MATH 265 BASIC LINEAR ALGEBRA
 MIDTERM EXAM, 29 July 2011 ANSWER KEY

Question Number	1	2	3	4	5	6	7	8	9	10	Total
Question Value	10	10	10	10	10	10	10	10	10	10	100
Student Value											

1. Find the solution set of the homogeneous system

$$
\begin{gathered}
-x_{1}+2 x_{2}+x_{3}-2 x_{4}=0 \\
-x_{1}-x_{2}+x_{3}+x_{4} \\
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
2 x_{1}-x_{2}-2 x_{3}+x_{4}=0
\end{gathered}
$$

Answer: The solution set of the system is:

$$
S=\left\{\left.\left[\begin{array}{c}
-t \\
t \\
-t \\
t
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

2. For which values of k the following linear system has, a unique solution, infinitely many solution, no solution.

$$
\begin{gathered}
x_{1}+k x_{2}=2 \\
k x_{1}+x_{2}+x_{3}=1 \\
x_{1}+x_{2}+x_{3}=k
\end{gathered}
$$

Answer: The system has
(a) a unique solution if $k \neq 0, k \neq 1$
(b) an infinitely many solution if $k=1$
(c) no solution if $k=0$.
3. Find the solution set of the linear system:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}-x_{4}=4 \\
x_{1}-x_{2}-x_{3}-x_{4}=2 \\
x_{1}+x_{2}-x_{3}+x_{4}=-2
\end{gathered}
$$

Answer: The solution set is:

$$
S=\left\{\left.\left[\begin{array}{c}
t+3 \\
-t-2 \\
t+3 \\
t
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

or equivalently

$$
S=\left\{\left.\left[\begin{array}{c}
t \\
1-t \\
t \\
t-3
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

4. For which values of k the following matrix invertible?

$$
A=\left[\begin{array}{ccc}
k+1 & 2 & 1 \\
0 & 3 & k \\
1 & 1 & 1
\end{array}\right]
$$

Find A^{-1} when $k=1$.
Answer: The matrix is invertible for all $k \neq 0,4$.
For $k=1, A^{-1}=\left[\begin{array}{ccc}2 / 3 & -1 / 3 & -1 / 3 \\ 1 / 3 & 1 / 3 & -2 / 3 \\ -1 & 0 & 2\end{array}\right]$
5. Suppose that A and B are 4×4 invertible matrices. If $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=3$ compute the following determinants.
(a) $\operatorname{det}(A B)=-6$
(b) $\operatorname{det}\left(A^{-1} B^{2}\right)=\frac{-9}{2}$
(c) $\operatorname{det}\left(2 A^{T}\right)=-32$
(d) $\operatorname{det}\left(A^{3} \cdot B^{-3}\right)=\frac{-8}{27}$
(e) $\operatorname{det}\left(\operatorname{adj}(A) A^{-1}\right)=4$
6. For an $n \times n$ matrix A such that $\operatorname{det}(A) \neq 0$, prove that
(a) $[\operatorname{adj}(A)]^{-1}=\frac{1}{\operatorname{det}(A)} A$.
(b) $\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-1}$.

Answer:

(a) It is straightforward to check that $\operatorname{adj}(A) \cdot \frac{1}{\operatorname{det}(A)} A=\frac{1}{\operatorname{det}(A)} A \cdot \operatorname{adj}(A)=I_{n}$
(b) We know that $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$. Evaluate the determinant of both sides to get the required equality.
7. Consider the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$.
(b) Find $\operatorname{adj}(A)$.
(c) Find $\operatorname{det}(\operatorname{adj}(A))$.
(d) Find A^{-1}, if it exists.

Answer:
(a) $\operatorname{det}(A)=-4$
(b) Find $\operatorname{adj}(A)=\left[\begin{array}{ccc}0 & 2 & -2 \\ -2 & -2 & 0 \\ -2 & 0 & 2\end{array}\right]$.
(c) $\operatorname{det}(\operatorname{adj}(A))=16$
(d) $A^{-1}=\left[\begin{array}{ccc}0 & -1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & -1 / 2\end{array}\right]$
8. Use Cramer's rule to solve the system

$$
\begin{gathered}
2 x-y+z=3 \\
x-2 y+4 z=1 \\
x-y-z=5
\end{gathered}
$$

Answer: $x=\frac{3}{4}, y=\frac{-23}{8}, z=\frac{-11}{8}$
9. Compute $\operatorname{adj}(A)$ if A is an invertible matrix with $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$

Answer: $\operatorname{adj}(A)=\operatorname{det}(A) \cdot A^{-1}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
10. For the matrix $A=\left[\begin{array}{cc}4 & 1 \\ -2 & -1\end{array}\right]$, find an upper triangular 2×2 matrix U and a lower triangular 2×2 matrix L such that $A=U L$.
Answer: $U=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $L=\left[\begin{array}{cc}2 & 0 \\ -2 & -1\end{array}\right]$
These U and L are not unique!!

