#### Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology

# Outline

- Comparing univariate cell distributions
  - Earlier methods
  - Maximum positive difference method and Overton cumulative histogram subtraction
  - Super-enhanced Dmax subtraction
  - The Kolmogorov-Smirnov algorithm

# Motivation

- Flow cytometry aims to characterize cells in a population that differ from one another in terms of their biomarker profiles
  - Different cells possess different biomarkers (receptors) suitable to their role in the larger organism
- A critical component to this aim is to identify the cells that possess a specific biomarker, termed as **positives**, against the others, termed as **negatives**
- Given two sample distributions where one is the control dataset of negatives and the other a test dataset, the question is :

Can we identify the cells that are positive in the test dataset?

- Note that an answer to this question requires the delineation of a region on the fluorescence intensity scale associated with the positive cells
- A related, but simpler question is:

Can we predict the fraction of positive cells in the test dataset?

- Adaptive thresholding at a fixed rate of background detection:
  - Tantamount to constant false alarm rate detection rule in detection
  - A threshold is determined on a control dataset of background fluorescence
    - Typically, the threshold "detects" 2% of the control cells as exhibiting positive fluorescence
  - The threshold is then applied to the dataset of interest to identify the positive cells
    - And the percentages thereof

- Adaptive thresholding at a fixed rate of background detection (continued):
  - Mathematically, using
    - $P_{cont}(i)$ : The empirical cumulative distribution of the control dataset at the intensity level i
    - $P_{test}(i)$ : The empirical cumulative distribution of the test dataset at the intensity level *i*
  - A threshold *T* is identified such that

$$P_{cont}(T) = 0.98$$

 The percentage of the positive cells in the test data is then given by

$$100(1-P_{cont}(T))$$

- Toy example:
  - Control dataset of 10000 cells
  - Test dataset of 10000 cells
  - A fraction of 0.50 of the test dataset drawn from the same distribution as the negatives of the control dataset
  - The remaining fraction of 0.50 drawn from a distinct distribution, and represent the positives





- Channel-by-channel subtraction:
  - Subtracts cell counts in each fluorescence channel (i.e. level) of a control histogram from those in a test histogram
    - The two histograms are normalized to have equal cell counts by a scalar normalizing factor
  - The channels with negative results are set to zero
  - The channels with positive counts characterize the fluorescence intensities with positive cells in the test histogram
  - The ratio of total (positive) differences to the test cell count calculates the percentage of positive cells

- Channel-by-channel subtraction (continued):
  - Mathematically, using
    - $p_{cont}(i)$  representing the normalized cell counts in the control dataset with intensity i
    - $p_{test}(i)$  representing the normalized cell counts in the test dataset with intensity i

such that

$$P_{cont}(i) = \sum_{0}^{i} p_{cont}(j)$$
 and  $P_{test}(i) = \sum_{0}^{i} p_{test}(j)$ 

Letting

 $R = \{i | p_{test}(i) > p_{cont}(i)\}$ 

- The percentage of positive cells is given by

$$100\sum_{i\in R}(p_{test}(i)-p_{cont}(i))$$



# Method of Maximum Positive Difference

- This method identifies the largest difference between the control and test cell counts with intensities greater than equal to a threshold
  - Given a threshold intensity level, the positive cells are those that have fluorescence intensity greater than or equal to that level
  - The difference between the positive cell percentages between the test dataset and the control dataset can be computed for each threshold
  - Varying the threshold, the level providing the largest difference can be identified

# Method of Maximum Positive Difference

- Mathematically,
  - For a given threshold *T*, the difference in consideration is

$$(1 - P_{test}(T)) - (1 - P_{cont}(T)) = P_{cont}(T) - P_{test}(T)$$

 The maximum is obtained at the threshold T\* defined by

$$T^* = \arg\max_{T}(P_{cont}(T) - P_{test}(T))$$

The percentage of the positive cells is then given by

$$100(P_{cont}(T^*) - P_{test}(T^*))$$

#### Method of Maximum Positive Difference



## Overton Cumulative Histogram Subtraction

- This method refines the channel-by-channel subtraction
  - Straightforward subtraction finds the channels with positive or negative differences
    - Though the negative differences are replaced by zeros
  - But the ultimate goal is to find a threshold fluorescence intensity level (i.e. channel) to identify the fluorescence region associated with positive cells
    - as distinct from the negatives
  - So the method packs the negative differences onto the positive differences observed in the lower channels
  - Once finished,
    - residual negatives are set to zero, and
    - the sum of the positive differences computes the fraction of positives in the test dataset

## Overton Cumulative Histogram Subtraction

- Mathematically:
  - The original difference  $p_{test}(i) p_{cont}(i)$  is modified so that
    - $p_{test}(i) p_{cont}(i)$  is zero for i < T for some value T, and
    - $p_{test}(i) p_{cont}(i)$  is positive for  $i \ge T$
  - This provides a best-guess estimate for the threshold *T*:
    - In the original case, earlier positive differences can be followed by negative differences due to noise
    - After the "correction," the differences are idealized so that the difference is always positive for  $i \ge T$ 
      - No positive differences are followed by negatives

#### Overton Cumulative Histogram Subtraction



• The *D*<sub>max</sub> method:

– Technically,  $D_{\text{max}}$  is defined as

 $D_{\max} = \max_{i}(P_{cont}(i) - P_{test}(i))$ 

where  $P_{test}(i)$  and  $P_{cont}(i)$  are the cumulative distributions of the test and the control datasets, respectively, as before

- The idea is based on the observation that  $D_{\max}$  estimates the fraction of positive cells in the test dataset
  - Assuming that the positive and negative cell fluorescence distributions are distinct,  $P_{cont}(i) P_{test}(i)$  is maximal when all the negatives and none of the positives are covered in the interval [0, i]
  - Errors accumulate when the distributions overlap

- The enhanced  $D_{\max}$  method:
  - The original  $D_{\text{max}}$  method tends to underestimate the actual positive percentage in the test dataset, especially with non-zero overlap between the positives and the negatives
    - Q: Why?

(Hint: Consider what  $D_{\max}$  corresponds to in a plot of  $P_{test}(i)$  versus  $P_{cont}(i)$ )

- A correction can be obtained by scaling it using the value of the cumulative distribution of the control dataset at the corresponding fluorescence intensity
- Mathematically, this prescribes using

$$100 \frac{D_{\max}}{P_{cont}(T)}$$

to compute the positive percentage where

$$T = \arg\max_{i}(P_{cont}(i) - P_{test}(i))$$

- The super-enhanced  $D_{\max}$  subtraction:
  - It can be shown that the actual expression for the positive fraction is equal to

$$\frac{D_{\max} + P_{pos}(T)}{P_{cont}(T)}$$

where

$$P_{test}(T) = P_{pos}(T) + P_{neg}(T)$$

- Hence, as *T* grows large,  $D_{\max}$  goes to zero,  $P_{cont}(T)$  goes to one, and the ratio above converges to the fraction of positives in the test dataset
- Further correction on the enhanced  $D_{\max}$ subtraction method entail estimating  $P_{pos}(T)$

- The super-enhanced  $D_{\max}$  subtraction (continued):
  - Given the fluorescence intensity T at the maximum difference
  - Suppose new cumulative distributions are formed by limiting the range of fluorescence intensities to within [0, T]

$$P_{cont}'(i) = \frac{P_{cont}(i)}{P_{cont}(T)}$$

and

$$P_{test}'(i) = \frac{P_{test}(i)}{P_{test}(T)}$$

- Now, repeating the enhanced  $D_{\max}$  subtraction method using  $P'_{cont}(i)$  and  $P'_{test}(i)$  provides a maximum difference of  $D'_{\max}$  at T'

- The super-enhanced  $D_{\max}$  subtraction (continued):
  - Furthermore, the fraction

$$\frac{D'_{\max}}{P'_{cont}(T')}$$

estimates  $P_{pos}(T)$ 

- Using this estimate in the earlier expression provides

$$100 \frac{D_{\max} + \frac{D'_{\max}}{P'_{cont}(T')}}{P_{cont}(T)}$$

to compute the fraction of positive cells in the test dataset



The final estimate of the fraction of positive cells in the test dataset is:

$$\frac{0.4757 + 0.0176}{0.9733} = 0.5068$$



Week 6

# The Kolmogorov-Smirnov Algorithm

- This method is based on the Kolmogorof-Smirnov test to see if two samples are drawn from the same distribution:
  - Two datasets are given, one control and the other test, with  $n_{cont}$  and  $n_{test}$  samples respectively
  - Calculate the KS statistic

$$K = \sqrt{\frac{n_{cont} n_{test}}{n_{cont} + n_{test}}} D_{\max}$$

 Under the null hypothesis where the samples in both datasets are drawn from the same distribution, *K* is governed by the Kolmogorov distribution with

$$P_{K}(x) = \Pr\{K \le x\} = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} \exp(-2k^{2}x^{2})$$

for large  $n_{cont}$  and  $n_{test}$ 

- The null hypothesis is rejected if  $P_K(K) > 1 - \alpha$  for the observed *K*, where  $\alpha$  represents a desired level of statistical significance

### The Kolmogorov-Smirnov Algorithm

• For the toy example:

$$- n_{cont} = n_{test} = 10000$$

$$- K = \sqrt{\frac{n_{cont} n_{test}}{n_{cont} + n_{test}}} D_{\max} = \sqrt{5000} \cdot 0.4757 = 33.6371$$

-  $P_K(33.6371) \cong 1 \rightarrow$  the P-value is practically zero!!



Week 6

# The Kolmogorov-Smirnov Algorithm

- Remarks:
  - The Kolmogorov-Smirnov algorithm carries out a statistical test to determine the confidence interval at which two cell distributions are different
  - It does not, in essence, delineate a region of fluorescence intensities over which they differ
  - On the other hand, it uses  $D_{\max}$  to determine the confidence interval, that can be used to identify the fraction of positive cells in the test dataset

# Summary

- Many different but related methods exist to predict the fraction of positive cells in a test dataset in contrast to a control dataset of all-negative cells
- While these methods compute parameters linked to critical fluorescence intensity levels, they do not directly delineate the regions in the fluorescence intensity scale associated with the positive cells
  - Though it is clear that they are the cells in the test dataset with greater fluorescence intensity
- Regions of difference between the fluorescence intensity distributions of two samples, or gates, can be identified using the alternative method of probability binning