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Abstract 

This paper focuses on the systematic type synthesis of 

parallel robot manipulators by using new structural 

formulas based on the screw theory. New structural 

formulas as a total number of screw in kinematic pairs 

($), number of screws with variable pitch ($̃), total 

number of screws that represent the contact geometry of 

lower and higher joint elements (t), mobility equation for 

robot manipulators (M), dimension of the closed loop (λ), 
motion of end effector of parallel manipulator (m), 
number degree of freedom of kinematic pairs (f), refers to 

find the kinematic structure of robot manipulators 

realizing a specified motion requirement. Twenty 

kinematic pairs with structural parameters ($, $̃, f, t) are 

introduced. History of six structural formulas using for 

structural synthesis of parallel robot manipulators from 

space and different subspaces are presented as a table with 

equations, authors, years and some commentaries. The 

structural synthesis approach is based on the elementary 

notions of screw theory. Using the proposed of structural 

formulas approach, families of platform manipulators are 

constructed from a set of structural units. This paper is 

appropriate for engineers with interest in robotics, rovers, 

space docking parallel manipulators and screw theory. 

Keywords: Kinematic pair screws; Motion of end 

effector; Screws with variable pitch; Dimension of 

closed loop. 

 

Introduction 

Structural synthesis of robot manipulators is the 

fundamental concept in robot design. The mobility of 

robotic mechanical system indicates the number of 

independent input parameters to solve the configuration of 

robots. If mobility of the kinematic chain is equal to zero 

(𝑀 = 0) and can not be split into several structural 

groups, we will get a simple structural group. Combining 

the simple platform (with 𝑛 ≥ 2 kinematic pairs) type 

structural groups with given actuators, we can get parallel 

platform type robot manipulators needed to define the 

location (position and orientation) of end effectors. Serial 

platform manipulators control the motion of the platform, 

which are connected each others by hinges, branches, legs 

and other kinematic chains going from the platforms 

toward the frame. Complex robot manipulators consist of 

independent branches and legs loops with variable general 

constraints {𝜆𝑘}2
6. Many platform type robot manipulators 

use legs with variable general constraints. Therefore 

structural formulas are used by engineers for design the 

parallel and serial platform Euclidean robot manipulators 

with variable general constraints. Structural synthesis of 

parallel Cartesian platform robot manipulators consists 

from connecting the simple structural groups constructed 

in the orthogonal planes to actuators and moving platform. 

The history of formulas for structural analysis and 

synthesis of mechanisms and robotic mechanical systems 

during the second half of the 19th century, the first and 

second half of the 20th century and the beginning of  21st 

century had been investigated and illustrated in the Table 

by 38 equations, authors, years and commentaries in the 

fundamental investigations[1] and in a critical review [2]. 

Several investigations are described a systematic approach 

of structural synthesis and analysis of mechanisms by 

using screw theory. First investigation was given by 

Mueller [3] , where in equations for simple structural 

group and for kinematic chains were used the number of 

screw in kinematic pairs. Voinea and Atanasiu [4] and 

Waldron [5] introduced mobility equation of mechanisms 

with rank parameter equivalent to screw system of the 

closed loops. The scientific investigations of structural 

synthesis and analysis of robot manipulators by using 

screw theory were more dedicated in the beginning of  21st  

century. Huang and Li [6]  proposed a type synthesis of 

parallel manipulators with mobility {𝑀𝑖}3
5 by using screw 
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theory. Fang and Tsai [7] developed a problem of 

structural synthesis and analysis by applying screw theory. 

They enumerated limb structures for parallel manipulators 

according to reciprocity of limb twist system and wrench 

system. Jin et.al. [8] are proposed the structural synthesis 

and analysis of parallel manipulators by using screw 

algebra. The design of parallel manipulators based on 

Plücker coordinates is examined by Gao et.al. [9]. An 

analytical method of using equivalent screw groups for 

structural synthesis of over constrained parallel 

manipulators is described in the study of  Zhoo et.al. [10]. 

Kong and Gosselin [11 − 14] proposed a new way for the 

type synthesis of parallel manipulators with different type 

of end effector motions by using screw theory and virtual 

chain approach. 

History of formulas for structural synthesis and 

analysis of robot manipulators given by author at.al. are 

presented as 6 several equations (formulas 1-6 in Table 1) 

with the unique key controlling parameters. In 

investigation [15] the mobility number, 𝜆, is a 

characteristic of an independent loop of robot 

manipulator. In Table 1 (formulas ⋕ 1) we have been 

considered mobility equation which contain mixed 

independent loops with variable general constraint. The 

history of new formula [16] about the number of 

independent loops was done in Table 1(formulas ⋕ 2). 

The number of independent loops in platform 

manipulators is described by the number of mobile 

platforms (B), the total number of joints on the mobile 

platforms (𝑗𝑏) and the total number of branches between 

mobile platforms (𝑐𝑏). In the paper [17] and in the Table 

1.1 (formulas ⋕ 3) the number of independent loops is 

described as 𝐿 = 𝐶 − 𝐵, where 𝐶 = 𝑐𝑙 + 𝑐𝑏  is sum of legs 

and branches. A classification of parallel manipulators 

based on the number of mobile platforms, number of 

joints on the mobile platforms, number of legs and 

branches, and types of kinematic pairs are also presented. 

