EE 590 Scientific Research Methods and Ethics for Engineers

Week 2 Course Notes

Bilge Karaçalı, PhD

Topics

- Scientific body of knowledge
 - Disciplines
 - Scientific knowledge
- Falsifiability
 - Science vs. non-science
- Hypothesis testing

- Weighing empirical evidence towards a claim

Science

 Objective: to form a collection of consistent and verifiable claims on the nature of things

- Q: What things?

- Consistent and verifiable claims add to the scientific body of knowledge
 - History of science begins with history
 - Q: Why?

Scientific Disciplines

- Basic scientific disciplines:
 - Mathematics
 - Physics
 - Biology
 - Chemistry
- Applied scientific disciplines:
 - Engineering
 - Astronomy
 - Economics

— ...

Scientific Knowledge

- Hypothesis
 - Represents a specific claim on a specific correlation or cause and effect relationship
 - Is subject to extensive experimental validation
- Model
 - Describes the underlying working of a topic of interest through an explanatory mechanism when the corresponding hypothesis is known to be valid
- Theory and law
 - Represents a collection of hypotheses that have been extensively validated in experimental tests

Experimental Validation

- In science, all claims are subject to testing
 - Suppose a claim is made according to observations
 - most of the time in the form of a prediction:
 - "If {such and such conditions are met}, then {such and such results will materialize}."
 - The claim will be evaluated in terms of whether the predictions hold true
 - Every time the conditions are met, the expectations must be observed
 - If there are instances where the conditions do not produce the expectations, the claim is **falsified**

Falsifiability

- Scientific body of knowledge is a collection of falsifiable claims
 - Falsifiability is the basic requirement for a scientific claim
 - It implies that a claim is scientific <u>if and only if</u> it provides ways in which it can be discredited
 - The claim must identify the conditions under which the validity of the claim will be compromised
 - If the conditions are met and the expected results are not materialized, the claim will be invalidated

 Testing of a given scientific claim is carried out in controlled experiments

- If a claim is not testable, then it cannot be scientific
- Q: What is the difference between astronomy and astrology?

Case Study: The Secret to Success

- Observation:
- All successful people have wanted to accomplish their goals in life very much.
- Claim:
- If {one wants to achieve their goals in life very much}, then {they become successful}.
- Controlled experiment:
 - 1. Interview many people asking them if they wanted to achieve their goals in life very much.
 - 2. Ask also if they have become successful.
- Result and conclusion:

??

The Method

- Given that you are interested in a topic
 - Growth of crops in dry climates
 - Relationship between age and the onset of Alzheimer's Disease
 - Mechanism linking certain environmental pollutants to cancer

- ...

- Combining factual information from various observations and the current scientific knowledge, you form a hypothesis
- You set up a series of controlled experiments to evaluate the validity of the hypothesis
 - Every hypothesis involves predictions on events that will occur whenever a series of conditions are met
 - The experiments create the conditions and allow making observations on the predictions
- Based on the results of the experiments, either establish or reject the hypothesis
 - Rejecting a hypothesis means it will either be revised or completely scrapped

Example

- Observation:
- Schizophrenia patients exhibit reduced cognitive abilities compared to healthy individuals.
- Cognitive capacity is linked to the amount of brain tissue available for cognitive tasks.
- A reduced cognitive ability may be indicative of a smaller brain volume in brain regions responsible for cognitive function.

Hippocampus is such a region.

- Claim: ۲
- If {a person is schizophrenic}, then {the volume of their hippocampus would be smaller}.

EE 590 Week 2

Example (cont'd)

- Controlled experiment:
 - Sign up an equal number of schizophrenia patients and healthy control individuals to the study
 - Acquire 3D MR images of their brains
 - Use computational algorithms to measure the volume of their hippocampi
 - Carry out a statistical comparison of the hippocampal volumes between the schizophrenics and the healthy controls against a predetermined statistical significance level
- Result and conclusion :
- On the average, the hippocampal volumes do **differ** between schizophrenics and healthy individuals. The lesser amount of brain tissue indicates a degraded capacity in cognitive function.
- On the other hand, this **correlation** does not indicate **causality** and by no means dooms the individuals with a smaller hippocampus to schizophrenia.

- Suppose you have made a lot of measurements divided into two disjoint sets
 - Some measurements made under a given condition, and others under a complementary conditions
 - Hippocampal volumes
 - Some from schizophrenia patients, others from healthy individuals
 - Calculus grades of freshman students
 - Some from engineering, others form humanities
 - ...
- The objective is to determine if these two sets are different from each other
 - Note that all numeric measurements will be different from each other unless they are from a finite/discrete number set
 - Comparison can be made in terms of the underlying distributions of the measurements under the two conditions
 - The (probability) distribution of measurements when the first condition is true
 - The (probability) distribution of measurements when the second condition is true

- Example: Newborn weights
 - Observation:
 - In humans, on the average, men are heavier than women
 - The question of interest is whether such a difference exists at birth between baby boys and baby girls
 - Procedure:
 - Collect newborn weight data for a certain period of time
 - Compare the weights of the boys to the weights of the girls using hypothesis testing to see if there is a statistically significant difference between the average weights

Source:

http://i.telegraph.co.uk/multimedia/archive/02380/b abies_2380929b.jpg

• Example (continued):

Data

A record total of 44 babies were born in a 24-hour period at a hospital in Australia. The dataset contains the times of birth, genders and weights of these babies.

