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Topics

• Searching sequence databases

– Gene and protein identification by sequence similarity

• Sequence database queries

• Performance evaluation

– Sequence alignment statistics
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Sequence Similarity

• Sequence similarity suggests common origin and similar function
– Organisms start with a common ancestor and evolve along different paths

• Each organism acquires different sets of mutations

• Common ancestry is established by the persisting sequence traits

– As the sequences of genes diverge, the sequences of the corresponding proteins diverge 
as well

• The divergence of the proteins implies selective control on the evolutionary mechanism
– Mutations that reduce the fitness are strongly selected against

• This control ensures that the necessary functionality of the protein is preserved all through the 
evolutionary time-frame

• Comparing a new sequence to a database of known sequences allows
– Estimating its evolutionary relationships to known molecules of known organisms

– Predicting its function (as well as protein structure)
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Sequence Databases

• Several online databases allow access to large collections of genetic and 
protein sequences
– Genes:

• EMBL

• GenBank

• DDBJ

• …

– Proteins:

• PIR

• MIPS

• UniProt

• NCBI Protein Database

• GenPept

• …
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Sequence Database Queries

• Task: Given a sequence fragment
rppqpawmfgdphittldgvsytfnglgdfllvgaqdgnssfllqgrtaqtgsaqatnfi
afaaqyrssslgpvtvqwllephdairvlldnqtvtfqpdhedgggqetfnatgvllsrn
gsevsasfdgwatvsvialsnilhasaslppeyqnrtegllgvwnnnpeddfrmpngsti
– Query the UniProt sequence database for proteins with similar sequences

– Evaluate the list of proteins with highest similarity scores
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Sequence Database Queries
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Sequence Database Queries

• UniProt sequence query:
– The given sequence fragment is aligned to all sequences in the database

• Pairwise sequence alignments by BLAST

– The database entries with the highest alignment scores are returned in 
descending order

• The most similar sequence is listed first

• The similarity score monotonically decreases down the list

– Identification of sequence properties, function, and evolutionary 
relationships is carried out based on the set of most similar proteins

Q: How similar does a protein need to be so that it can safely be 
recognized?
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Sequence Database Queries

• UniProt sequence query (continued):
– Several fields for every identified protein are returned

• Familiar fields:
– Accession number
– Entry name
– Protein name
– Organism

• Novel fields:
– Local alignment
– Identity
– Positives
– Score
– E-value
– Query length
– Match length



Sequence Database Queries

• UniProt sequence query (continued):
– Local alignment

• Provides a graphical display of how the given sequence fragment was 
aligned with that of the entry

• The gaps embedded into the sequence fragment are not shown
– Does not mean that there have not been any gaps

• Similarity is represented by a color code
– Bright red: fully of nearly identical

– Brown-green: quite similar

– Blue: not similar at all
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Sequence Database Queries

• UniProt sequence query (continued):
– Identity

• Varies between 0 and 100

• Denotes the percentage of amino acids that are identical in the overlap
– The overlap constitutes the aligned regions of both sequences

» The query sequence

» The database sequence

– A score of a 100 implies all amino acids in the overlap are the same

– On the other hand, a score near 0 implies none of the amino acids match

» Very hard to see (Q: Why?)

• The gaps and substitutions are treated the same

– Positives
• Percentage of sites for which the similarity score is positive

– log-odds similarity



Sequence Database Queries

• UniProt sequence query 

(continued):

– Score

• Denotes the alignment score; 

maximized by the BLAST algorithm 

between the query sequence and 

the database sequence

• Uses the log-odds scoring matrix 

for amino acid replacements and 

the specified gap penalty function

– The relative likelihood is measured by

𝑅𝐿 = log 𝑅 𝑨,𝑩 =

𝑖

𝑆𝑨𝑖,𝑩𝑖

where S is the specified scoring matrix 
(e.g., PAM250, BLOSUM80, …)

– The overall gap penalty is measured by 

𝐺𝑃 =

𝑗

𝑓 ℓ𝑗

where 𝑗 indexes the gaps with lengths ℓ𝑗, 
and 𝑓 denotes the chosen gap penalty 
function (e.g., linear, affine, …) 

– The overall alignment score is then 

Score = 𝑅𝐿 − 𝐺𝑃
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Sequence Database Queries

• UniProt sequence query (continued):
– E value

• Denotes the number of sequences with which the observed alignment quality can be observed 
by pure chance

– A random sequence of comparable length and composition is provided to the search engine over the 
same database

– The distribution of alignment scores are observed

Q: How many sequences in the database will be aligned to a similar random sequence with a score no 
less than the observed score?