A new structural formulas for robots (formulas ⋕ 4 in the 

Table 1), working in Cartesian space, having three legs in 

orthogonal planes, introducing simple structural groups in 

space  𝜆 = 6 and in subspaces {𝜆}3
5, and connected to 

actuators and to the end effector are introduced. Simple 

serial platform type structural groups in 𝜆 = 3 and 𝜆 = 6 

are presented also in [1]. In the study [18] new structural 

formulas (formulas ⋕ 5 𝑖𝑛 𝑡ℎ𝑒 𝑇𝑎𝑏𝑙𝑒1 ) for parallel and 

serial platform Euclidean robot manipulators with variable 

general constraints of branch loops and legs were 

presented. Selecting the legs of the robot manipulators as 

moving dyads on Euclidean planes the direct and inverse 

task will become easier to solve. The new proposed 

Euclidean manipulators have several legs, which create 

Euclidean motions on their own Euclidean planes. The 

motion of the platform is defined by three independent 

curves of three platform points moving on three Euclidean 

reference planes. The general formula for motion of 

platforms is given also. To create new robot manipulators, 

simple platform structural groups with variable general 

constraints were considered. 

This study enunciates screw system with variable 

pitch for the prismatic and cylindrical joints. Applying 

concepts the number of independent screw, number of 

screw with variable pitch, number of screws and motions 

for lower and higher kinematic pairs (Table 1.6.1) become 

possible to provide the structural characteristics of 20 

kinematic pairs (Table 2). Two new general mobility 

equations for robot manipulator with mixed and the same 

dimension of closed loop are presented in the work 

(Table1.6.2 and 1.6.3). 

Applying above mobility equations for structural 

synthesis problem the new wheeled robot that are called 

as “Rover” had been designed. This rover consists from 

moving platform and two suspensions with six wheels 

connected to the platform. Each suspension consist from 

paired two Chebyshev lambda mechanisms called bogie 

and one dyad called rocker. Two parallel suspensions are 

connected by a differential gear mechanism (Fig.2). 

The problem of structural synthesis of parallel wheeled 

rover was solved by using structural formulas 3 and 5 

from Table 1.6. In current study, new structural formulas 

are introduced for parallel Euclidean plaform robot 

manipulators (Table1.6) with variable and fixed general 

constraints. Structural synthesis task of four new design 

Eucilidean docking parallel manipulators with three, four, 

five and six legs were solved for spacecraft (Table 3). 

Furthermore, new 6DoF Euclidean docking manipulators 

of Spacecraft and their structural classification with the 

same general constraints of each legs are presented. Also, 

in the Table 3 were depicted the structural parameters, 

kinematic structures, motion of platform, number of legs 

and 3D drawing of new docking parallel manipulator of 

Spacecraft. It is clear that the 6DoF Euclidean parallel 

manipulator with different number of legs will better 

generate the given position and orientation of moving 

platform. 
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Table 1. Structural formulas for synthesis and analysis of robot manipulators 

№ Equations Authors Commentary 

1 2 3 4 

1. 

1.  𝑀 =∑𝑓𝑖

𝑗

𝑖=1

−∑𝜆𝑘

𝐿

𝑘=1

 

2.  𝑀 =∑𝑓𝑖

𝑗

𝑖=1

− 𝜆𝐿 

3.  𝑑 = 6 − 𝜆  

{𝑑}0
4 – general constraint for motion of rigid body in space; 

𝐿 – the number of independent loops; 

𝜆 – the loop motion parameters; 

𝑓𝑖 – the DoF of kinematic pairs; 

𝑗 – the number of joints. 

F. Freudenstain and 

R.I.Alizade [15] 

1975 

1. Mobility equation for 

mechanisms which contain 

mixed independent loops 

with variable general 

constraint. 

2. Mobility equation of 

mechanisms with the same 

number of independent, 

scalar loop closure equations 

in each independent loop. 

𝑀 is the mobility of 

mechanisms. 

𝜆𝑘 is the dimension of the 

active motion space.  

2. 

1.  𝐿 = 𝑗𝑏 − 𝐵 − 𝐶𝐵 

2.  𝑀 =∑𝑓𝑖

𝑗

𝑖=1

− 𝜆(𝑗𝐵 − 𝐵 − 𝐶𝐵) + 𝑞 − 𝑗𝑝 

3.  ∑𝑓𝑖

𝑗

𝑖=1

= 𝜆(𝑗𝐵 − 𝐵 − 𝐶𝑏) 

𝐵 – the number of mobile platforms; 

𝑗𝐵 – the total number of joints on the mobile platforms; 

𝐶𝑏 – the total number of branches between mobile platforms.  

 

R.I.Alizade [16] 

1988 

1. 𝐿 is the number of 

independent loops. 

2. 𝑀 is mobility of 

mechanisms and platform 

manipulators. 

3. Equation for simple 

structural groups {𝜆}2
6, 

q is excessive over closing 

constraints, 

𝑗𝑝 is number of passive DoF 

in kinematic pairs. 

3. 

1.  𝐿 = 𝐶 − 𝐵 

2.  𝑀 =∑𝑓𝑖

𝑗

𝑖=1

− 𝜆(𝐶 − 𝐵) 

3.  ∑𝑓𝑖

𝑗

𝑖=1

= 𝜆(𝐶 − 𝐵) 

𝐶 = 𝐶𝑙 + 𝐶𝑏, parameter 𝐶 is the sum of legs and branches. 

𝐶𝑙 = 𝑗𝐵 − 2𝐶𝑏  

𝐶𝑙 – the total number of legs. 

R.I.Alizade and  

C.Bayram [17] 

2003 

1. New formula for the 

number of independent 

loops. 

2. Mobility equation of 

platform robot manipulators. 

3. Equation for simple 

structural groups.  
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Table 1. Continue 

1 2 3 4 

4. 

