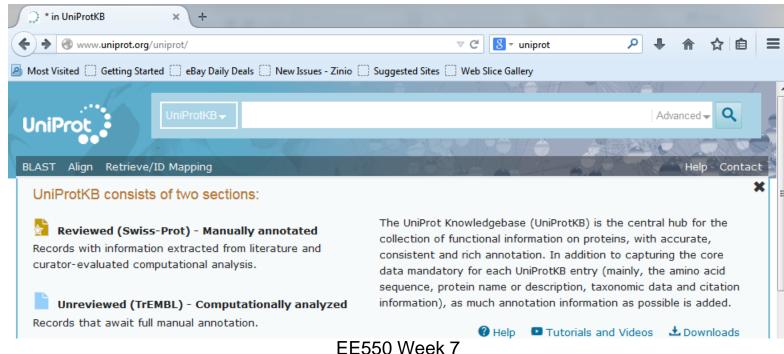
EE550 Computational Biology

Week 7 Course Notes

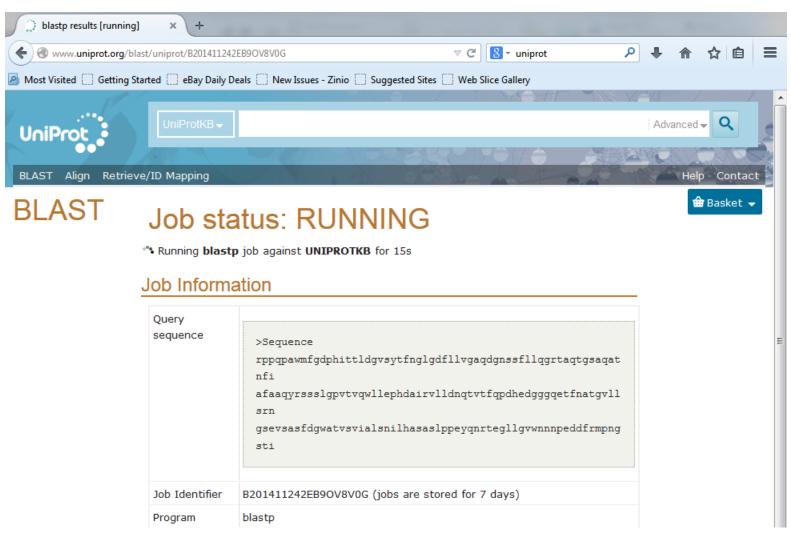
Instructor: Bilge Karaçalı, PhD

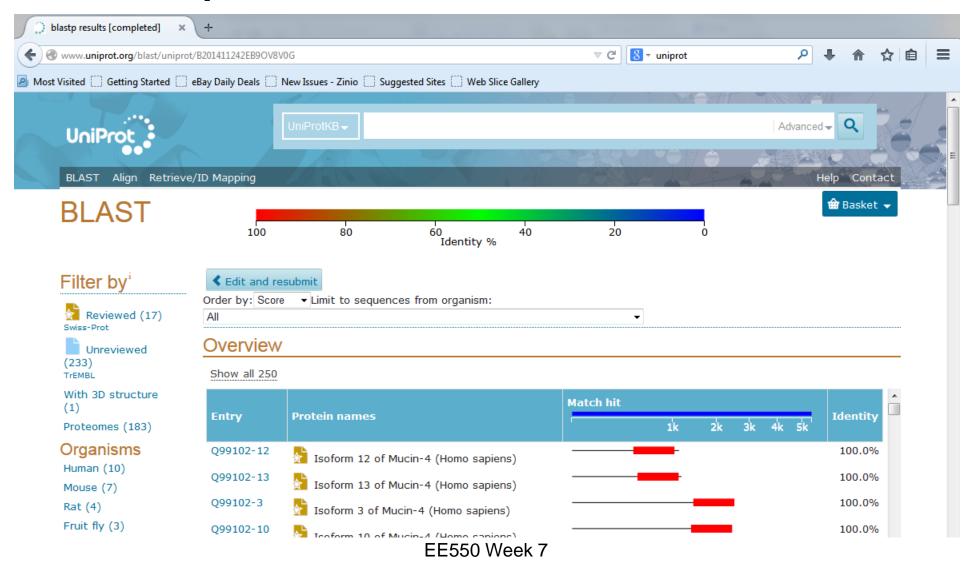
Topics

- Searching sequence databases
 - Gene and protein identification by sequence similarity
 - Sequence database queries
 - Performance evaluation
 - Sequence alignment statistics