A: E value!!

• Requires a model of the probability distribution of alignment scores with all sequences in the 
database

• Takes values ranging from nearly 0 to tens or hundreds
– Low values (significantly smaller than 1) suggest that the alignment could not have been observed by 

chance so that there must be something worthy of attention

– High values (around 1 or higher) suggest whatever the observed relationship, it might very well be due 
to chance
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Sequence Database Queries

• UniProt sequence query (continued):

– E value (continued)
• Consider the sequence

PAIRWISEALIGNMENTTOOLSHAVEVARIOUSINHERENTISSUESNOTTHE
LEASTTHATDIFFERENTPROGRAMSOFTENRETURNDIFFERENTRESULT
S

• BLAST on this sequence in the UniProt database returns several hits 
with different E values

• The high E values attest to the poor quality of the alignments

• This gives us grounds to reject the alignments



Sequence Database Queries
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Performance Evaluation of Query Algorithms

• Protein sequence databases are queried primarily to establish 
functional familial relationships
– A given sequence is compared to those in a sequence database

– The database sequences with the highest alignment similarity to the sequence in 
question are listed in a descending order

– The queried sequence is then presumed to belong to the functional family 
that is most represented among the statistically significant query hits

• A query hit is a database sequence with a significantly high sequence alignment score
– Very low E value

• The success of the querying algorithm is measured in its ability to 
group 
– the correct familial proteins at the top of the hit list with high statistical 

significance and 

– everything else in the bottom with no statistical significance
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Performance Evaluation of Query Algorithms

• Performance evaluation is critical to predict the success rates of alternative 
methods
– Alternative alignment methods

– Different parameter choices for the chosen alignment method

• Ideally, performance evaluation would be conducted on unseen-before data 
(i.e. real life testing)
– The operation would be carried out for a newly sequenced protein

• Alignment against a database

• Ranking of the statistically significant hits in terms of the alignment scores

• Prediction of the familial relationships

• Testing of these predictions in conventional wet-lab experiments

– The average performance for several such proteins would estimate the performance of 
the employed algorithms
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Performance Evaluation of Query Algorithms

• But the ideal procedure is neither feasible nor viable:
– Requiring the whole wet-lab verification process for each unseen-before sequence for performance 

evaluation is extremely costly
– Using hard-collected data on unseen-before proteins to test the performance of prediction 

algorithms defeats their purpose
• The whole reason for employing such algorithms is to be able to predict the functional and familial 

properties of newly-sequenced proteins without the wet-lab procedures

• Instead, cross-validation techniques from the statistical learning literature are used for 
performance evaluation
– A functional protein group is identified for the purpose

• Transcription factors
• Antigen-binding proteins
• Kinases
• …

– The prediction procedure is carried out for a small subset of the protein group by removing them 
from the working database

– The recognition performance is evaluated in terms of how many members of the protein group in 
consideration are identified beyond a statistical significance threshold
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Performance Evaluation of Query Algorithms

• Procedure:
– A randomly selected member of a protein group of interest is queried 

against a database that consists of
• the sequences of the remaining members of the protein group, 𝐶1, and
• the sequences of all the other proteins in the original database, 𝐶0

– The relevant statistics (alignment score, identity, E value, …) are 
compared against varying threshold levels for detection

– The number of sequences in 𝐶1 and 𝐶0 above or below a given detection 
threshold are counted

• The proteins with statistics satisfying the threshold are “detected”
• Conversely, the proteins with statistics failing to satisfy the threshold are “not 

detected”

– Performance of the prediction algorithm is measured in terms of the 
respective fractions of 𝐶1 and 𝐶0 that are “detected,” respectively, correctly 
and incorrectly



