Worksheet

(1) Describe explicitly all 2×2 row-reduced echelon matrices.
(2) Show that the system

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}+2 x_{4}=1 \\
x_{1}+x_{2}-x_{3}+x_{4}=2 \\
x_{1}+7 x_{2}-5 x_{3}-x_{4}=3
\end{gathered}
$$

has no solution.
(3) Find all solutions to the following system of equations by row-reducing the coefficient matrix.

$$
\begin{gathered}
x_{1}+6 x_{2}-18 x_{3}=0 \\
-4 x_{1}+5 x_{3}=0 \\
-3 x_{1}+6 x_{2}-13 x_{3}=0 \\
-7 x_{1}+6 x_{2}-8 x_{3}=0
\end{gathered}
$$

(4) Let

$$
A=\left[\begin{array}{cccc}
3 & -6 & 2 & -1 \\
-2 & 4 & 1 & 3 \\
0 & 0 & 1 & 1 \\
1 & -2 & 1 & 0
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \quad Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

For which $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ does the system of equations $A X=Y$ have a solution?
(5) Does the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

invertible? If A is invertible, find A^{-1}.
(6) Find the values of a, b and c for which the system

$$
\begin{gathered}
a x_{1}+b x_{2}-3 x_{3}=-3 \\
-2 x_{1}-b x_{2}+c x_{3}=-1 \\
a x_{1}+3 x_{2}-c x_{3}=-3
\end{gathered}
$$

has the solution $x_{1}=1, x_{2}=-1, x_{3}=2$.
(7) For which values of a and b the following system has a unique solution, no solution or infinitely many solutions?

$$
\begin{gathered}
2 x_{1}+x_{2}+x_{3}=-6 b \\
a x_{1}+3 x_{2}+2 x_{3}=2 b \\
2 x_{1}+x_{2}+(a+1) x_{3}=4
\end{gathered}
$$

(8) Prove that, if B is invertible then $A B^{-1}=B^{-1} A$ if and only if $A B=B A$.
(9) For an invertible matrix A, prove that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(10) Let A be square matrix and $A^{5}=A$. Prove that $\operatorname{det}(A) \in\{-1,0,1\}$.
(11) Find a 2×2 matrix A, such that $A^{2}-2 . A-I_{2}=0$, where I_{2} is the 2×2 identity matrix.
(12) Let A be an 11×11 matrix such that $A^{T}=-A$. Prove that $\operatorname{det}(A)=0$.
(13) Let A be a square matrix and $c \neq \pm 1$ be a constant. Suppose $A^{T}=c A$. Prove that $\operatorname{det}(A)=0$.