1.  𝑀 = (𝐵 − 𝐶)𝜆 +∑𝑓𝑖

𝑗

𝑖=1

+ 𝑞 − 𝑗𝑝 

2.  𝑀 = (𝜆 + 3) +∑(𝑑𝑙 − 𝐷)

𝐶𝑙

𝑙=1

+∑(𝑓𝑙 − 𝜆𝑙) + 𝑞 − 𝑗𝑝

𝐶𝑙

𝑙=1

 

𝐶 = 𝐶𝑙 + 𝐶𝑏 + 𝐶ℎ 

𝐶ℎ – the number of hinges; 

𝜆 = 6 − 𝑑; 

𝜆 – the number of independent location parameters of rigid 

body in the independent loop; 

𝑑𝑙 – the number of dimensions of vectors in subspaces of 

legs. 

𝑓𝑙 – DoF of the kinetic pairs on the leg. 

R.I.Alizade, 

C.Bayram and  E. 

Gezgin [1] 2007 

1. Mobility equation for robotic 

systems. 

2. A structural formula of 

mobility loop–legs equation for 

parallel Cartesian platform 

manipulators. 

𝑑 is the constraint parameter of 

independent loop. 

𝐷 is the number of  dimensions 

of vectors in Cartesian space. 

5. 

1.  𝑀 = 𝜆 + 𝑗ℎ +∑(𝑓𝐿 − 𝜆𝐿)

𝑛

𝐿=1

+∑(𝑓𝑙 − 𝜆𝑙) + 𝑞 − 𝑗𝑝

𝐶𝑙

𝑙=1

 

2.  𝑚 = 𝜆 + 𝑐𝑙 + 𝑗ℎ +∑(𝑑𝑙 − 𝐷)

𝐶𝑙

𝑙=1

+∑(𝑓𝐿 − 𝜆𝐿)

𝑛

𝐿=1

 

𝑗ℎ – the number of hinges between platforms; 

𝑓𝐿 – DoF of kinematic pair on the branch-loop. 

𝜆𝐿 – the motion of rigid body in branch-loop. 

Rasim Alizade, 

Fatih Cemal Can, 

Erkin Gezgin [18] 

2008 

1. The general structural formula 

of serial-parallel Euclidean robot 

manipulators with variable 

general constraints. 

2. The general formula for 

motion of platforms. 

𝐷 – dimensions of vectors 

(𝐷 = 3 for space 𝑅3, 

𝑑 = 2 for plane 𝑅2) 

6. 

1.  $ = 𝑓 − $̃ + 𝑡 

2.  𝑀 =∑𝑓𝑃𝑓

𝜆−1

𝑓=1

−∑𝜆𝑘

𝐿

𝑘=1

+ 𝑞  

3.  𝑀 =∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆(𝐶 − 𝐵) + 𝑞 

4.𝑀 = 𝜆 +∑(∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑙)

𝑐𝑙

𝑙=1

+∑(∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑏)

𝐿𝑏

𝑏=1

+ 𝑗ℎ  

5.𝑚 = 𝜆 + 𝑐𝑙 + 𝑗ℎ +∑(𝑑𝑙 − 𝐷)

𝑐𝑙

𝑙=1

+∑(∑𝑓𝑃𝑓 − 𝜆𝑏

𝜆−1

𝑓=1

)

𝐿𝑏

𝑏=1

 

6.𝑀 = 𝜆 + (∑𝑓𝑃𝑓 − 𝜆𝑙

𝜆−1

𝑓=1

)𝑐𝑙 +∑(𝑓𝑃𝑓 − 𝜆𝑏)

𝜆−1

𝑓=1

𝐿𝑏 + 𝑗ℎ 

7.𝑚 = 𝜆 + 𝑐𝑙 + 𝑗ℎ + (𝑑𝑙 − 𝐷)𝑐𝑙 + (∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑏)𝐿𝑏 

𝑡 – represents the number of screws that describe the contact 

geometry of joint elements.  

𝑡 = 2 – contact elements on surface; 

𝑡 = 3 – contact elements on line; 

𝑡 = 4 – contact elements on points; 

Rasim Alizade 

2017 

1. Total screws in kinematic 

pair. 

2. Mobility equation for robot 

manipulators with variable loop 

motion parameters. 

3. Mobility equation with the 

same dimension in each 

independent loop. 

4. Structural formula for 

Euclidean platform type robot 

manipulators with variable 

general constraints. 

5. Structural formula that 

describe the motions of end 

effector on the parallel robot 

manipulators. 

6. Mobility equation for 

Euclidean manipulators with 

constant general constraint. 

7. Motion of end effector of 

Euclidean manipulator with 

constant general constraint.  



 

 

Proceedings of the International Symposium of Mechanism and Machine Science, 2017 

AzC IFToMM-Azerbaijan Technical University 

11-14 September  2017, Baku, Azerbaijan 

 

 

25 
 

Introduction to screw with variable pitch 

The structural and kinematic analysis and synthesis 

problem have been studying with the goal of identified 

new methods for composing robot manipulators capable 

of performing various prescribed positions and 

orientations of the end effectors. Screw with variable pitch 

can represent the prismatic joint, P, with the variable pitch 

parameter 𝜇𝑃 = ∞, and also the cylindrical joint 𝐶(𝑅𝑃) 

with variable pitch 𝜇𝐶 = (∞; 0) that describe a rotation 

motion (𝜇𝑅 = 0) and translation motion 𝜇𝑃 = ∞. 

As shown in Fig. 1, the location of a rigid body (𝑅𝐵) 

of the cylindrical joint can be described by the three 

parameters for position (𝑥, 𝑦, 𝑧) and three independent 

parameters (𝑑, 𝛼, 𝜃) for orientation. Let coordinate system 

A and was then translated parallel to the point 𝐵1 (Fig. 

1a). The position of point 𝐵1 is described by vector 

𝑟̅(𝑥, 𝑦, 𝑧). Next, the system 𝐵2 that is initially aligned with 

system 𝐵1 is rotated by the twist angle 𝛼 about the 𝑥𝐵1 

axis. Following this the coordinate system 𝐵2 of rigid 

body is translated along the 𝑧𝐵2 axis by a distance 𝑑. 

