbers in Fig. 3. As can be seen in the figure, the curve O is tan-
gential to the circle C = 0 at p,. The line z = 0 acts as a mirror plane
of symmetry, as mentioned in [3].

Since the tangency implies the merger of two pairs (counting the
mirror image) of FK solutions, this condition implies a gain-type or
FK singularity of the manipulator. The corresponding pose of the
manipulator along with the branches that are merging is presented
in Fig. 4.

(10

2All the length parameters/variables are dimensionless in this paper, as
these have been scaled by the circumradius of the fixed platform, b, without
any loss of generality. All angles are measured in radians, unless mentioned
explicitly otherwise.

Fig. 3: Plot of the octic curves O1 = 0, O = 0 and the circle C =0

for the tangency condition 7; = 0.

Fig. 4: Singular pose of the 3-RPS manipulator where the FK
branches merge.

3.2. Points of transition, S,

A point p,, = [xm.zm] denotes the transition point between
the operation modes, when it is at the intersection of the octic
curves Op(x,z) =0, O2(x,z) = 0, as well as the circle C(x,z) = 0.
Hence, the following conditions define such a point:

C(xm,zm) =0, O1(xm,zm) =0, O2(xm,zm) = 0. (11D

As in the case of Sy, the variety S is obtained in the variables /;,
and the parameters a, b, after the elimination of x,,, z, from
Eq. (11). The elimination process is briefly described in the fol-
lowing schematics:

O1(xmyzm) .

Cl(x,,,,zm)— )—Z"’ filom) = (12)
o (xm Zm)

C?(XMJM) — ) = falxm) = (13)

The resultant of f3 and fj w.r.t. x,, results in the eliminant E; as
depicted in the schematic (14):

falxm) =
The eliminant E; splits into five factors:

Ey=d*& &858, =0. (15)
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The polynomials &;, &;, &3, &4 are of degree 8, 8, 8 and 24, respec-
tively, in the variable /1, /5,/3. It is verified that each of these factors
admit real solutions. Some of these real solutions are analysed nu-
merically and geometrically, from which the following observations
emerge:

1. Only the vanishing of &3 corresponds to the condition for the
transition point between the operation modes. It is verified,
numerically, that such transition points are singular as well, as
mentioned in [7].

2. The conditions &; =0, & = 0 cause two distinct non-singular
poses of the manipulator, belonging to distinct operation
modes, to have one of the sides of the moving platform in com-
mon. Such a situation is depicted in Fig. 8, where the side p; p3
is common between the operation modes of the manipulator. In
this work, the sides involved can only be p, p, or p; p3, since
the manipulator was broken at this point for the present analy-
sis.

3. The equation & = 0 describes the condition for two distinct
non-singular poses of the manipulator belonging to distinct
operation modes to have a point in common. For reasons ex-
plained above, the said point can only be p, in this work.

From these observations, it appears that the factors 2 and 3 are arte-
facts of the resultant-based elimination process. For the above said
reasons cases 2, 3 do not represent a transition.

The polynomial &3 being symmetric in /1,/, /3, distinguishes it-
self from the others in Eq. (15). Similarly, the polynomials &;,&; are
symmetric in /5, /3 and the polynomial &, is not symmetric in any of
the input joint parameters /y,/, or /3.

It is important to note here that the observations made above
are based on numerical examples, and not exhaustive mathemati-
cal analysis. Hence, interesting as they are, they can only hoped to
be indicative at this point.

An example for the case where {3 = 0 is obtained for the param-
etervaluesa=1/2,b=1, ; =22/10, I, =23/10, I3 = 2.936. For
these values, the curves Oy =0, O, =0, C = 0 meet at a common
point p,,, as depicted in Fig. 5. This point p,,, represents the transi-
tion point between the operation modes of the manipulator.

1.5
l«—C(z,2) =0

4 O (z,2) =0

|

=00 \
-0 \
- 1.9)
- 1.5
-3 -2 -1 0 1 2 3
z
Fig. 5: Plot of the octic curves Oy =0, 0, =0, circle C =0

for 53 =0.

The singular pose of the manipulator at this transition point p,,, is
shown in Fig. 6. The fixed and moving platforms of the manipulator
are in parallel planes with the latter flipped by 7 w.r.t to the former.
A similar configuration is reported as the constraint singularity of the
3-RPS manipulator in [9] and as the transition between the operation
modes xg = 0,x; =0in [10].

An example for the case, where the octic curves 01 =0, 0, =0,
and the circle C = 0 meet at a common point p,,, for the values of

Fig. 6: Pose of the 3-RPS manipulator at the transition.

the parameters b = 1, I} = 22/10, I = 23/10, I3 = 1.930 satisfy-
ing {1 = 0 is shown in Fig. 7. This point p,,, does not represent a
transition point for the above discussed reasons.

