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Outline 

• Normalization 
– Normalization in pattern recognition 
– Normalization of flow cytometry data 

• Log displays 
• Logicle transformation 
• Univariate normalization of individual fluorescence 

parameters 
• Multivariate normalization 
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Feature normalization 
• In pattern recognition applications, features may vary 

in magnitude 
• Differences in magnitude may bias the learning 

system to rely more on high-magnitude features 
– Statistical learning applications construct some 

representation of local neighborhoods around the different 
feature vectors 

– High magnitude features dominate the others in 
determining the distances between the feature vectors, 
and thus, the corresponding neighborhood structure 

• Normalization is carried out to equalize the 
magnitudes of all features  
– Further normalization may also seek to adjust the way 

features span their equalized dynamic range 
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Feature normalization 
• Linear normalization: 

– Each feature is scaled by the inverse of its standard 
deviation observed across the data 

𝑥�𝑖,𝑗 = 𝑥𝑖,𝑗/𝜎𝑗 
where 

• 𝑥𝑖  is the dataset of vectors 𝑥𝑖 ∈ 𝑋, ∀ 𝑖 = 1, 2, … , ℓ 
• 𝜎𝑗 is the standard deviation of the j’th feature across the 

dataset; 𝑥𝑖,𝑗  across all I 
– The mean 𝜇𝑗 can also be removed from each feature 

via 
𝑥�𝑖,𝑗 = (𝑥𝑖,𝑗 − 𝜇𝑗)/𝜎𝑗 

to achieve feature vectors with zero mean and unit 
standard deviation 
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Feature normalization 
• Gamma normalization: 

– The features can be normalized to span their dynamic range as 
uniformly as possible first by letting 

𝑥′𝑖,𝑗 = 𝑎𝑗𝑥𝑖,𝑗 + 𝑏𝑗 
where 𝑎𝑗 and 𝑏𝑗 are determined so that  

min
𝑖

{𝑥′𝑖,𝑗} =
1

ℓ + 1
 

and  

max
𝑖

{𝑥′𝑖,𝑗} =
ℓ

ℓ + 1
 

– And then defining 𝑥�𝑖,𝑗 by 
𝑥�𝑖,𝑗 = 𝑥′𝑖,𝑗

𝛾𝑗 
where 𝛾𝑗 is such that the collection {𝑥�𝑖,𝑗} for each j over all I is as 
uniformly distributed as possible 
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Data normalization 
• Feature normalization adjusts the feature magnitudes so that each 

feature has an equal chance of influencing the learning rule 
• Data normalization, in contrast, aims to make different datasets 

comparable to each other 
– Data collections do not readily submit themselves to comparison 

• Different equipment 
• Different data acquisition settings 
• Variations on sample preparation 
• … 

– Before any comparative analyses, the different datasets must be 
converted into a standard form that they would have had should the 
data collection conditions been identical for all  

– Example: Deformable image registration 
• The images that contain the anatomical information of different subjects are not 

comparable 
• When the images are registered spatially with a template, the corresponding 

coordinate transformations are comparable 
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Flow data normalization 
• The same considerations are faced when comparing two or more 

flow cytometry datasets 
– Any flow cytometry experiment is a delicate procedure 
– Many factors can affect the actual collected values into the data 

• Sample preparation 
– Protocols 
– Staining 
– Choice of fluorochromes 

• Equipment setup 
– Lasers 
– Voltage gains 
– Compensation parameters 

– These differences prevent the transfer of subset specifications obtained 
from one sample to the others 

• Gating to be carried out from scratch separately for each dataset 
• Comparing different flow datasets requires annulling the effects of 

these irrelevant variations from the measurements 
– Irrelevant to the actual biological and/or clinical hypothesis at hand 
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Flow data normalization 

• In practice, the matching of the cell 
clusters in the different flow datasets is 
carried out manually via visual inspection 

• This requires a suitable display of the flow 
data that 
– uses the dynamic range between the smallest 

and the largest measurements efficiently, and 
– allows distinguishing the different cell types 

from each other as distinct clusters 
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Flow data displays: The log scale 
• Flow data consists of measurements on fluorescence 

intensities 
• In the presence of the intended biomarker, the fluorescence 

signal can exhibit very large values 
• In the absence, the measurements are of the background 

illumination towards the lower end of the scale 
• The goal is not only  

– to separate the cells that possess the biomarker from those that 
do not, but also 