Lastly the coordinate system 𝐵 that was firstly aligned 

with the system 𝐵2 is rotated by the angle 𝜃 around 𝑧𝐵, so 

we will get orientation of the coordinate system 𝐵𝑥𝐵𝑦𝐵𝑧𝐵 . 

Transformation of one coordinate system 𝐵 to a 

reference coordinate system 𝐴 correspond to the 

transformation of screw $, when the relative position and 

orientation of the pair of screws are known (Fig. 1a). By 

using homogeneous coordinates the transformation of the 

system will be represented by 4×4 matrix as: 

 

𝑇𝐵
𝐴 = [

1 0 0 𝑥
0 1 0 𝑦
0 0 1 𝑧
0 0 0 1

] [

1 0 0 0
0 𝑐𝛼 −𝑠𝛼 0
0 𝑠𝛼 𝑐𝛼 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑̃
0 0 0 1

] 

[

𝑐𝜃̃ −𝑠𝜃̃ 0 0
𝑠𝜃̃ 𝑐𝜃̃ 0 0
0 0 1 0
0 0 0 1

] = [

𝑐𝜃̃ −𝑠𝜃̃ 0 𝑥
𝑠𝜃̃𝑐𝛼 𝑐𝜃̃𝑐𝛼 −𝑠𝛼 𝑦 − 𝑑̃𝑠𝛼

𝑠𝜃̃𝑠𝛼 0 𝑐𝛼 𝑧 + 𝑑̃𝑐𝛼
0 0 0 1

] (1) 

 

where: 𝑆𝜃 and 𝐶𝜃 represent the sine and cosine of 𝜃, and 

𝑆𝛼 and 𝐶𝛼 represent the sine and cosine of 𝛼. 

Knowledge of these six parameters (𝑥, 𝑦, 𝑧, 𝛼, 𝑑, 𝜃) 

completely defines the position and orientation of the 𝐵 

coordinate system attached to the rigid body of the 

cylindrical joint and measured with respect to the 𝐴 

coordinate system as shown in Eq.(1). The location of 

rigid body reduce a single vector 𝑆̅//𝑍̅𝐵 and a couple 

moment 𝑈//𝑍𝐵1 at point 𝐵1 with a twist angle 𝛼 (Fig. 1b). 

The couple moment 𝑈 = 𝑟̅×𝑆̅ may be resolved into two 

components: one 𝑈//collinear with joint vector 𝑆̅ in the 

direction by twist angle 𝛼. The perpendicular component 

𝑈⊥ will rotate rigid body around cylindrical joint vector 𝑆̅ 

by rotation angle 𝜃, so 𝜃̅ = 𝜃𝑆̅. 

The twist angel 𝛼 was defined between vectors 𝑆̅ and 

𝑈 (Fig. 1b) mesured in a right-hand sense about 𝑥̅𝐵1. The 

rotation angle 𝜃 was defined between 𝑥̅𝐵2 and 𝑥̅𝐵 

measured in a right hand sense about 𝑆̅ (Fig. 1a). It is 

known that, there are two distinct angles between 0 and 

2𝜋 that will have the same cosine value. So, the expressed 

for the cosine and sine of 𝛼 and 𝜃 can be expressed by 

Eqs. (2): 

{
𝑐𝑜𝑠 𝛼 = 𝑈 ∙ 𝑆               

𝑠𝑖𝑛 𝛼 = (𝑈×𝑆) ∙ 𝑥̅𝐵1
 

{
cos 𝜃 = 𝑥̅𝐵 ∙ 𝑥̅𝐵2            

sin 𝜃 = (𝑥̅𝐵×𝑥̅𝐵2) ∙ 𝑍̅𝐵
                                                 (2) 

As show in Fig. 1, the axes of the cylindrical joint 𝑆̅ and a 

couple moment 𝑈// has the same line. Thus the 

combination of a collinear vector 𝑆̅ and a couple moment 

𝑈// is called a screw or wrench. 

 
Fig. 1. Kinematic model of cylindrical joint 

 

So, the screw with variable pitch has both a 

translation 𝑑 and rotation 𝜃 about the axis 𝑆̅ described by 

twist angle 𝛼. Parameters 𝑑, 𝜃 and 𝛼 are independent 

parameters of rigid body motion respect to screw $̃ with 

variable pitch. 

Two collinear vectors 𝑆̅ and 𝑈// uniqually determine 

the position and orientation of the screw with variable 

pitch. 𝑆̅ is an axis vector and 𝑈// is moment of screw 𝑆̃, 

where 𝑆̅ defines the direction of motion of screw $̃ and 
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moment 𝑈// determines the rotation around the axis. Unit 

vector 𝑆̅ and moment 𝑈// can be introduced as dual vector 

that is called a screw with variable pitch: 

$̃ = 𝑆̅ + 𝜀(𝑈// + 𝜇̃𝑆̅)                           (3) 

where 𝜀2 = 0 is operator of Clifford. 