2.0
Ogfx,2) =0

Ov(z,2)=0 —F—

23 -2 -1 0 1 2 3
z

Fig. 7: Plot of the octic curves Oy = 0,0, =0 and the circle C =0
for&; =0.

The corresponding non-singular poses of the manipulator at the
point p,,, are as depicted in Fig. 8. Clearly, these are two different
poses of the manipulator except for the common side p; p;.

3.3. Double points of the octic at the intersection with
the circle, S3

Another interesting class of special points are the double points
on either O = 0 or O, = 0, when the circle C = 0 also passes
through it. Since the said curves are octic in nature, there can be
up to four pairs of double points on each (e.g., the points at infin-
ity in each). However, in this work, only one pair of double points
is considered due to space constraints. According to [4], pp. 2, “A
double point of a curve is a point P such that every line through P
meets the curve rwice at P”. These are further classified as infinite
and finite double points, depending upon whether they are at infinity,
or not.

3.3.1. Finite double points

The conditions for obtaining a finite double point, denoted
by ps = [xd,zd]T, on the octic curve O; = 0 intersecting with the
circle C = 0 are:

1. The gradient of the octic curve O; = 0 along x, z at the point p;
should be zero. Therefore, p; is a double point of the octic

82



Proceedings of the International Symposium of Mechanism and Machine Science, 2017
AzC IFToMM - Azerbaijan Technical University
11-14 September 2017, Baku, Azerbaijan

Fig. 8: Non-singular distinct poses of the 3-RPS manipulator.

curve O; = 0, provided:

90; 9_0)

) =° (16)

Oi(x4,24) =0, ( =
Pi
2. The double point p, is required to lie on the circle C = 0 as
well:

C(xd,z4) =0. (17
As in the case of S,, the variety S5 is obtained by first eliminating the
variables x4, z4 from the Egs. (16, 17), to obtain an equation in the
parameters a, b, and the variables /;,/,,/3. The elimination process
is briefly described by the following schematics:

Oixiizd) =0 \ s v x_
C(x4,24) =0 )4 3 (x4) =0, a8)
0| o\,
ox |p, )ﬁ fgi(xd):o, (19)
C(xdsld)=0

32| =o

Py ) X4 (b=l —xq)(b+1 —Xd)f%(xd) =0.
C(xd,24) =0
(20)

The polynomials f5,, fs,, f7, are of degree 4, 4 and 3 in x4, respec-
tively. The factors preceding the equation f7, = 0 in Eq. (20) corre-
spond to the case when z; = 0, the details of which are discussed in
Section 4. The resultant of the polynomial equations f5, =0, fs; =0
with the equation f7, = 0 in x4, results in two polynomials ry,, 75, in
the parameters a, b, [1, [, I3 as depicted in the schematics (21, 22).

gzg)ﬁ r, =0, @0
ﬁzg)ﬁ ry =0. 2)

Once again, it may be noted that the expressions for ry,, rp, for the
two operation modes vary only by the sign of the parameter «, i.e.:

rli(a) =r2,.(—a). (23)

Furthermore, i, T, factorises as shown in Egs. (24, 25), respec-
tively:

r, = — L) ( + L) — B) (4 + B)2 (L - 1)?

(24)
X (12 +13)2 Si(a:btlls[2=l3) = 0:
ry, =(a—2b)(1; —)*(l + L) (I — B) (I + 1)?
% (b —13) (I + 3)? (3a* — 6ab — 6b* — L2 —13%)  (25)

x pi(a,b,11,1,13) = 0.

The polynomials &;, y; in Egs. (24, 25) are each of degree 24 in the
variables /1, I3, 5.

The factors (I; — It)? represent the symmetry in the kinematic
sub-chains of the manipulator. In particular, when /, = I3 the
octic curves split into a pair of coincident circles and a quartic
curve (shown in Fig. 11). As mentioned in Section 3.1, these do
not necessarily enforce the tangency between the circle and the oc-
tic curve, but the octic curve intersects the circle at the double point.

At a double point p, of the octic curve O; = 0, the equation of
the tangents is given by:

3201' 2 9201‘
to=—=3—| @—x4)"+25—-| (x—x4)(z—z4) (26)
92x 2 dxdz P
+ —=—| (z—z4)"=0.
9% Pi

The discriminant A of the quadratic equation given in Eq. (26) is:

‘ < azoi )2
pe \ 9%9Zlp,

Based on the value of this discriminant A, the double point p, is
qualified to be any one of the following:

o 2%0;
T 9%

2%0;
92z

27

Pi

1. A crunode py, : There exists two distinct tangents at this point
and the discriminant is less than zero (A < 0).

2. An acnode p,, : The equation of the tangents #,, = 0 does
not admit any real solutions as the discriminant is greater than
zero (A > 0). Hence, there are no tangents at this point.

