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Outline 

• Fluorochromes and fluorescence 
– Light emission from materials 
– Fluorescent staining 
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Light emission from materials 
• Incandescence 

– Light emission from hot surfaces due to heat 
• Luminescence 

– Light emission without any regard to heat energy 
• An electron gets raised to a higher energy state 
• As it decays to its ground state, light is raised with the 

corresponding amount of energy/frequency 
– Several distinct types exist: 

• Chemiluminescence (bioluminescence if it occurs in living 
cells) 

– Electron excitation due to a chemical reaction 
• Photoluminescence 

– Electron excitation due to absorbed light 
– Occurs in the form of fluorescence or phosphorescence 
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Light emission from materials 
• Light is emitted at discrete energy levels 

– Light energy is measured by the Planck-Einstein 
equation: 

𝐸 = ℎ × 𝜈 
where  

𝐸 denotes the light energy,  
ℎ denotes Planck’s constant at 6.626 10−34 Joules-
second, and  
𝜈 denotes its frequency 

– In vacuum, this equation becomes 
𝐸 = ℎ ×

𝑐
𝜆
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Light emission from materials 
• Thus, the energy of a single photon at frequency  

– 360nm is 5.5178 10-19 Joules 

– 408nm is 4.8687 10-19 Joules 
– 488nm is 4.0705 10-19 Joules 
– 595nm is 3.3385 10-19 Joules 
– 633nm is 3.1381 10-19 Joules 

• At the interrogation point, a cell is illuminated for 5 
10-5 – 5 10-6 seconds 

 It will receive 1010 – 1011 photons 
– Depending on the cross-sectional area of the cell and 

the beam 
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Light emission from materials 
• Fluorescence is caused by  

– Light absorption knocking an electron off its ground state to a 
state with higher energy 

• By a photon possessing the “correct” energy/frequency 
– When the electron returns to its ground state, the “stored” energy 

is released as another photon with the corresponding 
energy/frequency 

• Remarks: 
– The absorption spectrum of an atom is discrete 

• Peaks at the frequencies/wavelengths leading to absorption 
• For hydrogen, for instance, these peaks are at 102.6, 121.6, 486.9, and 

657.3 nm 
– The situation is more complicated for large molecules 

• A large number of interactions between the different atoms are possible 
• These interactions possess a variety of differing characteristics 
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Energy bands in excitation and 
emission 

Week 2 

A Jablonski diagram 
 
Source: http://www.photobiology.info/Visser-Rolinski.html 



Stoke’s shift 
• The energy of an excited electron is reduced due 

to several non-fluorescent events 
– Vibrational relaxation within electronic excitation 

states 
– Internal conversion between higher excitation states 
– External quenching (i.e. resonance) 
– Intersystem crossing between the singlet energy state 

to the triplet state 
• The net result is a marked reduction of the emitted 

photon energy  
  reduced frequency 
  increased wavelength 

Week 2 



Stoke’s shift 
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Fluorescence intensity 
• The intensity of a fluorochrome is critical in practical 

applications 
– Impacts the detection sensitivity 

• Governed by the expression 
𝐹 = 𝐼𝑜𝜖 𝐶 𝑥𝑥 

where 
– 𝐹 is the intensity of light emitted 
– 𝐼𝑜 is the incident intensity 
– 𝜖 is the molar extinction coefficient (of the fluorochrome) 
– 𝐶  is the molar concentration (of the fluorochrome) 
– 𝑥 is the path length 
– 𝑥 is the quantum yield 
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The quantum yield 

• The quantum yield measures the ratio of 
emitted photons to the absorbed photons 

• Due to various factors contributing to 
energy loss following excitation, this ratio 
is always smaller than 1 
– internal conversion 
– quenching 
– intersystem crossing 
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Remarks 
• In fluorescence, the process of excitation followed 

by emission can be repeated many times 
– In contrast to chemiluminescence where the substrate 

is chemically altered once and for all 
• Fluorescence is eventually lost due to 

photobleaching 
– Especially in high intensity illumination 
– Reactions between the excited fluorochromes and 

nearby oxygen produces singlet oxygen 
– The result is the irreversible oxidation of the 

fluorochromes 
– The phenomenon, however, is much more critical in 

fluorescence microscopy applications 
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Fluorescent staining 
• Fluorescent staining can occur in several ways 

– Some dyes have a natural affinity to certain 
substances 

• Lipophilic dyes accumulate in membranes 
• Reactive dyes bind proteins 
• … 

– Often, fluorochromes are conjugated to ligands that 
bind specifically to their receptors 

• Antibodies 
– Some fluorochromes exhibit different quantum yields 

when they are bound to a particular substance 
• The fluorescence of ethidium bromide increases 100 times 

when bound to DNA  
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Cellular autofluorescence 
• Certain substances in cells have fluorescent properties 

– pryidines  
• NAD, NADH, NADP, NADPH] 

– flavins  
• FAD 
• FMN  

– porphyrins  
• Protoporphyrin 

• Generally, these molecules are: 
– excitable by light sources in the higher frequency ranges (blue) and 
– fluoresce in the lower frequency ranges (green-orange) 

• Autofluorescence in blood leukocytes exhiibits very similar excitation and 
emission spectra 

– But the emission intensity is dramatically lower  weak light emission 
• Fluorescence intensity from neutrophils and eosinophils, however, is higher 

and can interfere with signal at the green frequencies 
– Fluorescein 

• This may require using fluorochromes with emission spectra at higher 
wavelengths (>600nm) 
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Fluorescence resonance energy 
transfer (FRET) 

• When two different fluorochromes are in close proximity, their 
electron bands interact 

