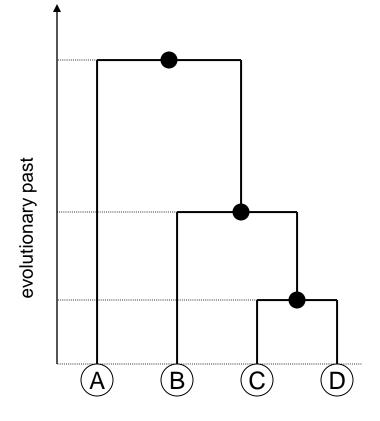
EE550 Computational Biology

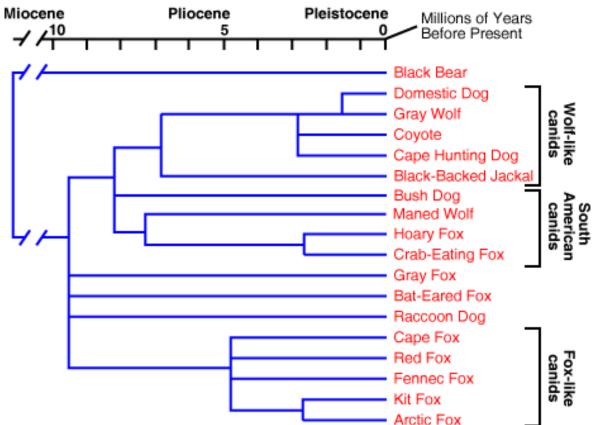
Week 8 Course Notes

Instructor: Bilge Karaçalı, PhD

Topics


- Inter-species evolutionary relationships via phylogenetic trees
 - Trees
 - Rooted trees
 - Unrooted trees
 - Tree topology
 - Sequences
 - Distance metrics
 - Clustering schemes

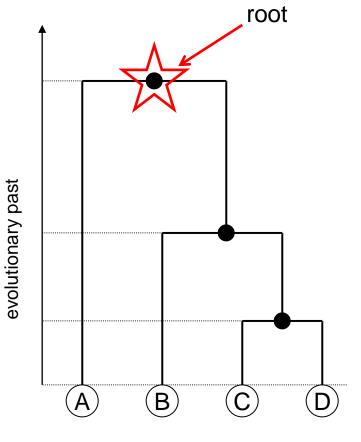
Phylogenetic Trees


- From molecular sequences to evolutionary relationships
 - Molecular sequences express how close or far apart different species (taxa) are in terms of accumulated differences
 - Mutations in terms of substitutions and indels
 - Organisms with more similar sequences can be thought of descending from a more recent common ancestor
 - The evaluation of the ancestral history between different species is studied by molecular phylogenetics
 - Shared common ancestors: how far ago and between which species (taxa)?

Phylogenetic Trees

- Trees provide the ideal scheme for representing the evolutionary relationships between different species
 - The species (taxa) at the present time start out as the leaves/nodes
 - In the time past, leaves are merged into branches/nodes indicating common ancestry
 - Leaves with more similar sequences are merged first
 - The branches/nodes are merged into more ancient species (taxa)

- Phylogenetic tree of dogs (by Wayne et al., University of California)
 - Several parameters taken into account
 - characteristics of skulls, skeletons and chromosomes,
 - genetic analysis of mitochondrial DNA,
 - non-coding and coding nuclear DNA,
 - protein analysis
 - Corroboration with fossil evidence was also sought for validation


Source:

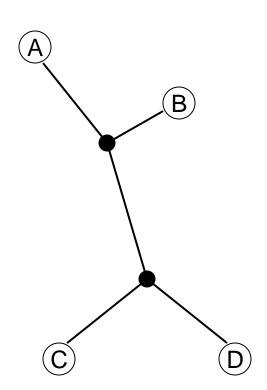
http://www.nbii.gov/portal/community/Communities/Ecological_Topics/Genetic_ Diversity/Taxonomy,_Phylogenetics_&_Systematics/

Rooted Phylogenetic Trees

- The root of a phylogenetic tree (if it exists) indicates the original species that is ancestral to all
- Rooted phylogenetic trees thus have:
 - A root where all studied species have descended from
 - A graded time axis indicating the evolutionary time it took for each species to differentiate from the common origin
- Rooted phylogenetic trees provide information on
 - when a given pair of species had a common ancestor
 - which pair of species diverged earlier or later than another pair
 - how much evolutionary time has passed between the bifurcations