– to separate the cell clusters that possess the biomarker at 
different levels 

• The general tendency in such cases is to present the data in a 
logarithmic scale instead of the linear scale in which the 
measurements are recorded 
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Flow data displays: The logicle 
transformation 

• The logarithmic scaling overextends the lower 
ends of the measurement scale 

• Based on the hyperbolic sine function 

sinh 𝑥 =
1
2
𝑒𝑥 − 𝑒−𝑥  

• A generalization provides the bi-exponential 
function 

𝑆 𝑥 = 𝑎𝑒𝑏𝑥 − 𝑐𝑒−𝑑𝑥 + 𝑓 
• A subset of the bi-exponential functions that are 

linear near zero are called logicle functions 
– with zero second derivative near zero 
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Flow data displays: The logicle 
transformation 

• Further requirements are incorporated in addition to setting the 
second derivative of 𝑆 𝑥  with respect to 𝑥 equal to zero when 𝑥 ≈
0: 
– The maximum data value to be displayed (𝑇) 
– The range of the display (𝑚) 
– The range of linearization around 0 (𝑤) 
– The range of negative values to be included in the display 

• Usually set to the linearization range 𝑤 
• Then, the logicle function becomes 

𝑆 𝑥 = 𝑇𝑒− 𝑚−𝑤 𝑒𝑥−𝑤 − 𝑝2𝑒−
𝑥−𝑤
𝑝 + 𝑝2 − 1  

for all 𝑥 ≥ 𝑤, where 𝑝 in the expression above is linked to 𝑤 via 

𝑤 =
2𝑝 ln𝑝
𝑝 + 1

 

• Note: The parameters 𝑚 and 𝑤 are in the units of natural logarithm 
– Thus, a range of 104 is specified as 𝑚 = 4 ln 10 = 9.23 
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Flow data displays: The logicle 
transformation 

• The transformation is 
then defined by the 
inverse 𝑆−1(𝑦) of the 
logicle function 𝑆(𝑥) 
– The function 𝑆(𝑥) does 

not have a closed form 
inverse 

– The transformation is 
then carried out by linear 
interpolation 

• The function 𝑆(𝑥) is 
defined for 0 ≤ 𝑥 ≤ 𝑚 
– For 𝑥 < 𝑤, −S w − 𝑥  is 

computed 
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The logicle function 𝑆(𝑥) with 
𝑇 = 100 

𝑚 = 2.5 log 10 
𝑤 = 0.5 log 10 

obtained using 𝑝 = 2.2872 

 



Flow data displays: The logicle 
transformation 

Week 5 13 

The logicle transformation 
 
Left: The logicle function using 𝑇 = 214, 𝑚 = 4.5 log 10, 
𝑤 = 0.5 log 10 for 𝑝 = 2.2872 
Middle: The histogram of the observed intensities 
Right: Histogram of the transformed intensities 



Univariate normalization of 
fluorescence intensities 

• Once a suitable transformation (“display”) for 
the flow data is obtained, normalization of the 
observed intensities in different experiments 
can be addressed 

• The first strategy is to aligned the intensity 
distributions along each channel individually 
– to ensure that similar cells exhibit similar 

fluorescence intensities in all experiments 
 Univariate intensity normalization 
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Univariate normalization of 
fluorescence intensities 

• Normalization of fluorescence intensities corresponds to aligning the 
unknown underlying probability distributions 
– The probability distribution governing the fluorescence intensities in a 

flow experiment is to be 
• shifted 
• scaled 
• smeared 
• stretched 
• shrunk 

so that it matches a reference distribution 
– The underlying probability distribution is characterized by the observed 

fluorescence intensities within the experiment 
– The reference distribution is also characterized by another set of 

fluorescence intensities 
• Conceptually, distribution alignment algorithms from the pattern 

recognition literature can be applied 
– with caution!! 
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Univariate normalization of 
fluorescence intensities 

• Simplest case: alignment 
of monomodal intensity 
distributions 
– The observed fluorescence 

intensities form one single 
peak 

– The reference set of 
fluorescence intensities 
also form one single peak 

– In this case, intensity 
normalization can be 
carried out by a coordinate 
transformation  