The ratio of joint position d and joint rotation 𝜃 in 

cylindrical joint reduce to the following variable pitch: 

𝜇̃ =
𝑑

𝜃
                                       (4) 

As shown in Fig. 1b the rotation moment in 

cylindrical joint reduce to expression as follow: 

𝑈// = 𝑈 ∙ cos 𝛼 = (𝑟̅×𝑆̅) cos 𝛼         (5) 

Hence, using Eqs. (3 ÷ 5) the vectors 𝑆̅ and 

resultant couple moment 𝑈 describing location of a rigid 

body with cylindrical joint can be descried as a screw with 

variable pitch: 

$̃ = [
𝑆̅                               
(𝑟̅×𝑆̅) cos 𝛼 + 𝜇̃𝑆̅

]                    (6) 

So, as shown in Eq. (6), six independent 

components (𝑥, 𝑦, 𝑧, 𝛼, 𝑑, 𝜃) describe the location of screw 

with variable pitch. As shown in Eq. (7) the couple 

moment 𝑈 of the screw with variable pitch is: 

𝑈 = (𝑟̅×𝑆̅) cos 𝛼 + 𝜇̃𝑆̅                      (7) 

Since the screw axis and its moment are in 

orthogonal planes and unit of screw with variable pitch 

|$̃| = 1, so 

𝑆̅ ∙ (𝑟̅×𝑆̅) = 0     and    𝑆̅ ∙ 𝑆̅ = 1   (8) 

Multiplying both side of Eq.(7) to the vector 𝑆̅ we 

get the following equation: 

𝑆̅ ∙ 𝑈̅ = (𝑟̅×𝑆̅) ∙ 𝑆̅ cos 𝛼 + 𝜇̃𝑆̅ ∙ 𝑆̅    𝑜𝑟     𝜇̃ =
𝑆̅ ∙ 𝑈

𝑆̅ ∙ 𝑆̅
       (9) 

For revolute, prismatic, screw and cylindrical joints 

the parameters of pitch to Eq.(8) can be described as 

follows: 

𝜇𝑅 = 0, 𝜇$ =
𝑑

𝜃
,      𝜇̃𝑝 = ∞,    𝜇̃𝐶 = {0,∞}. 

 

Structural formulas for robot manipulators by using 

screw theory. 

The design problem of robot manipulators are a 

valuable task for structural synthesis. It is known that over 

constraint robot manipulator must satisfy the geometry of 

angular and linear constraints that correspond to the 

geometry of kinematic pairs moving in subspaces. The 

goal of structural synthesis by using screw theory are 

identified new methods for composing robot manipulators 

capable of performing various prescribed functions, 

position and orientations of end effectors. It is required to 

form a new structural formula for robot manipulators by 

using screw theory allows to solve the structural synthesis 

with variable general constraints including platforms, 

hinges, legs and branch loops with different ranks, that is 

introduced from different subspaces and spaces. 

It is known that two rigid bodies attached to each 

other by surfaces are formed lower kinematic pairs, 

otherwise if contact geometry of two rigid bodies is line or 

a point are formed higher kinematic pairs. Due to the fact 

that the unconstraint space has dimension 𝜆 = 6 with 

independent motions 3R3P, but dimension of over 

constraint subspaces is 𝜆 = 2 ÷ 5 with different angular 

and linear or just angular conditions in the loops of robot 

manipulators. Usually kinematic pairs need constraints 

𝑐 = 1 ÷ 5 in order to be defined properly degree of 

freedom 𝑓 = 𝜆 − 𝑐. Each kinematic pair has input and 

output link screws and joint independent screws $ with 

constant pitch 𝜇, however some joints with translation 

motions has additional variable screws $̃ with variable 

pitch 𝜇̃.  

The simple planar surface can be represented by two 

parallel screws $1$2 or two orthogonal screws $1
⊥$2, so 

for lower kinematic pairs number of screws 𝑡 = 2. The 

intersection of two planar surfaces $1$2 and $2$3 will be 

result in a line represented by $1$2$3 or as $1
⊥$2

⊥$3 so for 

higher kinematic pair with line contact of elements the 

number of screws 𝑡 = 3. The intersection of three planar 

surfaces that will be result in a point can be represented by 

four screws $1$2$3 → $2
⊥$4 or as $1

⊥$2
⊥$3

⊥$4, so for higher 

kinematic pair with point contact of elements the number 

of screws 𝑡 = 4. Elements of the structural bonds can be 

illustrated as " " describe the parallel of screws and “ ⊥

” describe the perpendicular of screws.  
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Table 2. Joints kinematic parameters 

№ Name Symbol 
Kinematic parameters 

Diagram 

t f $̃ $ 

1 2 3 4 5 6 7 8 

1 Revolute 𝑅 2 1 0 3 

 

2 Prismatic 𝑃 3 1 1 3 

 

3 Screw 𝐻 2 1 0 3 

 

4 Cylindrical 𝐶 2 2 1 3 

 

5 Sphere with finger 𝑆𝑓 2 2 0 4 

 

6 Spherical 𝑆 2 3 0 5 

 

7 Sphere in cylinder slot 𝑆𝑐𝑠 3 4 1 6 

 

8 
Sphere in 

torus slot 
𝑆𝑡𝑠 3 4 0 7 

 

9 Plane to slope line 𝐹/𝐿 4 4 1 7 

 
 

10 
Plane to perpendicular 

line 
𝐹⊥𝐿 4 3 1 6 
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Table 2. Continue 

1 2 3 4 5 6 7 8 

11 Plane to parallel lines 𝐹//𝐿 3 4 2 5 

 

12 Line to Sphere 𝐿𝑆 4 4 1 7 

 

13 Cylinder to plane 𝐶𝐹 3 4 2 5 

 

14 Cylinder to torus 𝐶𝑡 4 4 1 7 

 

15 Sphere to plane 𝑆𝐹 4 5 2 7 

 

16 Hyperboloid to Sphere 𝐻𝑠 4 5 2 7 

 

17 Sphere to Torus 𝑆𝑡 4 5 2 7 

 

18 Torus to plane 𝑇𝐹  4 5 2 7 

 

19 Torus to torus 𝑇𝑡 4 5 2 7 

 

20 Sphere to sphere 𝑆𝑠 4 5 2 7 
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The usage of recurrent screws in the study of 

kinematic pairs can clarify the motion concept easily. 