Performance Evaluation of Query 

Algorithms
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Performance Evaluation of Query Algorithms

• The values of the statistic observed on 𝐶0
and 𝐶1 constitute the distributions 𝑝0 and 
𝑝1

• The integrals of 𝑝0 and 𝑝1 computed over 
the intervals −∞, 𝑇 and 𝑇,∞ determine 
the basic performance markers

– True negatives: −∞
𝑇
𝑝0 𝑡 𝑑𝑡

– False positives: 𝑇
∞
𝑝0 𝑡 𝑑𝑡

– False negatives: −∞
𝑇
𝑝1 𝑡 𝑑𝑡

– True positives: 𝑇
∞
𝑝1 𝑡 𝑑𝑡

• In actual applications, the distributions are 
replaced by histograms
– TN, FP, FN, and TP become protein counts 

and not fractions
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Performance Evaluation of Query Algorithms

• Higher order performance measures are computed from the basic 
quantities of TN, FP, FN, and TP
– Detection rate = TP/(TP+FN) {sensitivity}

– False detection rate = FP/(TN+FP) {false alarm rate}

– Specificity = TP/(TP+FP) {selectivity}

– F-measure = 2∙sensitivity∙specificity/(sensitivity+specificity)

• The variation of the detection rate with respect to the false alarm 
rate is called 

the receiver operating characteristics
of the detection rule

– The area under this curve provides an average measure of performance 
irrespective of a threshold
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Performance Evaluation of Query Algorithms
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More on Alignment Statistics

• Given any sequence fragment, querying it against a sequence database will 
always return a ranked list of entries
– The ranking is typically returned in the order of decreasing alignment score starting from 

the entry with the highest score

• The real question is whether any of the obtained alignments carries any 
significance at all
– Databases are queried in order to establish functional and familial relationships between 

the sequence at hand to the sequences in the database

– The results obtained from the query are believable only if they are supported by a 
statistical significance analysis

– Otherwise, the obtained good scores may very well have been accidental, and hence, 
meaningless

• The statistical significance of the results is determined against random 
queries of comparable nature
– The observed results are significant if the probability of observing them is *really* low
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Pairwise Alignment Statistics

• Consider the pairwise alignment of two nucleotide sequences of length 𝑁
– The probability p that a given site is occupied by the same nucleotide in both sequences by pure 

chance is
𝑝 = 𝜋A

2 + 𝜋T
2 + 𝜋G

2 + 𝜋C
2

where 𝜋𝐴, 𝜋𝑇, 𝜋𝐺, and 𝜋𝐶 denote the prior probabilities of the corresponding nucleotides

– The expected number of sites occupied by the same nucleotide, whatever that nucleotide may be, 
is then 𝑝 ⋅ 𝑁

• Note, however, that the probability of having all sites in two sequences of length 𝑁 match is 𝑝𝑁, assuming 
independence of sites

– The number 𝑚 of sites occupied by the same nucleotides in both sequences by pure chance 
follows a binomial distribution with the probability mass function

𝑝𝐵 𝑚 =
𝑁
𝑚

𝑝𝑚 1 − 𝑝 𝑁−𝑚

– The probability 𝑃 of observing greater than or equal to 𝑚 matching sites is 

𝑃 = 

𝑚′=𝑚

𝑁

𝑝𝐵 𝑚′

– The smaller the 𝑃 value, the less likely to observe 𝑚 matching sites by pure chance
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Pairwise Alignment Statistics

• Example:
– Let

• 𝜋A = 𝜋T = 𝜋G = 𝜋C = 1/4

• 𝑁 = 100

– The probability distribution then 
becomes

𝑝𝐵 𝑚 =
100
𝑚

0.25 𝑚 0.75 100−𝑚

– The 𝑃 values associated with observing 
various 𝑚 numbers of matching sites 
can be obtained as

• ȁ𝑃 𝑚=25 = 5.38 ⋅ 10−1

• ȁ𝑃 𝑚=35 = 1.64 ⋅ 10−2

• ȁ𝑃 𝑚=45 = 1.09 ⋅ 10−5
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Query Alignment Statistics