• This interaction occurs through coupled oscillator 
mechanisms  resonance 
– The fluorochrome with the lower excitation wavelength/higher 

frequency is called the donor 
– The other is called the acceptor 

• Following excitation, the donor passes on the absorbed 
energy onto the acceptor 
– The donor, thus, does not fluoresce, save for a small amount of 

background fluorescence 
• The acceptor then fluoresces at a higher wavelength/lower 

frequency 
– Due to energy loss to various factors during transfer 
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Fluorescence resonance energy 
transfer (FRET) 

Week 2 

Source: http://www-cellbio.med.unc.edu/facilities/fret.htm 



Tandem dyes 
• In order for FRET to occur, the fluorochromes need to be in 

close proximity to each other 
– 2-3nm in general, but possible up to 100nm 

• This can be achieved on purpose by covalently binding two 
fluorochromes to each other  tandem dyes 

• Remarks: 
– Tandem dyes puts more spectral separation between the 

excitation frequency and the emission frequency 
• At a slight expense of the “quantum efficiency” 

– The excitation-emission properties of the fluorochromes must be 
suitable for FRET to occur 

– Tandem dyes tend to be light sensitive 
• Need to be stored away from light 

– Elimination of the spectral overlap from data is more complicated 
compared to using single fluorochromes 
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Quantum dots 
• Quantum dots (Qdot®; Quantum Dot Corp., Hayward, CA) are 

nanoparticles design specifically for on-demand fluorescent 
staining 
– The emission spectrum is controlled by the size as well as the 

core material 
• Quantum dots  

– can be excited by light over a wide spectrum range up to 
emission 

– possess narrow emission spectra 
– are resistance to degradation effects by incident light 

• As a result, they allow easier simultaneous analysis of 
multiple targets 
– Different quantum dots can be excited by the same source 
– They can be distinguished easily due to their distinct emission 

spectra 
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Conjugation of fluorochromes 

• Fluorescent staining of arbitrary target 
molecules can be achieved by conjugating 
fluorochromes to specific antibodies 
– Antibodies specific to the target molecules 

 Monoclonal antibodies 
• The down side is loss of quantum efficiency 

– Results in weaker signal 
– Can be alleviated by amplification with additional 

fluorochromes 
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Conjugation of fluorochromes 

Week 2 

Source: http://jhc.sagepub.com/content/59/4/382/F1.expansion.html 



Fluorochrome combinations for 
multicolor flow cytometry 

• Multicolor flow cytometry uses a combination of 
several fluorescent dyes  
– Each target molecule of interest is stained with a dedicated 

dye 
– The presence of the fluorochromes are evaluated by the 

instrument through the measured fluorescence intensities  
• measured by an array of sensors equipped with optical filters 

• For best performance, the combination has to be 
optimized with regard to 
– excitation spectra (dictated by the light source) 
– overlap between the emission spectra 
– the agreement between the emission spectra maxima and 

the optical filters 
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Fluorochrome combinations for 
multicolor flow cytometry 

• Combinations suitable for instruments operated by a single laser at 
488nm 
– Argon laser, 15-25mW at 488nm 
– 4 optical filters (EPICS XL): 

• FL1, 525 ± 12.5nm 
• FL2, 575 ± 12.5nm 
• FL3, 620 ± 12.5nm 
• FL4, 675 ± 12.5nm 

– The challenge, then, is to find fluorochromes that 
• can be excited optimally at 488nm and 
• possess sufficiently distinct emission spectra across the 4 optical filter 

wavelengths 
– For instance: 

• Fluorescein is collected by FL1, but leaks to FL2 
• PE is monitored through FL2, but also leaks to FL1 and FL3 

– The artifacts of this spectral overlap must be removed from data before 
analysis  compensation 
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Fluorochrome combinations for 
multicolor flow cytometry 

• Combinations suitable for instruments operated by 
multiple lasers  
– in addition to a laser at 488nm 
– Excitation at multiple wavelengths  

• allows incorporating additional fluorochromes, including the 
ones that are not optimally excited at 488nm 

• increases the number of markers that can be monitored 
simultaneously 

– Additional lasers include 
• Helium-neon at 633nm 
• Helium-cadmium at 325nm 
• Krypton ion at 407-415nm 
• Dye-tunable lasers at the range 560-640nm 
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Fluorochrome combinations for 
multicolor flow cytometry 

• Remarks: 
– It is possible to incorporate additional light sources using 

mercury or xenon arc lamps 
• older technology 

– Variations over a conventional device configuration are possible 
• Different lasers can hit the flow stream at the same spot or at different 

spots 
– Time-synchrony in data acquisition required for the latter 

• The detectors are typically arranged so that  
– the first 4 receive the signals originated by the primary laser at 488nm 
– the successive detectors are assigned to the additional lasers in pairs 

• It is always possible to interchange or alter the optical filters determining 
the spectral characteristics of the fluorescent light collected at each 
detector 

– Generally, it is not possible to make full use of the theoretical 
number of distinctly detectable fluorochromes 
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Remarks 

• Additional constraints limit the use of 
fluorochromes for flow cytometry 
applications  
– Fluorescence intensity 
– Extent of non-specific binding 
– Sensitivity to pH 
– Susceptibility to photobleaching 
– Light sensitivity 
– Molecular size 
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Summary 
• Specific binding of fluorochromes allow identifying the 

presence and amount of target molecules of interest in 
cells 
– When excited by a laser at an appropriate frequency, 

fluorochromes emit light following a distinct spectral 
distribution 

– The strength of the detected light is correlated with the 
amount of target molecule present in the cell 

• In addition to fluorochromes with natural affinity to 
certain substrates, other target molecules can be 
stained by fluorochromes conjugated to antibodies 

• The arrangement of the instrument enforces 
constraints on the selection of the fluorochromes for 
multicolor flow cytometry 
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