Sequence Similarity

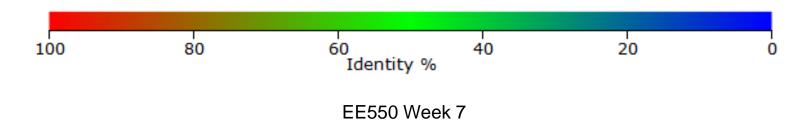
- Sequence similarity suggests common origin and similar function
 - Organisms start with a common ancestor and evolve along different paths
 - Each organism acquires different sets of mutations
 - Common ancestry is established by the persisting sequence traits
 - As the sequences of genes diverge, the sequences of the corresponding proteins diverge as well
 - The divergence of the proteins implies selective control on the evolutionary mechanism
 - Mutations that reduce the fitness are strongly selected against
 - This control ensures that the necessary functionality of the protein is preserved all through the evolutionary time-frame
- Comparing a new sequence to a database of known sequences allows
 - Estimating its evolutionary relationships to known molecules of known organisms
 - Predicting its function (as well as protein structure)


Sequence Databases


- Several online databases allow access to large collections of genetic and protein sequences
 - Genes:
 - EMBL
 - GenBank
 - DDBJ
 - ...
 - Proteins:
 - PIR
 - MIPS
 - UniProt
 - NCBI Protein Database
 - GenPept
 - ...

- Task: Given a sequence fragment rppqpawmfgdphittldgvsytfnglgdfllvgaqdgnssfllqgrtaqtgsaqatnfi afaaqyrssslgpvtvqwllephdairvlldnqtvtfqpdhedgggqetfnatgvllsrn gsevsasfdgwatvsvialsnilhasaslppeyqnrtegllgvwnnnpeddfrmpngsti
 - Query the UniProt sequence database for proteins with similar sequences
 - Evaluate the list of proteins with highest similarity scores

http://www.unt.org/blast/ × +				
www.uniprot.org/blast/			⊽ C 🛛 🛛 🗸 uniprot	▶ ♣ ☆ 自 ☰
A Most Visited 🗍 Getting Started 🗍 eBay Dail	y Deals 🗍 New Iss	ues - Zinio 门 Sugges	ted Sites 🗍 Web Slice Gallery	
UniProtKB BLAST Align Retrieve/ID Mapping				Advanced - Q Help Contact
BLAST >Sequence				Show help for Blast
rppgpawmfgdphittldgvaytfnglgdfll afaagyrssslgpytvgwllephdairvlldn gsevsasfdgwatvsvialsnilhasaslppe	qtvtfqpdhedgg	ggetfnatgvllsrn		
Target database ⁱ	E-Threshold ⁱ	Matrix ⁱ	Filtering ⁱ	
UniProtKB •	10 -	Auto -	None -	yes 🕶 250 💌
Run Blast in a separate window.				Run BLAST Clear


Highlight Selected Annotation from match Q99102-12 Annotation Alignment No sequence annotation Q99102-12 MUC4_HUMAN - Isoform 12 of Mucin-4 Homo sapiens (Human) (features) available for this E-value: 3e-117 local alignment. Score: 949 Ident.: 100.0% Amino acid Positives : 100.0% properties Query Length: 180 Similarity Match Length: 1125 Hydrophobic Negative Positive Aliphatic Tiny RPPQPAWMFGDPHITTLDGVSYTFNGLGDFLLVGAQDGNSSFLLQGRTAQTGSAQATNFI Query 1 60 Aromatic RPPQPAWMFGDPHITTLDGVSYTFNGLGDFLLVGAQDGNSSFLLQGRTAQTGSAQATNFI Charged RPPQPAWMFGDPHITTLDGVSYTFNGLGDFLLVGAQDGNSSFLLQGRTAQTGSAQATNFI 099102-12 390 449 Small AFAAQYRSSSLGPVTVQWLLEPHDAIRVLLDNQTVTFQPDHEDGGGQGTFNATGVLLSRN 61 120 Ouerv Polar AFAAQYRSSSLGPVTVQWLLEPHDAIRVLLDNQTVTFQPDHEDGGGQETFNATGVLLSRN 099102-12 450 AFAAQYRSSSLGPVTVQWLLEPHDAIRVLLDNQTVTFQPDHEDGGGQQETFNATGVLLSRN 509 🔲 Big Serine Threonine Query 121 GSEVSASFDGWATVSVIALSNILHASASLPPEYONRTEGLLGVWNNNPEDDFRMPNGSTI 180 GSEVSASFDGWATVSVIALSNILHASASLPPEYQNRTEGLLGVWNNNPEDDFRMPNGSTI Q99102-12 510 GSEVSASFDGWATVSVIALSNILHASASLPPEYQNRTEGLLGVWNNNPEDDFRMPNGSTI 569

