Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology

Outline

- Experimental design and fluorescence quantitation
 - Data acquisition ground rules
 - Choosing a fluorochrome
 - Choosing an antibody
 - Negative controls
 - Fluorescence quantitation

Experimental Design for Flow Analysis

- A flow cytometer is a delicate instrument
 - Many parameters determine the acquired data
 - Sample preparation
 - Fluorescence staining
 - Flow analysis
 - The choices of these parameters i.e. the settings – must allow for an adequate analysis of the biological question of interest

→ Everything depends on the biological question of interest

Experimental Design for Flow Analysis

- Decisions need to be made concerning
 - The number of events (cells and other particles) to be acquired
 - The rate of sample acquisition
 - The optimal fluorochromes
 - The monoclonal antibodies
- The options are:
 - Run a preliminary analysis and see how this works out with the first-choice selections
 - Try to predict the outcomes for the various alternatives and take action accordingly

Determining the Number of Events/Cells to be Acquired

- Flow experiments are run to gather information on a specific cell type
- The number of acquired events has to be high enough to provide a sufficient number of cells of interest
 - for viable statistical analysis
- ➔ None of that "… number of events acquired as list mode data" stuff!!
- Example: Rare-event analysis
 - Stem cells are very rare among the blood cells
 - Hematopoietic progenitors
 - Consist about 0.2% of all events
 - 10000 events would contain about 20 cells
 - 100000 events would contain about 200 cells

• ...

Determining the Number of Events/Cells to be Acquired

- Suggested practice:
 - Determine the expected frequency of the cell type of interest
 - The frequency of the rarest, if multiple cell types are of interest
 - Carry on with event acquisition until a sufficient expected number is reached
- Remarks:
 - Cell percentages can differ dramatically based on the condition of the person
 - Age/gender
 - Healthy vs. suffering from a disease
 - Undergoing treatment or medication
 - ...

Determining the Number of Events/Cells to be Acquired

- Alternatively:
 - The experiment can be carried on until a fixed number of the rarest cell type has been acquired
 - A region of acceptance is defined in terms of the measured flow parameters
 - Forward scatter, side scatter, fluorescence staining
 - Acquisition stops when a given number of events in the region have been counted
 - The region of acceptance to define the parameters associated with the rarest cell type of interest

Adjusting the Rate of Sample Acquisition

- Response time of the electronic circuitry imposes a limit on the number of events that can be recorded in a second
 - About 3000 events per second
- Sufficient quantities of rare cells requires recording many millions of events
- \rightarrow May amount to a substantial amount of time
 - Problematic especially if the fluorescent staining is unstable
- A way out is to adjust the event detection threshold to a suitable level
 - Flow cytometers apply event detection
 - By thresholding (on the forward scatter signal)
 - To distinguish signals from actual events against noise
 - Adjusting the threshold slightly lower than the expected value from the cell of interest allows
 - Not activating the device electronics for the other events
 - Running the instrument at a higher rate

- All flow cytometers are equipped with some choice of optical devices
 - Lasers, beam splitters, dichroic mirrors, filters, detectors
- The choice of fluochromes has to abide with the instrument specifications above all else
- Beyond this basic constraint, other factors need to be considered when choosing fluorochromes, especially for high color experiments
 - Excitation/emission specifications
 - Emission peaks cannot overlap in simultaneous use
 - Susceptibility to quenching
 - Quantum efficiency in varying temperature and pH

— ...