• When a whole set of sequence alignments are evaluated for statistical 
significance, the probability structure of the experiment changes
– Instead of one observation, we will need to sort out several observations 

simultaneously

• The question then becomes whether any of the observed similarity 
scores are higher than the expected maximum in a random case
– In the random case, a comparable but random sequence is queried against the 

dataset
– If the distribution of the resulting alignment scores can be obtained, then the 

distribution of the maximal scores can be modeled as well
– The expected maximum can then be obtained as the mean of the distribution of 

the maximal scores
– This maximal distribution can also be used to compute the 𝑃 values associated 

with observing a certain maximal score in chance experiments
→ Extreme Value Distributions
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Extreme Value Distributions

• Extreme value distributions govern the statistical behavior of extreme 
events
– Maxima

– Minima

• Note that extreme events are also random variables
– Let 𝑋 be a random variable, and 𝑋𝑖 , 𝑖 = 1,… , 𝑛, denote a random collection of 𝑛

independent and identically distributed random variables with the same 
distribution as 𝑋

– Define 𝑀 as the maximum of the collection 𝑋𝑖
𝑀 = max

𝑖
𝑋𝑖

– Note that 
• 𝑀 is a random variable as well, and

• the distribution of 𝑀 is an extreme value distribution
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Extreme Value Distributions

• The probability distribution of the maxima

𝑀 = max
𝑖

𝑋𝑖

⇒ 𝐹𝑀 𝑥 = Pr 𝑀 ≤ 𝑥

= Pr 𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥,… , 𝑋𝑛 ≤ 𝑥

= Pr 𝑋1 ≤ 𝑥 ⋅ Pr 𝑋2 ≤ 𝑥 ⋅ … ⋅ Pr 𝑋𝑛 ≤ 𝑥

= Pr 𝑋 ≤ 𝑥 𝑛

= 𝐹𝑋 𝑥
𝑛

⇒ 𝑓𝑀 𝑥 =
𝑑

𝑑𝑥
𝐹𝑀 𝑥 = 𝑛 𝐹𝑋 𝑥

𝑛−1
𝑓𝑋 𝑥

– For discrete distributions, increments at integer 𝑥 produce the corresponding 

probability mass functions
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Extreme Value Distributions

• Consider the case where a nucleotide sequence of length 𝑁 is queried in a 
database of 𝑛 sequences, each of length 𝑁

• The objective is to compute the extreme value distribution governing the 
maximum alignment score between the dataset sequences and a random 
sequence of length 𝑁

• Procedure:
– Given the binomial probability distribution of the pairwise match score 𝑓(𝑚) for 

sequence pairs of length 𝑁
– Compute the associated cumulative distribution function 𝐹(𝑚)
– Compute the cumulative distribution function 𝐹𝑀(𝑚) by 

𝐹𝑀 𝑚 = 𝐹 𝑚
𝑛

and the extreme value distribution’s probability mass function by 
𝑓𝑀 𝑚 = 𝐹𝑀 𝑚 − 𝐹𝑀 𝑚 − 1
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Extreme Value Distributions
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Remarks

• The extreme value distribution for the maximal alignment scores on random 
sequences estimates the number of random hits that would be included for a 
given threshold
– The E values provided by the UniProt query system corresponds to the expected number 

of random hits with the same or better similarity score in the same database

• Note that in actuality, the extreme value distribution is quite difficult to obtain 
(numerically or in closed form)
– Sequence databases are not random collection of arbitrary sequences

• These sequences are the products of millions of years of selection

– The alignment scores from one sequence to the next are not necessarily independent 
from one another

• The sequences in the database usually belong to distinct sequence families

– A viable approach is to sample the distribution using alignments with random sequences 
of varying length and composition, and then to generalize to suitable extreme value 
distribution models
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Summary

• Sequence databases provide online utilities that allow submitting 
queries with novel sequences

• These queries determine the most similar sequences in the 
database to the queried sequence

• A common functional or familial grouping among the most similar 
database sequences is suggestive of similar functionality and 
lineage

• The degree at which one should trust the identified hits lies in the 
level of statistical significance
– Usually provided by the E values in query result tables


