MATH 265 BASIC LINEAR ALGEBRA MIDTERM EXAM, 29 July 2011 ANSWER KEY

Question Number	1	2	3	4	5	6	7	8	9	10	Total
Question Value	10	10	10	10	10	10	10	10	10	10	100
Student Value											

1. Find the solution set of the homogeneous system

$$-x_1 + 2x_2 + x_3 - 2x_4 = 0$$

$$-x_1 - x_2 + x_3 + x_4$$

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$2x_1 - x_2 - 2x_3 + x_4 = 0$$

Answer: The solution set of the system is:

$$S = \left\{ \begin{bmatrix} -t \\ t \\ -t \\ t \end{bmatrix} \mid t \in \mathbf{R} \right\}$$

2. For which values of k the following linear system has, a unique solution, infinitely many solution, no solution.

$$x_1 + kx_2 = 2$$

 $kx_1 + x_2 + x_3 = 1$
 $x_1 + x_2 + x_3 = k$

Answer: The system has

- (a) a unique solution if $k \neq 0, \ k \neq 1$
- (b) an infinitely many solution if k = 1
- (c) no solution if k = 0.

3. Find the solution set of the linear system:

$$x_1 + x_2 + x_3 - x_4 = 4$$
$$x_1 - x_2 - x_3 - x_4 = 2$$
$$x_1 + x_2 - x_3 + x_4 = -2$$

Answer: The solution set is:

$$S = \left\{ \begin{bmatrix} t+3\\ -t-2\\ t+3\\ t \end{bmatrix} \mid t \in \mathbf{R} \right\}$$

or equivalently

$$S = \left\{ \begin{bmatrix} t \\ 1-t \\ t \\ t-3 \end{bmatrix} \mid t \in \mathbf{R} \right\}$$

4. For which values of k the following matrix invertible?

$$A = \left[\begin{array}{rrrr} k+1 & 2 & 1 \\ 0 & 3 & k \\ 1 & 1 & 1 \end{array} \right]$$

Find A^{-1} when k = 1.

Answer: The matrix is invertible for all $k \neq 0, 4$.

For
$$k = 1, A^{-1} = \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ 1/3 & 1/3 & -2/3 \\ -1 & 0 & 2 \end{bmatrix}$$

- 5. Suppose that A and B are 4×4 invertible matrices. If det(A) = -2 and det(B) = 3 compute the following determinants.
- (a) $\det(AB) = -6$
- (b) $\det(A^{-1}B^2) = \frac{-9}{2}$
- (c) $\det(2A^T) = -32$
- (d) $\det(A^3.B^{-3}) = \frac{-8}{27}$
- (e) $\det(\operatorname{adj}(A)A^{-1}) = 4$

- 6. For an $n \times n$ matrix A such that $det(A) \neq 0$, prove that
- (a) $[\operatorname{adj}(A)]^{-1} = \frac{1}{\det(A)}A.$
- (b) $\det(\operatorname{adj}(A)) = \det(A)^{n-1}$.

Answer:

- (a) It is straightforward to check that $\operatorname{adj}(A) \cdot \frac{1}{\det(A)}A = \frac{1}{\det(A)}A \cdot \operatorname{adj}(A) = I_n$
- (b) We know that $\operatorname{adj}(A) = \det(A)A^{-1}$. Evaluate the determinant of both sides to get the required equality.

7. Consider the matrix

$$\left[\begin{array}{rrrr} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & -1 \end{array}\right]$$

- (a) Find det(A).
- (b) Find $\operatorname{adj}(A)$.
- (c) Find det(adj(A)).
- (d) Find A^{-1} , if it exists.

Answer:

(a)
$$\det(A) = -4$$

(b) Find
$$\operatorname{adj}(A) = \begin{bmatrix} 0 & 2 & -2 \\ -2 & -2 & 0 \\ -2 & 0 & 2 \end{bmatrix}$$
.

(c) det(adj(A)) = 16

(d)
$$A^{-1} = \begin{bmatrix} 0 & -1/2 & 1/2 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & -1/2 \end{bmatrix}$$

8. Use Cramer's rule to solve the system

$$2x - y + z = 3$$
$$x - 2y + 4z = 1$$
$$x - y - z = 5$$
Answer: $x = \frac{3}{4}, y = \frac{-23}{8}, z = \frac{-11}{8}$

9. Compute $\operatorname{adj}(A)$ if A is an invertible matrix with $A^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

Answer:
$$\operatorname{adj}(A) = \det(A) \cdot A^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

10. For the matrix $A = \begin{bmatrix} 4 & 1 \\ -2 & -1 \end{bmatrix}$, find an upper triangular 2×2 matrix U and a lower triangular 2×2 matrix L such that A = UL.

Answer:
$$U = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 and $L = \begin{bmatrix} 2 & 0 \\ -2 & -1 \end{bmatrix}$
These U and L are not unique!!