Source: http://www.amstat.org/publications/jse/jse_data_archive.htm

	Gender	weight		Gender	weight		Gender	weight		Gender	weight
Time	(1:g, 2:b)	(gr)	Time	(1:g, 2:b)	(gr)	_! Time	(1:g, 2:b)	(gr)	Time	(1:g, 2:b)	(gr)
0:05	1	3837	8:12	2	3294	14:07	1	3480	19:47	2	3630
1:04	1	3334	8:14	1	2576	14:33	1	3116	19:49	2	3406
1:18	2	3554	9:09	1	3208	14:46	1	3428	19:51	2	3402
1:55	2	3838	10:35	2	3521	15:14	2	3783	20:10	1	3500
2:57	2	3625	10:49	1	3746	16:31	2	3345	20:37	2	3736
4:05	1	2208	10:53	1	3523	16:57	2	3034	20:51	2	3370
4:07	1	1745	11:33	2	2902	17:42	1	2184	21:04	2	2121
4:22	2	2846	12:09	2	2635	18:07	2	3300	21:23	2	3150
4:31	2	3166	12:56	2	3920	18:25	1	2383	22:17	1	3866
7:08	2	3520	13:05	2	3690	18:54	2	3428	23:27	1	3542
7:35	2	3380	14:06	1	3430	19:09	2	4162	23:55	1	3278

EE 590 Week 2

- Example (continued):
 - The hypothesis to be tested:
 - The null hypothesis:

the uninteresting hypothesis that we expect will be rejected

> the explanation that we are rooting for

average weight of newborn girls \geq average weight of newborn boys

The complementary hypothesis:

average weight of newborn girls < average weight of newborn boys

– The *t*-test procedure:

- Calculate the sample averages and standard deviations for the baby boy weights and the baby girl weights
- Calculate the *T* statistic (as defined by the statistics books)
- Determine the *P* value for the calculated *T* statistic
- If the *P* value is smaller than a statistical significance threshold, say 0.05,
- → Reject the null hypothesis (Cheers!! Yippee! Etc.)

Otherwise,

→The test is inconclusive ☺

- Example (continued):
 - Results:
 - Average weight of 18 newborn baby girls is 3132.44gr
 - Average weight of 26 newborn baby boys is 3375.31gr
 - The difference is 242.87gr in favor of the boys
 - However, the *t*-test determines a *P* value of 0.0676 for this difference
 - Conclusion:
 - The test reveals that such a difference is to be expected in 6.76 of 100 cases (about 1 in 15) by pure chance under the null hypothesis
 - that we do not think is true
 - This is a small number, but it is <u>not small enough</u>!
 - Had to be smaller than 0.05 for us to reject the null hypothesis
 - What to do now:
 - Collect more data for greater statistical power

Statistical Correlation and Causation

- Science is all about determining the reasons for the observed phenomena
 - Hypotheses act as explanations for the observations
- This necessitates determining relationships between the observations and possible causes through a statistical **correlation** analysis
- The problem here is that while good correlation does indicate the existence of some sort of a link between the observation and the possible cause, it does not indicate causality!
 - If events A and B are correlated,
 - A may be causing B, or
 - B may be causing A, or
 - A and B may both be caused by an entirely different event C

Statistical Correlation and Causation

- Example: Busy intersections
 - Observation:
 - Every time a bus driver approaches a busy intersection, he sees that there is a traffic police officer trying to guide the traffic
 - He then forms an opinion that the cause of the traffic jam is the police officer
 - Statistical correlation analysis:
 - Every time there is a traffic jam, a police officer is observed at the junction
 - In rare instances when the traffic flows, no officer is in sight
 - This indicates good correlation between the presence of a police officer and the traffic jam

Q: So, is the bus driver right? Is it the police officer causing the traffic jam?

Statistical Correlation and Causation

- Another example:
 - Consider the statistical relationships between

the passing grade from MATH145 vs. graduation CGPA

and

the passing grade from MATH146 vs. graduation CGPA

- The correlation between the first pair is 0.614362257
- The correlation between the second pair is 0.660799039
- Observations:
 - Generally speaking, the higher the MATH145 and MATH146 grades, the higher the graduation CGPA
 - Though the 2.00-2.50 graduates may have failed these courses the first time they took them
 - The correlation is better for MATH146
 - Probably because some students recover from the culture shock in their second semester

Summary

- The scientific method rests on
 - Observations on the nature of things
 - Hypotheses formulated to capture the correlation or cause and effect relationships
 - Models that explain inner workings based on validated hypotheses
 - Theories and laws formed by the collection of hypotheses related to a topic of interest that have survived all experimental tests
- In order to be classified as scientific, all explanatory processes must follow the scientific method
 - Everything in science is subject to validation by testing
 - If predictions are not testable, they are not scientific
 - Testability most often implies measurability cannot test what cannot be measured