(see the long list at <u>http://flowcyt.salk.edu/fluo.html</u>)

Probe	Ex (nm)	Em (nm)	MW
Reactive and conjugated	probes		_
Hydroxycoumarin	325	386	331
Aminocoumarin	350	445	330
Methoxycoumarin	360	410	317
Cascade Blue	(375);401	423	596
Pacific Blue	403	455	406
Pacific Orange	403	551	
Lucifer yellow	425	528	
NBD	466	539	294
R-Phycoerythrin (PE)	480;565	578	240 k
PE-Cy5 conjugates	480;565;650	670	
PE-Cy7 conjugates	480;565;743	767	
Red 613	480;565	613	
PerCP	490	675	
TruRed	490,675	695	
FluorX	494	520	587
Fluorescein	495	519	389
BODIPY-FL	503	512	
TRITC	547	572	444
X-Rhodamine	570	576	548
Lissamine Rhodamine B	570	590	
Texas Red	589	615	625
Allophycocyanin (APC)	650	660	104 k
APC-Cy7 conjugates	650;755	767	

Notes
Succinimidyl ester
Succinimidyl ester
Succinimidyl ester
Hydrazide
Maleimide
NBD-X
aka Cychrome, R670, Tri-Color,
Quantum Red
DE Toyaa Dod
PE-Texas Reu Peridinin chlorobyll protein
(GE Healthcare)
FITC; pH sensitive
TRITC
XRITC
Sulfonyl chloride
PharRed

Source: http://flowcyt.salk.edu/fluo.html

- Fluorescein isothiocyanate (FITC):
 - Excitation/emission at 495 / 521 nm
 - Relatively poorly excited by 488
 nm lasers
 - The first fluorochrome to be conjugated to a protein
 - Available commercially as preconjugated to various monoclonal antibodies
 - Rapidly quenched in low pH environments
 - Long emission spectrum
 - Problematic when used in conjunction with other fluorochromes excited at 488 nm
 - Poor choice for studying weakly expressed antigens

Source: http://web.uvic.ca/ail/techniques/epifluorescence.html

- Phycoerythrin (PE): ۲
 - Composed of a protein part covalently binding chromophores called phycobilins
 - **R-PE**, B-PE
 - Optimally excited by green lasers
 - Extremely photo-stable
 - Possesses high quantum efficiency
 - High signal-to-noise ratio \rightarrow suitable for weakly expressed antigens
 - Very large size
 - Not suitable for intracellular staining applications

Source:

http://www.invitrogen.com/site/us/en/home/support/Product -Technical-Resources/Product-Spectra.801ph75.html

578

240 k

PF

480;565

- Allophycocyanin (APC):
 - Also a phycobiliprotein
 - Photo stable
 - Good quantum efficiency
 - Relatively easy to conjugate to proteins
 - Very bright
 - Suitable for weakly expressed antigens

Source:

http://products.invitrogen.com/ivgn/product/A10688 ?ICID=search-product

- PE and APC tandem dyes:
 - Phycobiliproteins are good donors to be used in tandem dies
 - Peridinin chlorophyll protein PerCP (the only naturally occurring tandem fluorochrome)
 - PE/Texas Red
 - PE/Cy5, APC/Cy5
 - PE/Cy7, APC/Cy7
 - ...
 - As the quantum efficiency is reduced, tandem dyes not suitable for weakly expressed antigens

Selecting the Proper Antibody

- Monoclonal antibodies carry out specific binding to target molecules - antigens
- Different monoclonal antibodies (mAbs) can be specific to the same antigen
- But different mAbs may bind to different regions of the target antigen
 - called epitopes
- This may cause the results to be epitope-specific
 - Sample preparation can affect the affinities of the mAbs to their respective epitopes differently
 - The results acquired from different experiments using mAbs targeting the different epitopes of the same antigen may not be comparable
- This calls for maintaining the same choice of mAbs for all experiments related to the same study

Clusters of Differentiation

- One of the main application areas of multicolor flow cytometry is the differentiation between the different types of leukocytes
- The leukocyte antigens that act as targets for the mAbs conjugated to fluorochromes for fluorescent staining are identified through a protocol called

clusters of differentiation

- Intended for the classification of different mAbs generated by different research groups
- Commonly used as cell markers
 - That associate the cells possessing them with specific functions

