Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology

Outline

- Fluorochromes and fluorescence
 - Light emission from materials
 - Fluorescent staining

- Incandescence
 - Light emission from hot surfaces due to heat
- Luminescence
 - Light emission without any regard to heat energy
 - An electron gets raised to a higher energy state
 - As it decays to its ground state, light is raised with the corresponding amount of energy/frequency
 - Several distinct types exist:
 - Chemiluminescence (bioluminescence if it occurs in living cells)
 - Electron excitation due to a chemical reaction
 - Photoluminescence
 - Electron excitation due to absorbed light
 - Occurs in the form of fluorescence or phosphorescence

- Light is emitted at discrete energy levels
 - Light energy is measured by the Planck-Einstein equation:

$$E = h \times v$$

where

E denotes the light energy,

h denotes Planck's constant at 6.626 10^{-34} Joulessecond, and

 ν denotes its frequency

– In vacuum, this equation becomes

$$E = h \times \left(\frac{c}{\lambda}\right)$$

- Thus, the energy of a single photon at frequency
 - 360nm is 5.5178 10⁻¹⁹ Joules
 - 408nm is 4.8687 10⁻¹⁹ Joules
 - 488nm is 4.0705 10⁻¹⁹ Joules
 - 595nm is 3.3385 10⁻¹⁹ Joules
 - 633nm is 3.1381 10⁻¹⁹ Joules
- At the interrogation point, a cell is illuminated for 5 10⁻⁵ – 5 10⁻⁶ seconds
- → It will receive $10^{10} 10^{11}$ photons
 - Depending on the cross-sectional area of the cell and the beam

- Fluorescence is caused by
 - Light absorption knocking an electron off its ground state to a state with higher energy
 - By a photon possessing the "correct" energy/frequency
 - When the electron returns to its ground state, the "stored" energy is released as another photon with the corresponding energy/frequency
- Remarks:
 - The absorption spectrum of an atom is discrete
 - Peaks at the frequencies/wavelengths leading to absorption
 - For hydrogen, for instance, these peaks are at 102.6, 121.6, 486.9, and 657.3 nm
 - The situation is more complicated for large molecules
 - A large number of interactions between the different atoms are possible
 - These interactions possess a variety of differing characteristics

Energy bands in excitation and emission

A Jablonski diagram

Source: http://www.photobiology.info/Visser-Rolinski.html

Stoke's shift

- The energy of an excited electron is reduced due to several non-fluorescent events
 - Vibrational relaxation within electronic excitation states
 - Internal conversion between higher excitation states
 - External quenching (i.e. resonance)
 - Intersystem crossing between the singlet energy state to the triplet state
- The net result is a marked reduction of the emitted photon energy
 - \rightarrow reduced frequency
 - \rightarrow increased wavelength

Stoke's shift

Rhodamin 6G Fluorescence

Fluorescence intensity

- The intensity of a fluorochrome is critical in practical applications
 - Impacts the detection sensitivity
- Governed by the expression

 $F = I_o \epsilon[C] x \phi$

where

- *F* is the intensity of light emitted
- I_o is the incident intensity
- ϵ is the molar extinction coefficient (of the fluorochrome)
- [C] is the molar concentration (of the fluorochrome)
- -x is the path length
- ϕ is the quantum yield

The quantum yield

- The quantum yield measures the ratio of emitted photons to the absorbed photons
- Due to various factors contributing to energy loss following excitation, this ratio is always smaller than 1
 - internal conversion
 - quenching
 - intersystem crossing

Remarks

- In fluorescence, the process of excitation followed by emission can be repeated many times
 - In contrast to chemiluminescence where the substrate is chemically altered once and for all
- Fluorescence is eventually lost due to photobleaching
 - Especially in high intensity illumination
 - Reactions between the excited fluorochromes and nearby oxygen produces singlet oxygen
 - The result is the irreversible oxidation of the fluorochromes
 - The phenomenon, however, is much more critical in fluorescence microscopy applications

Fluorescent staining

- Fluorescent staining can occur in several ways
 - Some dyes have a natural affinity to certain substances
 - Lipophilic dyes accumulate in membranes
 - Reactive dyes bind proteins
 - ...
 - Often, fluorochromes are conjugated to ligands that bind specifically to their receptors
 - Antibodies
 - Some fluorochromes exhibit different quantum yields when they are bound to a particular substance
 - The fluorescence of ethidium bromide increases 100 times when bound to DNA

Cellular autofluorescence

- Certain substances in cells have fluorescent properties
 - pryidines
 - NAD, NADH, NADP, NADPH]
 - flavins
 - FAD
 - FMN
 - porphyrins
 - Protoporphyrin
- Generally, these molecules are:
 - excitable by light sources in the higher frequency ranges (blue) and
 - fluoresce in the lower frequency ranges (green-orange)
- Autofluorescence in blood leukocytes exhibits very similar excitation and emission spectra
 - But the emission intensity is dramatically lower \rightarrow weak light emission
- Fluorescence intensity from neutrophils and eosinophils, however, is higher and can interfere with signal at the green frequencies
 - Fluorescein
- This may require using fluorochromes with emission spectra at higher wavelengths (>600nm)

Fluorescence resonance energy transfer (FRET)