• that aligns the peaks, and 
• adjusts the standard 

deviations 
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Univariate normalization of 
fluorescence intensities 

• Simplest case (continued): 
– The normalization is carried out by a 

coordinate transformation 𝑓: 𝐼𝑟 → 𝐼𝑡 that 
links  

• the intensities 𝐼𝑟 in the reference cell 
distribution  

• to the intensities 𝐼𝑡 observed in the cell 
distribution to be normalized 

– For this case, the transformation 
corresponds to an affine function  

𝑓 𝐼 = 𝜎𝑡
𝐼 − 𝜇𝑟
𝜎𝑟

+ 𝜇𝑡 

where 
– 𝜇𝑟 and 𝜎𝑟 are the mean and standard 

deviation of the reference cell 
fluorescence intensities, and 

– 𝜇𝑡 and 𝜎𝑡 are the mean and standard 
deviation of the observed intensities to be 
normalized 
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Univariate normalization of 
fluorescence intensities 

• Aligning multimodal intensities: 
– When the intensities to be aligned present 

multiple modes, the mode correspondence 
problem must be solved 

• In flow data, each intensity mode represents a 
distinct cell cluster 

• Normalization must ensure that the same cell 
clusters in the datasets to be normalized are 
associated with each other 

– so that they share similar intensities after normalization 
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Univariate normalization of 
fluorescence intensities 

• Aligning multimodal intensities: 
– Assuming that 

• the different modes originated by distinct cell clusters 
are identified in both samples, and 

• the correspondence between the cell clusters of the 
two samples is established 

– A piece-wise linear function can be computed that 
either 

• repositions the mean intensities of the cell clusters in 
the reference dataset onto the mean intensities of the 
corresponding clusters in the observed dataset, or 

• matches the boundaries that separate the different cell 
clusters in their respective datasets 
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Univariate normalization of 
fluorescence intensities 

Week 5 20 



Univariate normalization of 
fluorescence intensities 
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Univariate normalization of 
fluorescence intensities 

• Remarks: 
– Aligning the multimodal cell fluorescence intensity distributions 

requires correct identification  
• of the distinct cell clusters, and 
• of the correspondences between the matching cell clusters in the two 

samples 
– Mismatches inevitably lead to erroneous normalization that can 

potentially ruin the analysis 
– Missing cell clusters can potentially leave the alignment at an 

impasse 
• How to match a two-peak distribution onto another distribution that has 

three peaks? 
– General purpose univariate distribution alignment methods from 

the pattern recognition literature can be adapted to the task 
• earth movers distance 
• elastic coordinate transformations matching the respective cumulative 

distributions 
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Multivariate normalization 
• While univariate normalization can adjust the fluorescence 

intensity histograms, it is blind to the correlated interactions 
between the intensities measured from different 
fluorochromes/biomarkers 
– correlations beyond the spectral overlap to be corrected by 

compensation 
• Cell distributions in multicolor flow data are characterized by a 

correlated expression of the corresponding biomarkers 
– correlated expression of the biomarkers is observed as 

correlated fluorescence intensities 
• Simple deviations from the experiment settings can throw the 

univariate intensity normalization procedures off 
• A truly adept normalization procedure must take the full scope 

of the high dimensional flow data into account 
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Multivariate normalization 
• Example: simple rotation 

– Consider two cell distributions 
– Both distributions possess -- and -+ cells 
– But the observed distribution is rotated slightly 

• due to variations in the settings, poor compensation, … 
– The correspondence between the distributions in the scatter plots is clear 
– But the histograms of the first fluorochrome intensities show  

• one peak in the reference cells 
• two peaks in the observed cells to be normalized 
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Summary 
• Normalization of flow data acquired from different sources is 

still an open question 
– different samples, flow cytometers, setting, … 

• Ideally, normalization should cancel out all non-specific and 
irrelevant variations in the fluorescence intensities 
– so that “had the samples of Experiment A been run at the 

settings of the Experiment B, the same type of cells would 
produce statistically identical fluorescence measurements” 

• Multivariate normalization is clearly the ultimate goal, but must 
incorporate some form of recognition of the different cells 
clusters 
– so that matching cell clusters are aligned via the normalization 

• However, the issue may involve combining the compensation 
and data normalization together 
– as effects of compensation can affect the data normalization 
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