3. A cusp p. : The two tangents at this point coincide as the dis-
criminant is zero (A = 0).

An example for case 3, where a cusp p, occurs at the intersection
of O = 0 with the circle C = 0 for the following numerical values:
a=2,b=1,1; = —29/10, [ =29/10, l; = SOV 5 shown
in the Fig. 9. The corresponding pose of the manipulator is shown
in Fig. 10.

As can be seen from the Fig. 10, the pose of the manipulator is
special from multiple perspectives:

1. The third leg lies in the plane of the moving platform.

2. The lines joining the spherical joints ps, py and ps, p; inter-
sect the axis of the rotary joint at b3. This pose exemplifies
case 2 of the singularity conditions of the manipulator, as pre-
sented in [8]. The same configuration has been characterised
under constraint singularity in [9].

3. The axes of all the three legs intersect the line p; p,.

The kinematic consequence of this condition is that the manipulator
is singular. However, it is also possible to have a situation, where the
circle C = 0 intersects one of the octic curves at a double point, but
the manipulator is not singular. Such a configuration is obtained for
the following setof values: b =13 =1,/1 =3/2,a=1/2b=1.In
this case O = 0 splits into two components, i.e., 01 = 01,01, =0,
which have the following nature:
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‘ i’)/,(l-.z);o

o

\
N\
) =0

k Oz, z 0

Fig. 9: Plot of the octic curves O; =0, O =0 and the circle C =0
ata:2b,11 :[2 andp, =0.

Fig. 10: Singular pose of the 3-RPS manipulator at the cusp p,.

. The curve Oy, = 0 is a pair of coincident circles, shown in
solid (blue) line-type in Fig. 11.

. The curve Oy, = 0 decomposed into two components, each
being a circle, shown in dashed (blue) line-type in Fig. 11.

Similarly, the curve O, = 0 splits into two quartic curves O, = 0,
0, = 0, whose nature is:

1. The curve Oy, = 0 further decomposes to a pair of coincident

circles shown in dotted (orange) line-type in Fig. 11.

. The other quartic curve O,;, = 0 does not admit any real solu-
tion.

Clearly, any intersection of O, = 0 with C =0 would be a double
point of the former. However, it can be verified, that this double
point does not signify a singularity. The poses of the manipulator
corresponding to point p; in Fig. 11 are shown in Fig. 12. It can be
seen that only the vertex p; is the same between the two poses, but
that is not enough to cause a singularity in the manipulator.

3.3.2. Double points at infinity

In order to study the double points at infinity, one needs to resort
to the use of projective/homogeneous coordinates. Let w be the ho-
mogenising coordinate, so that the projective versions of the octic

84

Fig. 11: Plot of the octic curves Oy = 0,0, = 0 and the circle C =0
at the double point satisfying l, = 3.

XB\‘ ‘\'@]

Fig. 12: Non-singular poses of the 3-RPS manipulator at the double
point satisfying lp = /3.

curves can be written as Oy, (X,Z,w) = 0, where:

X¥== 72 (28)
w w

In this framework, a double point p, can be expressed

as pp, = [x/,._zh,w]T. The point p;, becomes a double point at in-

finity, when the gradient of Oy, = 0 w.r.t. [X ,Z,w]T vanishes at pj,

and in addition, w = 0:

20y,
X

90y,
ow

= 0’
p;,w=0

Pyw=0 i

= 8 (+F +z},)3 =0, 4(a—2b)x, (x% +z,2,)3 =0, and

Py w=0

\ 29)
8z (x,zl +z%) =0,

The only real solution to Eq. (29) is x, =0, z;, = 0, w = 0, which is
not included in the projective space. The result supports the fact that
the quad-circular octic curve O; = 0 do not have asymptotes.
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4. Special case of z=0

At several places in the previous sections, z =0 came up as a
special case, the discussions on which have been deferred to this
section. As may be expected, the implication of this additional con-
dition varies from one case to the other. Some of these are discussed
in the following.