- When two different fluorochromes are in close proximity, their electron bands interact
- This interaction occurs through coupled oscillator mechanisms → resonance
 - The fluorochrome with the lower excitation wavelength/higher frequency is called the donor
 - The other is called the acceptor
- Following excitation, the donor passes on the absorbed energy onto the acceptor
 - The donor, thus, does not fluoresce, save for a small amount of background fluorescence
- The acceptor then fluoresces at a higher wavelength/lower frequency
 - Due to energy loss to various factors during transfer

Fluorescence resonance energy transfer (FRET)

Source: http://www-cellbio.med.unc.edu/facilities/fret.htm

Tandem dyes

- In order for FRET to occur, the fluorochromes need to be in close proximity to each other
 - 2-3nm in general, but possible up to 100nm
- This can be achieved on purpose by covalently binding two fluorochromes to each other → tandem dyes
- Remarks:
 - Tandem dyes puts more spectral separation between the excitation frequency and the emission frequency
 - At a slight expense of the "quantum efficiency"
 - The excitation-emission properties of the fluorochromes must be suitable for FRET to occur
 - Tandem dyes tend to be light sensitive
 - Need to be stored away from light
 - Elimination of the spectral overlap from data is more complicated compared to using single fluorochromes

Quantum dots

- Quantum dots (Qdot®; Quantum Dot Corp., Hayward, CA) are nanoparticles design specifically for on-demand fluorescent staining
 - The emission spectrum is controlled by the size as well as the core material
- Quantum dots
 - can be excited by light over a wide spectrum range up to emission
 - possess narrow emission spectra
 - are resistance to degradation effects by incident light
- As a result, they allow easier simultaneous analysis of multiple targets
 - Different quantum dots can be excited by the same source
 - They can be distinguished easily due to their distinct emission spectra

Conjugation of fluorochromes

 Fluorescent staining of arbitrary target molecules can be achieved by conjugating fluorochromes to specific antibodies

Antibodies specific to the target molecules
→ Monoclonal antibodies

- The down side is loss of quantum efficiency
 - Results in weaker signal
 - Can be alleviated by amplification with additional fluorochromes

Conjugation of fluorochromes

Source: http://jhc.sagepub.com/content/59/4/382/F1.expansion.html

Week 2

- Multicolor flow cytometry uses a combination of several fluorescent dyes
 - Each target molecule of interest is stained with a dedicated dye
 - The presence of the fluorochromes are evaluated by the instrument through the measured fluorescence intensities
 - measured by an array of sensors equipped with optical filters
- For best performance, the combination has to be optimized with regard to
 - excitation spectra (dictated by the light source)
 - overlap between the emission spectra
 - the agreement between the emission spectra maxima and the optical filters

- Combinations suitable for instruments operated by a single laser at 488nm
 - Argon laser, 15-25mW at 488nm
 - 4 optical filters (EPICS XL):
 - FL1, 525 ± 12.5nm
 - FL2, 575 ± 12.5nm
 - FL3, 620 ± 12.5nm
 - FL4, 675 ± 12.5nm
 - The challenge, then, is to find fluorochromes that
 - can be excited optimally at 488nm and
 - possess sufficiently distinct emission spectra across the 4 optical filter wavelengths
 - For instance:
 - Fluorescein is collected by FL1, but leaks to FL2
 - PE is monitored through FL2, but also leaks to FL1 and FL3
 - The artifacts of this spectral overlap must be removed from data before analysis \rightarrow compensation

- Combinations suitable for instruments operated by multiple lasers
 - in addition to a laser at 488nm
 - Excitation at multiple wavelengths
 - allows incorporating additional fluorochromes, including the ones that are not optimally excited at 488nm
 - increases the number of markers that can be monitored simultaneously
 - Additional lasers include
 - Helium-neon at 633nm
 - Helium-cadmium at 325nm
 - Krypton ion at 407-415nm
 - Dye-tunable lasers at the range 560-640nm

- Remarks:
 - It is possible to incorporate additional light sources using mercury or xenon arc lamps
 - older technology
 - Variations over a conventional device configuration are possible
 - Different lasers can hit the flow stream at the same spot or at different spots
 - Time-synchrony in data acquisition required for the latter
 - The detectors are typically arranged so that
 - the first 4 receive the signals originated by the primary laser at 488nm
 - the successive detectors are assigned to the additional lasers in pairs
 - It is always possible to interchange or alter the optical filters determining the spectral characteristics of the fluorescent light collected at each detector
 - Generally, it is not possible to make full use of the theoretical number of distinctly detectable fluorochromes

Remarks

- Additional constraints limit the use of fluorochromes for flow cytometry applications
 - Fluorescence intensity
 - Extent of non-specific binding
 - Sensitivity to pH
 - Susceptibility to photobleaching
 - Light sensitivity
 - Molecular size

Summary

- Specific binding of fluorochromes allow identifying the presence and amount of target molecules of interest in cells
 - When excited by a laser at an appropriate frequency, fluorochromes emit light following a distinct spectral distribution
 - The strength of the detected light is correlated with the amount of target molecule present in the cell
- In addition to fluorochromes with natural affinity to certain substrates, other target molecules can be stained by fluorochromes conjugated to antibodies
- The arrangement of the instrument enforces constraints on the selection of the fluorochromes for multicolor flow cytometry