Clusters of Differentiation

- The classification is generated by Human Cell Differentiation Molecules organization
 - Periodically organizes the Human Leucocyte Differentiation Antigens Workshop
 - Curates a database of CDs including their characterizations
 - mAbs, epitopes, ...
 - <u>http://www.hcdm.org/</u>
- As the CDs are also proteins, a detailed documentation and list is also provided by the UniProt protein database
 - http://www.uniprot.org/docs/cdlist

Negative Controls

- Detection of positively stained events require a threshold
 - To distinguish positive events from those that exhibit the background fluorescence level of mAb binding
- In theory, this can be accomplished by running the flow cytometer on isotype-matched samples
 - Identical samples but without the fluorochrome
 - To determine the extent of background non-specific binding and autofluorescence
- The usage, however, is problematic:
 - The degree of non-specific binding can differ for the same isotype due to other factors
 - The fluorochrome to protein ratio (F/P ratio) must be matched for the mAb

- ..

• Thus, the use of negative controls require careful preparation

Negative Controls

- Negative controls are feasible for surface-staining
 - In protocols that target antigens on the cell surface
 - Provided that the previously raised issues are addressed adequately
 - the isotype control antibody matching the primary antibody's host species and isotype
 - using the same antibody concentration for both the isotype control and the primary antibody
- Negative controls are not feasible for intracellular staining
 - Staining patterns get affected by the stimulated cells

- The fluorescence intensity measured from each event is related to
 - The number of target molecules present at the cell
 - The number of fluorochromes bound to each target molecule
 - The fluorescence yield associated with each fluorochrome
 - Optimal excitation through the absorption spectrum
 - Optimal detection of the emitted light through the emission spectrum
 - Quantum efficiency
- Generally, the measured fluorescence intensity relates to three different types
 - Relative intensity
 - Semi-quantitative intensity
 - Quantitative intensity

- Relative fluorescence intensity:
 - The median intensity of population A is compared to the median intensity of the population B
 - Median intensities to be computed on log-normal distributions

 Measured intensity values are taken to the natural logarithm
 - The percent relative intensity is calculated via
 100 ×(median intensity A median intensity B) / (median intensity B)
 - assuming the median intensity of the population A if higher
 - Notes:
 - The experiments for the two populations need to be run in succession at the same flow cytometer
 - to remove any undesired systematic changes

- Semi-quantitative fluorescence intensity:
 - To evaluate the fluorescence intensities observed in an experiment, a reference is needed
 - Such a reference can be obtained by latex beads acting as fluorescent standards
 - Typically,
 - A collection of beads contains five or six different populations differing from each other in nominal fluorescence intensity
 - The collection is run through the flow cytometer
 - The median fluorescence intensities of each population is calculated over the histogram
 - Over intensities taken to their natural logarithm
 - The median fluorescence values are linked to the known fluorescent values provided by the bead manufacturer
 - Associating each fluorescence intensity to a specific number of fluorochrome/bead value taken to the natural logarithm
 - This allows some form of standardization
 - Though the fluorochrome/bead specifications can differ between the different manufacturers

- Quantitative fluorescence intensity:
 - Beads coated with known numbers of a specific antigen can be conjugated with the corresponding mAb conjugated to a fluorescent dye
 - This process mirrors the sample preparation for a regular flow experiment
 - Through a similar analysis to the one before, a relationship between the
 - Known numbers of fluorochrome-conjugated mAbs and
 - The observed fluorescence intensity

can be identified

- Notes:
 - The affinity of the binding to the antigen on the bead may not necessarily equal the affinity of the binding to the antigen of the cells of interest
 - The antibody needs to be specific only to one epitope of the target antigen

Summary

- The details for setting up a successful flow experiment are abound
- Choices regarding the various settings have to be made in an informed manner depending on
 - The biological question under investigation
 - The information to be extracted
- Errors in the experimental setup can easily render the acquired data unusable