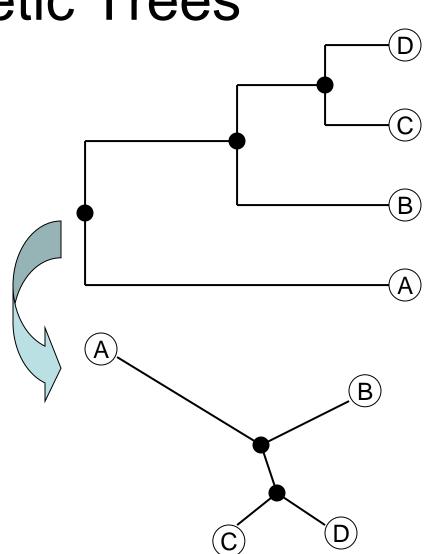
Rooted Phylogenetic Trees

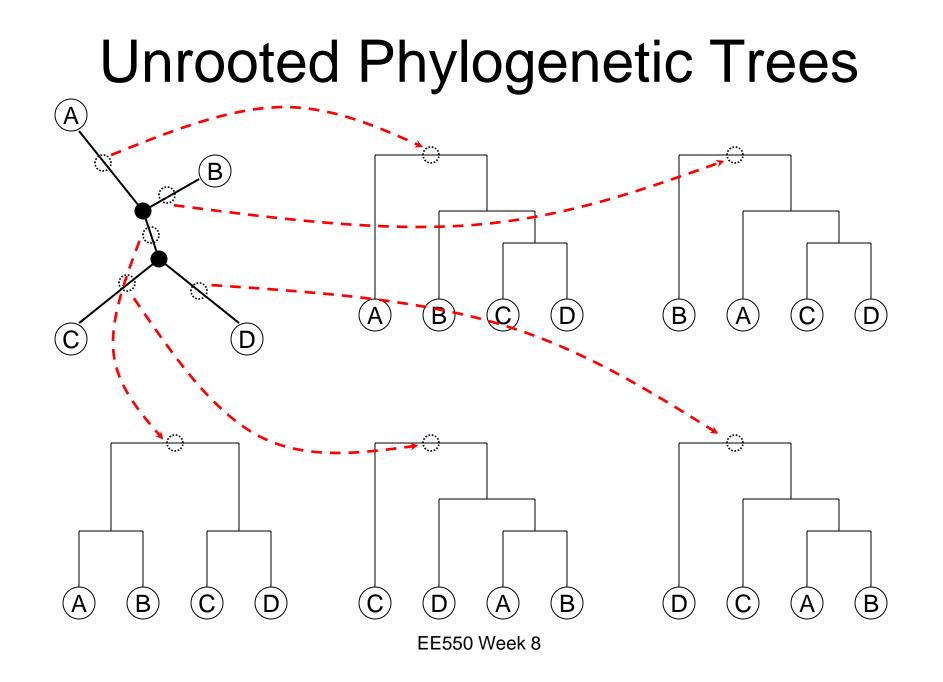
• Notes:


- Most tree construction algorithms produce rooted trees by default
- Just because a tree is shown like it has a root does not make it a rooted tree
 - The fine print under the figure must be read carefully!!

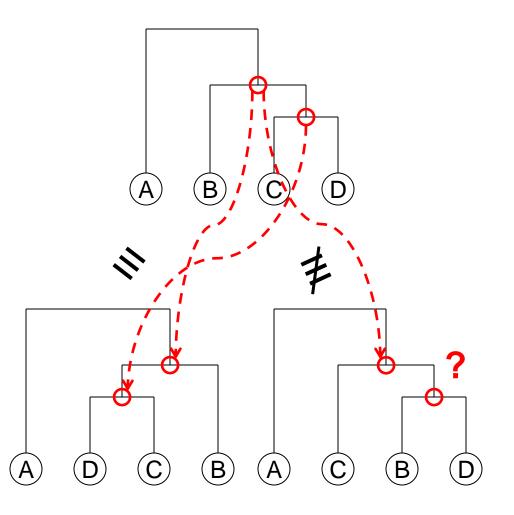
Unrooted Phylogenetic Trees

- It is not always possible to deduce a temporal order of events from the molecular data
 - The mutation rates may vary from species to species
- In such cases, the direction of changes are questionable among ancestral species
- Without a clear understanding of which species are descending from which ancestor, it is not possible/feasible/realistic to establish a common ancestral species
- ➔ Unrooted trees