From this point of view the number of independent screws 

in kinematic pairs can be introduced as follow: 

$ = 𝑓 − $̃ + 𝑡                                     (9) 
where: 

$̃ = number of screws with variable pitch; 

𝑡 = number of screws of lower (𝑡 = 2) or higher 

kinematic pairs (𝑡 = 3 for line and 𝑡 = 4 for point contact 

of elements); 

𝑓 = degrees of freedom of relative motion permitted 

at joint. 

The twenty kinematic pairs of robot manipulators in 

all types, symbols, kinematic parameters and their 

diagrams are shown in Table 2. Using Eq.(9) and (1.1) 

from Table 1 we can introduce a new general mobility 

equation for mechanisms with mixed dimensions of 

closed loops as: 

𝑀 =∑𝑓𝑃𝑓

𝜆−1

𝑓=1

−∑𝜆𝑘

𝐿

𝑘=1

+ 𝑞                   (10) 

where 𝜆𝑘 − number of independent, scalar, loop closure 

equations associated with k-th independent loop; 

𝑃𝑓 is the number of 𝑓 mobility joints. 𝑓 = $ + $̃ − 𝑡 

is DoF at joint;  

𝑞 = number of depended constraint equations. 

As show in Table 1, the number of independent 

loops 𝐿 = 𝑐 − 𝐵, so mobility Eq. (10) can be introduced 

as mobility equation for robot manipulators with the same 

number of independent, scalar loop closure equation in 

each independent loop:  

𝑀 =∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆(𝐶 − 𝐵) + 𝑞             (11) 

where 𝐶 = 𝑐𝑙 + 𝑐𝑏 is the sum of legs and branches; 𝐵 = 

number of mobile platforms. 

The overall performance of robots and rovers are 

usually constructed from the multiple platforms, hinges 

leg and branch loops with variable general constraint 

parameters, describing the location of rigid body. These 

robots and rovers can be affected by the topology of their 

possible mechanical structures. The motions (rotation and 

translation) of rigid links and platforms of the 

manipulators could be described in space 𝑅3 and in plane 

𝑅2 with dimensions of vectors 𝐷 = 3 and 𝐷 = 2 in 

reference frame respectively. The location of rigid body in 

the three dimensional space  𝑅3 can be obtain by 

Euclidean motions of the two dimensional subspaces  𝑅2. 

It is known that the location of rigid body in space 𝑅3 can 

be determined minimum by three independent curves of 

the three points of moving rigid body. Let there are dyads 

kinematic chains on each Euclidean “3 ≤ 𝑝𝑙𝑎𝑛𝑒𝑠 ≤ 6”. 

If these kinematic chains of Euclidean planes are joined to 

the moving rigid body by spherical or spherical-torus 

kinematic pairs, so we will attain location of the rigid 

body in the three dimensional space 𝑅3. 

The general structural formula for parallel-serial 

Euclidean platform type manipulators with variable 

general constraints [18] including hinges (𝑗ℎ), leg (𝑙) and 

branch (𝐿𝑏) loops can be also formulated in the form as 

(Table 1): 

𝑀 = 𝜆 +∑(∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑙)

𝑐𝑙

𝑙=1

+∑(∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑏)

𝐿𝑏

𝑏=1

+ 𝑗ℎ  

                                                                                       (12) 
where 𝜆 is the dimension parameter of moving platform; 

𝜆𝑙 and 𝜆𝑏 are dimension parameters of leg and branch 

loops; 𝑗ℎ is the number of hinges between platforms. 

The structural formula for motion [18] of platforms 

that are created by mechanical system from different 

Euclidean planes can be introduced in the following form 

(table 1): 

𝑚 = 𝜆 + 𝑐𝑙 + 𝑗ℎ +∑(𝑑𝑙 − 𝐷)

𝑐𝑙

𝑙=1

+∑(∑𝑓𝑃𝑓 − 𝜆𝑏

𝜆−1

𝑓=1

)

𝐿𝑏

𝑏=1

   

                                                                                      (13) 
where 𝑑𝑙 is the number of dimensions of vectors of the 

legs in Euclidean planes; 

D is the number of dimensions of vectors in the 

reference frame. 

If the number of independent scalar leg-closure 

equations identical in each Euclidean planes and identical 

in each branch loops, the general structural formula (12) 

for Euclidian manipulators can be defined as 

𝑀 = 𝜆 + (∑𝑓𝑃𝑓 − 𝜆𝑙

𝜆−1

𝑓=1

)𝑐𝑙 +∑(𝑓𝑃𝑓 − 𝜆𝑏)

𝜆−1

𝑓=1

𝐿𝑏 + 𝑗ℎ  (14) 

The general formula for motion of end effector of 

manipulator (13) with the same dimensions of Euclidean 

manipulator legs and branch-loops can be given in the 

following from: 

𝑚 = 𝜆 + 𝑐𝑙 + 𝑗ℎ + (𝑑𝑙 − 𝐷)𝑐𝑙 + (∑𝑓𝑃𝑓

𝜆−1

𝑓=1

− 𝜆𝑏)𝐿𝑏 (15) 

Structural Synthesis of 6DoF Parallel Docking 

Manipulator of Spacecraft. 

In space flights the orbital docking system is used. 

The use of an orbital station with two docking units 

ensures a rigid connection with the formation of a 

hermetically sealed tunnel. A large number of interacting 

mechanisms are concentrated in the docking aggregates. 

The multi-functionality of the working bodies requires the 

solution of the problem of the structural synthesis of 

spatial manipulators of coupling aggregates. Since the 
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mechanisms operate in open space, it is therefore 

necessary to develop new manipulators, nodes and 

elements of kinematic pairs. Structural parameters, 

kinematic structure, motion of platform and 3D drawing 

of the spaces docking manipulators 6𝑅𝑅𝑆𝑡 is depicted in 

Table 3. Controllable space vehicles are brought to a 

touch with a certain speed and position, after which the 

process of docking with a spatial manipulator of a parallel 

structure begins, which ends with a rigid connection of 

two docking units. After the end of the flight, an 

undocking takes place by releasing the mechanical 

connections of the docking device of the platform 

manipulator from the orbital station (Table 3.1). 