Tools	Core data	Supporting data	Information	

- UniProt sequence query:
 - The given sequence fragment is aligned to all sequences in the database
 - Pairwise sequence alignments by BLAST
 - The database entries with the highest alignment scores are returned in descending order
 - The most similar sequence is listed first
 - The similarity score monotonically decreases down the list
 - Identification of sequence properties, function, and evolutionary relationships is carried out based on the set of most similar proteins
 - Q: How similar does a protein need to be so that it can safely be recognized?

- UniProt sequence query (continued):
 - Several fields for every identified protein are returned
 - Familiar fields:
 - Accession number
 - Entry name
 - Protein name
 - Organism
 - Novel fields:
 - Local alignment
 - Identity
 - Positives
 - Score
 - E-value
 - Query length
 - Match length

- UniProt sequence query (continued):
 - Local alignment
 - Provides a graphical display of how the given sequence fragment was aligned with that of the entry
 - The gaps embedded into the sequence fragment are not shown
 - Does not mean that there have not been any gaps
 - Similarity is represented by a color code
 - Bright red: fully of nearly identical
 - Brown-green: quite similar
 - Blue: not similar at all

- UniProt sequence query (continued):
 - Identity
 - Varies between 0 and 100
 - Denotes the percentage of amino acids that are identical in the overlap
 - The overlap constitutes the aligned regions of both sequences
 - » The query sequence
 - » The database sequence
 - A score of a 100 implies all amino acids in the overlap are the same
 - On the other hand, a score near 0 implies none of the amino acids match
 - » Very hard to see (Q: Why?)
 - The gaps and substitutions are treated the same
 - Positives
 - Percentage of sites for which the similarity score is positive
 - log-odds similarity

- UniProt sequence query (continued):
 - Score
 - Denotes the alignment score; maximized by the BLAST algorithm between the query sequence and the database sequence
 - Uses the log-odds scoring matrix for amino acid replacements and the specified gap penalty function

- The relative likelihood is measured by

$$RL = \log(R(\boldsymbol{A}, \boldsymbol{B})) = \sum_{i} S_{\boldsymbol{A}_{i}, \boldsymbol{B}_{i}}$$

- where S is the specified scoring matrix (e.g., PAM250, BLOSUM80, ...)
- The overall gap penalty is measured by

$$GP = \sum_{j} f(\ell_j)$$

- where *j* indexes the gaps with lengths ℓ_j , and *f* denotes the chosen gap penalty function (e.g., linear, affine, ...)
- The overall alignment score is then Score = RL - GP

- UniProt sequence query (continued):
 - E value
 - Denotes the number of sequences with which the observed alignment quality can be observed by pure chance
 - A random sequence of comparable length and composition is provided to the search engine over the same database
 - The distribution of alignment scores are observed

Q: How many sequences in the database will be aligned to a similar random sequence with a score no less than the observed score?

A: E value!!

- Requires a model of the probability distribution of alignment scores with all sequences in the database
- Takes values ranging from nearly 0 to tens or hundreds
 - Low values (significantly smaller than 1) suggest that the alignment could not have been observed by chance so that there must be something worthy of attention
 - High values (around 1 or higher) suggest whatever the observed relationship, it might very well be due to chance

- UniProt sequence query (continued):
 - E value (continued)
 - Consider the sequence
 - PAIRWISEALIGNMENTTOOLSHAVEVARIOUSINHERENTISSUESNOTTHE LEASTTHATDIFFERENTPROGRAMSOFTENRETURNDIFFERENTRESULT S
 - BLAST on this sequence in the UniProt database returns several hits with different E values
 - The high E values attest to the poor quality of the alignments
 - This gives us grounds to reject the alignments