Unrooted Phylogenetic Trees


- The species (taxa) at the present time are at the outer rims of the tree
 - Leaves
- The ancestral species (taxa) are located inwards
- The hypothetical root is possibly somewhere around the ancestral species
 - Usually on a link between a pair of ancestral species (taxa)
 - outgroups
 - But the exact location is unknown

Unrooted Phylogenetic Trees


- Rooted trees can easily be converted into unrooted trees
 - Simply ignore the root and spread out the leaves
- Unrooted trees cannot be converted to rooted trees so easily
 - One would have to identify the root
 - Identifying the root of an unrooted tree requires a priori information
 - This can be addressed by including an outgroup
 - sufficiently close to the species of interest
 - sufficiently far so that the root would be on its link

Tree Topology

- The topology of a phylogenetic tree indicates the set bifurcations observed among ancestral species (taxa)
 - Roughly the "shape" of a tree
- When one or more ancestral relationships change, one obtains a different phylogenetic tree
 - The topology of the tree is different
- Note:
 - The actual drawing of the tree may change without affecting the topology
 - One obtains a different tree only when the ancestral relationships are altered

Sequences

- Evolutionary distances are inferred from sequence differences
 - Nucleic acid sequences
 - Amino acid sequences
- Constructing phylogenetic trees over a set of species (taxa) requires sets of homologue sequences – sequences with common ancestry
 - Homologue genes
 - Homologue proteins
- Phylogenetic trees can be constructed on any homologue set
 - The results obtained on different homologue sets can vary!!
- A selection must be made with regard to the biological question at hand
 - Studying the evolution of a particular gene of interest
 - Studying the evolution of gene families
 - With lots of sequences available from many species (taxa)

Sequences – Selection

- Selection of sequences are also important for practical purposes
 - If the sequences are too similar, the study will lack reliable evolutionary differentiation information
 - High similarity between sequences is an indication that the evolutionary process has not had adequate time to induce significant sequence alterations
 - A slow mutation rate and/or a short time period
 - This is contrary to the goal of producing a phylogeny
 - If the sequences are too distinct, the errors in evolutionary distances will take over
 - The standard deviation of the error in evolutionary distance estimation increases with the extent of sequence differences
 - This will cause dramatic changes in the resulting tree topology
 - Large differences between sequences are also suggestive of the lack of necessary homology among the sequences

Sequences – Alignment

- Phylogenetic tree construction is guided by multiple sequence alignment
 - Multiple sequence alignment algorithms have a set of innate choices
 - Similarity scores between aligned nucleotides or amino acids
 - Gap penalties
 - Sequence to cluster alignment procedures
 - Variations in these choices produces different multiple alignments
 - It is imperative that the sequence alignments obtained at the beginning of tree construction are valid and reasonable
 - Manual verification likely to be worth the effort, if at all feasible
 - Choice of the set of sequences upon which to construct a phylogeny directly determines how reliable the alignments will be
 - Highly variable sequence segments are not suitable choices
 - High variability implies high noise and little phylogeny information

Distance Metrics

- Multiple sequence alignment determines
 - the locations and extents of gaps to be inserted into each sequence in the set
 - so that all sequences are jointly aligned
- The resulting alignment must then be used to compute the evolutionary distances between the sequences
 - Multiple sequence alignment algorithms make use of a substitution model to determine the rates at which they will evaluate the matches and the mismatches
 - Evolutionary model in nucleic acid sequences
 - Jukes-Cantor
 - Kimura's two-parameter model
 - Substitution matrices in amino acid sequences
 - PAM
 - BLOSUM
 - This substitution model determines the relationship between sequence differences and evolutionary distances

Distance Matrices

• Let *S* be a set of *K* homologous sequences, aligned to serve as the basis for phylogenetic tree construction

$$S = \{\boldsymbol{S}_1, \boldsymbol{S}_2, \dots, \boldsymbol{S}_K\}$$

- $S_k(i) \in \{A, G, T, C, \}$ for k = 1, 2, ..., K and i = 1, 2, ..., N (for nucleic acid sequences)
- $S_k(i) \in \{A, R, N, \dots, C, _\}$ for $k = 1, 2, \dots, K$ and $i = 1, 2, \dots, N$ (for amino acid sequences)
 - Multiple sequence alignment produces same length aligned sequences, where the common length (after the insertion of gaps) is denoted by *N*
- Let $d_{k,m}$ denote the evolutionary distance between the k'th and the m'th sequence
 - The computation of $d_{k,m}$ depends on the underlying substitution model
 - J-K model: $d_{k,m} = -\frac{3}{4}\log\left(1-\frac{3}{4}D_{k,m}\right)$, where $D_{k,m}$ denotes the substitution ratio
 - Evolutionary distances are computed between the sequences typically by ignoring the gaps
- The resulting distance matrix $d = [d_{k,m}]$ for k, m = 1, 2, ..., K is then to be used to derive the phylogenetic tree