When docking it is required that the coaxial position 

of the docking assemblies and the zero linear and angular 

velocities be maintained. The possible values of the 

relative coordinates and their first derivatives in the case 

of mechanical contact are called the initial conditions of 

the docking. Deviations from the co-axial position (Table 

3.2) are determined by the linear coordinates 𝛿𝑦, 𝛿𝑧 and 

planar angles 𝛿𝜓, 𝛿𝜑, 𝛿𝜃. The total deviations of the 

docking units from the co-axial position are added from 

the errors: unit settings, measurements and control 

dynamics. Electromechanical docking devices have been 

created to reduce errors based on electromechanical 

dampers. With the damping, the brake robot can 

accelerate in a unit of millisecond to a speed of several 

thousand revolutions per minute. 

The new four proposed Euclidean docking 

manipulators have identical legs as plane dyads RR as 

shown in Table 3.3a. Each end of dyads connect to the 

moving platform by spherical-tours pairs. Kinematic pair 

with 4DoF is introduced as sphere in torus slot pair 𝑆𝑡𝑠 

that perform three rotations and one circular translation 

(Table 3.3 b). Note that, end points of each dyads respect 

to the fixed reference frame (Table 3.3 c) define the curve 

of one point of the platform in the reference Euclidean 

plane. Three legs 𝑅𝑅𝑆𝑡𝑠 of the moving platform defines 

the three reference Euclidean planes (Table 3.3 c) that are 

located under an angle of 120°. It is known that the 

location of the moving rigid body in space can be defined 

by minimum three independent curves of three rigid body 

points moving on three Euclidean reference planes. 

Since the Euclidean parallel docking manipulator 

consist of a movable platform and legs, then the number 

of branch-loops 𝐿𝑏 = 0, hinges 𝑗ℎ = 0 and 𝜆𝑙 = 𝑐𝑜𝑛𝑠𝑡, so 

Eq. (14) takes the form: 

𝑀 = 𝜆 + (∑𝑓𝑃𝑓 − 𝜆𝑙

𝜆−1

𝑓=1

)𝑐𝑙                      (16) 

In the same way when 𝐿𝑏 = 0, 𝑗ℎ = 0 and 𝑑𝑙 =

𝑐𝑜𝑛𝑠𝑡, then the formula (15) for motion of platform of 

Euclidean docking manipulator can be written in the form 

𝑚 = 𝜆 + (1 + 𝑑𝑙 − 𝐷)𝑐𝑙                       (17) 

Example 1. 

Design a parallel Euclidean docking robot 

manipulator with 𝜆 = 6, 𝜆𝑙 = 6, 𝑐𝑙 = 6, 𝑀 = 6. Find both 

the number and kind of kinematic pairs on each leg. Also, 

find the motion of docking platform. 

By using Eq.(16) total DoF and kind of kinematic 

pairs of the legs can be calculated as 

(𝑀 − 𝜆)𝑐𝑙
−1 + 𝜆𝑙 =∑𝑓𝑃𝑓

5

𝑓=1

  𝑜𝑟  

  6 = 𝑃1 + 4𝑃4,    𝑜𝑟     𝑃1 = 2 𝑎𝑛𝑑  𝑃4 = 1 

so that, in the designed docking manipulator, each leg will 

consist of two kinematic pairs with one degrees of 

freedom (revolute pairs RR) and one kinematic pair with 

four degrees of freedom (sphere in torus slot pair 𝑆𝑡𝑠). By 

using Eq.(17), the motion of the docking platform will be 

𝑚 = 6, it means motion of platform will 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑃𝑥, 

𝑃𝑦, 𝑃𝑧. 

Kinematic structure with different structural 

parameters of Euclidean docking robot manipulator with 

six legs is shown in Table 3.1. 

The above procedure can be used for Euclidean 

docking robot manipulators with three, four and five legs. 

The result of the new Euclidean docking robot 

manipulators are shown in Table 4. Elements of the 

structural bonds can be illustrated as: Restangle (▭):  

describes moving platform with spherical-torus pairs 𝑆𝑡. 

Platform leg (−,∟): connection of the spherical-

torus pairs on the moving platform with pairs of the legs. 

: input joint on fixed frame. 

𝑅: input joint on moving frame.   
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Table 3. Parallel Euclidean Platform Spacecraft Docking Manipulator 

№ The new Spatial Docking Manipulator of Spacecraft 

1 

 

 

𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 

𝑃𝑥, 𝑃𝑦, 𝑃𝑧 

𝛼 

 

60° 

𝜆𝑙 

 

6 

𝑐𝑙 

 

6 

leg. 

𝑃1 = 2 

𝑃4 = 1 

𝑑𝑙 

2,2,2 

2,2,2 

𝑚𝑝 

 

6 

𝑀 

 

6 

1 2 3 4 5 6 7 8 9 

 The Deviations of the Docking Units. 

2 

 

 a 
Dyad in reference 

Euclidean plane. 
b Sphere in torus slot pair c 

The three platform points on three 

Euclidean planes. 

3 

 
𝑅𝑅 

 
𝑆𝑡  
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Table 4. New 6DoF Parallel Docking Manipulators of Spacecraft 

Structural bonding 

Illustration 

Motion of 

platform 

Angle 

between 

Euclidean 

planes 

𝜆𝑙 𝑐𝑙 
leg. 