4.1. Implication of z = 0 in the FK problem

In Eq. (1) of Section 2 it was shown that the FK problem
of the 3-RPS manipulator is equivalent to the intersection of a
curve 0(x,z) = 0 with a circle in the same vertical plane, where one
of the components of the said curve is given by:

2. 52\
B(x0) = (@b+x)?+42) =0, (30)
The only real solution to the problem is: x = —2b, z = 0. Since
the circle C = 0 needs to pass through this point, given by, say,
Pa=[—2b,0]", one can write:

C(x,y)p, =0= 1% —9p%* =0. a31)

At point p,, the octic curve O; = 0 admits a real solution when:

0i(x,y)p, =0=13 =3a* -3b%, B =342 -3b%.  (32)
Clearly, the solution is independent of the operation mode of the ma-
nipulator. The conditions in Eqgs. (31, 32) lead to finite self-motions
in the 3-RPS manipulator, as reported in [11]. Interestingly, the
point p, is an acnode of the curve B = 0. For the numeric val-
uesa=3/2,b=1,1;=3, 1= \/ﬁ/2 I3 = \/E/Z that satisfy
Eqgs. (31, 32), the plots of the curves are shown in Fig. 13.

1 ==

E

T~ 0O1.=0

O1(z,2) =0

Fig. 13: Plot of the octic curves O1 = 0, O, = 0, the circle C =0
intersecting at the acnode of the curve f = 0.

The octic curve Oy = 0 splits into Oy = 01,014 = 0 and the na-
ture of these curves are:

1. The curve O = 0 is a pair of coincident circles, as depicted in
solid (orange) line-type in Fig. 13. This pair is tangent to the
circle C = 0 at the tacnode p,,.
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2. The component O = 0 further decomposes to two circles as
shown in dotted (orange) line-type in Fig. 13. Each of these
circles intersect the circle C = 0 at the point p,.

The curve O, = 0 splits into two factors O = 0,.0,4 = 0, whose
nature is:

1. Similar to the curve O, = 0, O = 0 is also a pair of concen-
tric circles represented in solid (blue) line-type in Fig. 13. This
pair is tangent to the circle C = 0 at the point p,,.

2. The curve Oy = 0 admits two repeated real solutions at the
point p,, hence the said point is an acnode of this curve.

The curve B = 0 has an acnode at p, highlighted by a translucent
rectangle, as shown in Fig. 13.

Fig. 14: Finite self-motion of the manipulator at the point p,,.

The manipulator is known to exhibit finite self-motion in this
case and this corresponds to the case 2(a) reported in [11]. For the
given input parameters /, maintaining the position of the point p; the
RSSR sub-chain exhibits the finite self-motion as shown in Fig 14.

5. Conclusion

In this paper, the special cases in the forward kinematics of the
3-RPS manipulator are analysed, using only the concepts of geom-
etry of plane curves. It turns out that this technique is as power-
ful, as it is intuitive. It has been able to recover results in existing
literature, which have been obtained using algebraic means. More-
over, it has been able to associate geometric implications to each of
these cases, e.g., singularities, transitions between modes, finite self-
motions, etc. These special cases have been studied via numerical
examples, the results of which have been tabulated in Table 1. The
table suggests that the geometric condition for singularity in Basu
and Ghosal [8] may be geometrically equivalent to an octic curve
intersecting a circle at a cusp. Similarly, the finite self-motion of
the manipulator may be associated with the a quadratic curve having
an acnode on the same circle. It needs to be noted, however, that
these results are by no means exhaustive. While they hint at various
possibilities, they need to be studied in depth, analytically, in order
to establish the inter-relationships between various geometric condi-
tions, their algebraic implications, and kinematic consequences. It
is definitely worth undertaking such a study, as there are multiple
spatial manipulators whose kinematics are fairly similar to that of
the 3-RPS manipulator, namely, the 3-RRS, MaPaMan-1, 3-RPRS.
A thorough understanding of the kinematics of the 3-RPS should
help develop significant understanding of the kinematics of these
manipulators as well.
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Table 1: Relationships between various geometric conditions and
their kinematic consequences.

! The algebraic conditions for the gain-type singularity of
the 3-RPS manipulator discussed in [7],

B : Case 2 of the geometric condition of singularity of the 3-RPS
manipulator reported in [8],

D : A double root of the FKU defined in Stiidy parameters,

P : The condition for any one of the legs of the 3-RPS manipulator
co-planar with the moving platform.

Figure Examples | B|D|P

3 The octic curve O; =01is | v | x | v | X
tangent to the circle C = 0.

5 Thecurves 0; =0,0,=0, | v | x | v | X
C = 0 intersect at a point.
Transition between the op-
eration modes

7 The octic curves Oy =0, | x | x [ x | %
0O = 0 have a common
point on the circle C = 0.
Two distinct poses share a
common side of the moving
platform.

9 A cusp of the octic curve | v | vV | V | V

O; = 0 appears on the circle
C=0.

11 A double pointof the octic | x | x [ x | x
curve O; = 0 occurs on the
circle C = 0 and the RSSR
sub-chain is symmetric.

13 An acnode of the curve | v | x | v | X
B =0 appears on the cir-
cle C = 0. Manipulator ex-
hibits finite self-motion.
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