Clustering Schemes

• Constructing a phylogenetic tree requires grouping the most similar species together into clusters earlier than the others

→ hierarchical clustering

- Grouping species is easy:
 - Find the ones with the smallest evolutionary distance
 - Make a group containing the two closest species
- Grouping clusters is not so easy:
 - Requires defining a distance for clusters

- Once a cluster distance is decided upon, a general strategy goes as follows:
 - Start with each species in a distinct cluster
 - Find the most similar pair of clusters among the available set
 - Merge the two clusters into a larger cluster
 - Update the distance matrix by
 - (i) replacing the original two clusters with the newly formed cluster and
 - (ii) updating the cluster-to-cluster distances involving the new cluster
 - The size of the distance matrix is reduced by one
 - Repeat until only one cluster remains

Cluster Distances

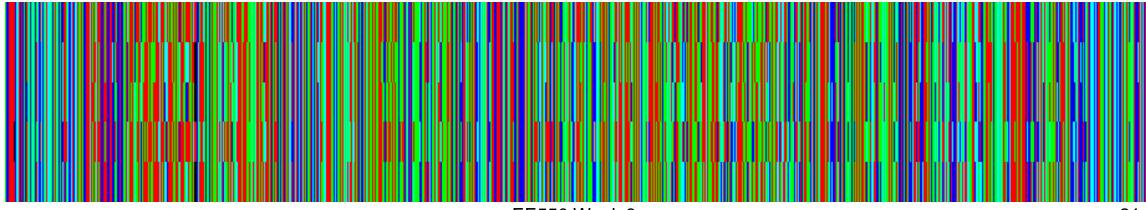
- Clusters are collections of sequences
- Distances between clusters can therefore be defined using the pairwise distances between their elements
- Let C_i and C_j be two clusters of size m and n respectively

-
$$C_i = \{A_1, A_2, \dots, A_m\}$$

- $C_j = \{ B_1, B_2, ..., B_n \}$
- Let also d(A, B) denote the inferred evolutionary distance between any two aligned sequences A and B
- Consider the following quantities:

$$- \rho_{\min}(C_i, C_j) = \min_{k, \ell} d(A_k, B_\ell)$$

$$- \rho_{\max}(C_i, C_j) = \max_{k, \ell} d(A_k, B_\ell)$$


$$- \rho_{\max}(C_i, C_j) = \frac{1}{mn} \sum_{k, \ell} d(A_k, B_\ell)$$
 (UPGMA)

 These quantities all satisfy the distance properties and can therefore be used to determine the distances between clusters

- Phylogeny of blue tongue viruses
 - A set of 5 sequences obtained from the NCBI Nucleotide database
 - Bluetongue virus isolate BTV-9/RSAvvv1/09 VP6 protein gene, complete cds
 - Bluetongue virus isolate BTV-9/BOS2002/02 VP6 protein gene, complete cds
 - Bluetongue virus isolate BTV-4/RSAvvv3/04 VP6 protein gene, complete cds
 - Bluetongue virus isolate BTV-4/ARG2002/01 VP6 protein gene, complete cds
 - Bluetongue virus isolate BTV-1/GRE2001/01 VP6 protein gene, complete cds
 - Multiple alignment carried out using the Clustal Omega software package
 - Clustal Omega webserver at the EMBL website
 - Evolutionary distances between sequences identified using the Kimura two-parameter model
 - Phylogenetic tree constructed using the minimum distance metric

• Multiple sequence alignment

Seq/	A Name	Len(nt)	SeqB	Name	Len(nt)	Score
1	Gene_34	1052	2	Gene_35	1049	79
1	Gene_34	1052	3	Gene_36	1049	78
1	Gene_34	1052	4	Gene_37	1051	94
1	Gene_34	1052	5	Gene_38	1049	78
2	Gene_35	1049	3	Gene_36	1049	91
2	Gene_35	1049	4	Gene_37	1051	78
2	Gene_35	1049	5	Gene_38	1049	92
3	Gene_36	1049	4	Gene_37	1051	78
3	Gene_36	1049	5	Gene_38	1049	94
4	Gene_37	1051	5	Gene_38	1049	77

===

• Pairwise distances:

	S ₁	S ₂	S ₃	S ₄	S ₅
S ₁	0	0.2749	0.2828	0.0593	0.2824
S ₂	0.2749	0	0.1015	0.2783	0.0901
S ₃	0.2828	0.1015	0	0.2679	0.0615
S ₄	0.0593	0.2783	0.2679	0	0.2766
S ₅	0.2824	0.0901	0.0615	0.2766	0

• These distances have been computed using Kimura's two-parameter model with $d = -\frac{1}{2}\log(1 - 2S - V) - \frac{1}{4}\log(1 - 2V)$

where

- *S* is the average substitutions between (A-G) or (T-C)
- *V* is the average substitutions between purines and pyrimidines

- Clustering:
 - Hierarchical clustering using the minimum distance definition for cluster distances
- Step 1:
 - The minimum distance is between S_1 and S_4
 - S_1 and S_4 are merged into a new cluster $S_{1,4}$
 - Its distances to the remaining clusters (S_2 , S_3 , and S_5) are computed using the minimum distance definition
 - $\rho(S_{1,4}, S_2) = \min(0.2749, 0.2783) = 0.2749$
 - $\rho(S_{1,4}, S_3) = \min(0.2828, 0.2679) = 0.2679$
 - $\rho(S_{1,4}, S_5) = \min(0.2824, 0.2766) = 0.2766$

• Resulting distance matrix at the end of Step 1:

	S _{1,4}	S ₂	S ₃	S ₅
S _{1,4}	0	0.2749	0.2679	0.2766
S ₂	0.2749	0	0.1015	0.0901
S ₃	0.2679	0.1015	0	0.0615
S ₅	0.2766	0.0901	0.0615	0

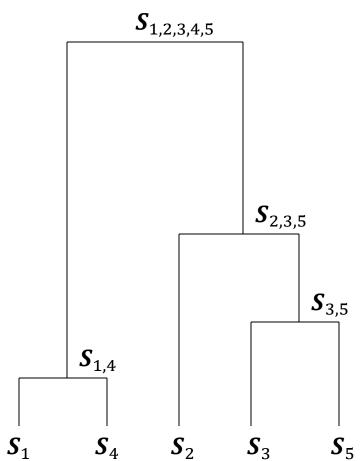
- Step 2:
 - –The minimum distance is between S_3 and S_5
 - $-S_3$ and S_5 are merged into a new cluster $S_{3,5}$
 - Its distances to the remaining clusters ($S_{1,4}$, S_2) are computed using the minimum distance definition
 - $\rho(\mathbf{S}_{3,5}, \mathbf{S}_{1,4}) = \min(0.2679, 0.2766) = 0.2679$
 - $\rho(\mathbf{S}_{3,5}, \mathbf{S}_2) = \min(0.1015, 0.0901) = 0.0901$

• Resulting distance matrix at the end of Step 2:

	S _{1,4}	S ₂	S _{3,5}
S _{1,4}	0	0.2749	0.2679
S ₂	0.2749	0	0.0901

S_{3,5} 0.2679 0.0901 0

• Step 3:


- The minimum distance is between S_2 and $S_{3,5}$
- S_2 and $S_{3,5}$ are merged into a new cluster $S_{2,3,5}$
- Its distance to the remaining cluster ($S_{1,4}$) is computed using the minimum distance definition

• $\rho(\mathbf{S}_{2,3,5}, \mathbf{S}_{1,4}) = \min(0.2749, 0.2679) = 0.2679$

 Resulting distance matrix at the end of Step 3:

	$S_{1,4}$ $S_{2,3}$	9,5
S _{1,4}	0	0.2679
S _{2,3,5}	0.2679	0

- The merger of the remaining two clusters are inevitable
 - and forms the common ancestor of all five species'
- Note that this is a rooted tree!!

Remarks

- The tree construction procedure determines the order in which similar species and clusters are merged together
- However, the evolutionary time between successive mergers are not well defined
 - The distances are not necessarily additive
 - At the time of estimation from the sequence distances using a substitution model
 - The minimum distance method does not seek the additive nature of evolutionary distances
- Clearly, different measures of cluster distance are likely to produce different trees
 - Which one is best for a particular application is subject for debate

Summary

- Phylogenetic trees express the evolutionary relationships between a set of species (taxa)
- The relationship is inferred from the similarities and differences between homologue sequences
- The inferred relationships are subject to influences from
 - The choice of homologue sequences
 - The multiple alignment method used
 - The method for converting sequences differences into evolutionary distances
 - The cluster distance definitions for assessing the similarities between clusters