∑𝑓𝑃𝑓 
𝑑𝑙 𝑚𝑝 𝑀 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑃𝑥, 

𝑃𝑦, 𝑃𝑧 
120° 6 3 

𝑃1 = 2 

𝑃4 = 1 
2,2,2 6 6 

1 2 3 4 5 6 7 8 9 

1 

 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑃𝑥, 

𝑃𝑦, 𝑃𝑧 
90° 6 4 

𝑃1 = 2 

𝑃4 = 1 

2,2,2, 

2 
6 6 

2 

 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑃𝑥, 

𝑃𝑦, 𝑃𝑧 
72° 6 5 

𝑃1 = 2 

𝑃4 = 1 

2,2,2, 

2,2 
6 6 

3 
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Structural Synthesis of Wheeled Robots. 

It is obvious that wheeled robot have been developed 

for Mars and Moon surface. First we consider the 

definition of wheeled robot: “A wheeled robot is an 

autonomous system capable of traveling a terrain with 

natural or artificial obstacles”. As shown in Fig. 2.1 

kinematic structure of wheeled robot has six wheels with 

symmetric structure for both sides. Each side has three 

wheels which are connected to each other by the main 

linkage and two loops kinematic chain. Main linkage 

called rocker that has two joints, where first joint 

connected to back wheel and second joint assembled to 

platform. The rocker is kinematic chain where the second 

path of link connected rigidly to another linkage system 

with two wheels. The second linkage system is called 

bogie (Fig. 2.2). So, rocker-bogie kinematic chain is 

called suspension system. Wheeled rough terrain mobile 

robots are called as “Rover”. Rovers can carry more 

weight with high-speed, easy novigation and more 

precisely can be calculated position and orientation. First 

rover was “Lunakhod” and second rover was six wheeled 

syspension system, which connects the wheels to the 

platform. This connection are linkage mechanisms, 

damping and complex spring. 

The new bogie mechanism consists of two 

Chebyshev lambda mechanisms which are connected 

symmetrically. Paired two lambda mechanisms are used 

as motion generation mechanisms, where couplers are 

input links. To move the coupler points 𝑀1 and 𝑀2 along 

a line sufficiently and necessary to fulfil the design 

relation: 3𝑑 − 𝑎 = 2𝑏. The length of parametre 𝑑 can be 

changed according to relation 1,55𝑎 ≤ 𝑑 ≤ 3𝑎 (Fig. 2.1).  

The same second suspension kinematic chains are 

assembled in opposite side of moving platform. Right and 

left suspensions are connected to each other by a 

differential gear mechanism (Fig. 2). When one side 

climbing over obstacle, this mechanism rotates the 

platform around the rocker joints by average angle of two 

sides (Fig. 2.1). So, the wheeled robot is equipped with six 

wheels and possibly a manipulator setup mounted on the 

platform for handling of work pieces, tools or special 

devices. On inclined surface the moving rover can hold 

the main plarform horizontal. Navigation gets easier by 

this feature of rover. Rovers are driven by commands 

which are sent from ground operators after tested in 3𝐷 

computer simulation. Some of the critical motions such as 

climbing high slope, new rover designs are needed to 

more flexible duaring field operation. 

Example 2.  

Design a parallel wheeld rover with six legs cl = 6, three 

branch cb = 3 and one moving platform B = 1 (Fig. 2.1). 

The dimension parameter of each independent loops on 

the left and right suspensions {λk}1
8 = 3 (Fig. 2.2). The 

number of kinematic pairs with one DoF in the left and 

right suspensions P1 = 30. Two suspensions kinematic 

chains are connected by differential gear mechanism. Find 

the number of motors for parallel whelled rover. Also, 

find the motion of the rover’s platform.  

First, we define the number of independent loops 

(Table 1.3): 

L = C − B = cl + cb − B = 6 + 3 − 1 = 8. 

Using Eq. (11) total DoF of parallel wheeled rover 

can be calculated as 

M =∑f

5

f=1

Pf − λ(C − B) = P1 − λ(cl + cb − B) = 

= 30 − 3(6 + 3 − 1) = 6. 

By using Eq.(17), the motion of the moving rover’s 

platform can be defined as 

m = λ + (1 + dl − D)cl = 6 + (1 + 2 − 3) = 6. 

Thus, the problem of the structural synthesis of the 

wheeled rocker-bogie mechanism is solved and it is 

introduced in Fig.2. Spring and damper application to 

double lambda bogie good solution for high-speed off-

road vehicles. 

Rocker-Bogie suspensions can be used also for 

vehicles with a larger number of wheels. An example of a 

layout for an 8-wheeler each suspension will consist from 

four motion generation Chebyshev lamda mechanisms 

with the four given wheels. İn this case the vehicle may be 

summetrical and it can run in both direction without any 

difference. 
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Fig. 2. Kinematic model of rocker-bogey mechanism 
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Conclusion 

The problem of structural synthesis of the robot 

manipulators with variable general constraint of the legs 

and closed loops can be difficult and complex task 

depends on the DoF and motion of an end-effector 

concept. It is described a new structural formula of 

kinematic pairs for robot manipulators by using screw 

with variable pitch. From this point the twenty kinematic 

pairs are shown with types, simbols, kinematic screw 

parameters and their diagrams. It were introduced two 

new general mobility equations for mechanisms with 

mixed or fixed dimensions of close loops. The general 

structural formula for Euclidean manipulators with 

variable or identical general constraints are introduced. 

The new structural formula for motion of end effector of 

robot with legs from different Euclidean planes were 

considered. Four new Euclidean 6DoF parallel docking 

manipulators of Spacecraft were reviewed and 

synthesized. Funally, by using sistematic process of 

structural synthesis by using for mobility of robot and 

motion of moving platform were developed to create new 

structure of wheeled robot-rover for Mars and Moon 

surface. 
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