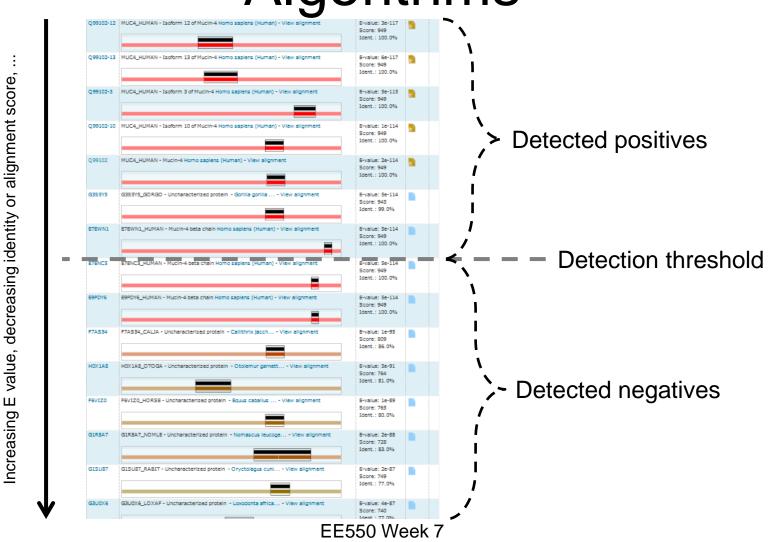
Entry	Alignment overview	Info	Status
Query: B2014	11242EBD9QU4QE		
A0A073IM30	A0A073IM30_9RHOB - Helicase - Sulfitobacter do View alignment	E-value: 3.2e1 Score: 75 Ident.: 29.0%	
V4AEI7	V4AEI7_LOTGI - Uncharacterized protein - Lottia gigantea View alignment	E-value: 4e1 Score: 70 Ident.: 33.0%	B
A0A067QRM0	A0A067QRM0_ZOONE - Uncharacterized protein - Zootermopsis nev View alignment	E-value: 4.1e1 Score: 74 Ident.: 25.0%	B
A4BJL3	A4BJL3_9GAMM - Putative acetyltransferase - Reinekea blanden View alignment	E-value: 4.3e1 Score: 73 Ident.: 25.0%	B
A3U822	A3U822_CROAH - Cell division protein FtsZ - Croceibacter atl View alignment	E-value: 1.1e2 Score: 71 Ident.: 32.0%	B
Q804X3	Q804X3_CHICK - Coagulation factor VIII - Gallus gallus (C View alignment	E-value: 1.1e2 Score: 71 Ident.: 32.0%	B
F1NPT2	F1NPT2_CHICK - Uncharacterized protein - Gallus gallus (C View alignment	E-value: 1.1e2 Score: 71	

EE550 Week 7

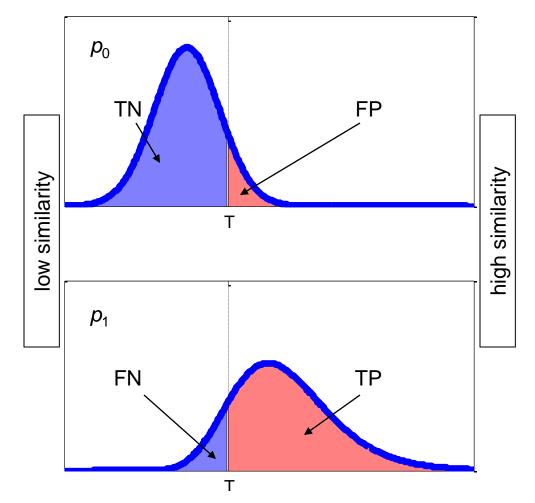
Selected Annotation from match A0A073IM30

Alignment

A0A073IM30 A0A073IM30_9RHOB - Helicase Sulfitobacter donghicola DSW-25 = KCTC 12864 = JCM 14565 E-value: 3.2e1 Score: 75 Ident.: 29.0% Positives: 46.0% Query Length: 106 Match Length: 982 Query \$ WISEALIGNMENTTOOLSHAVEVARIOUSINHERENTISSUESNOTHELE \$5 W +EAL+G+ ++ T LSH V++ A + HE + E+ ELE A0A073IM30 468 WAAEALMGHQDHQTYPLSHWVDLHLKIANDVAAGTSGNTEHELWQQKAGMEARRVMQELE \$27 Query \$6 ASTTHATDI 64 A + TD+ A0A073IM30 528 AEAGYGTDL 536				
Score: 75 Ident.: 29.0% Positives : 46.0% Query Length: 106 Match Length: 982 Query 5 WISEALIGNMENTTOOLSHAVEVARIOUSINHERENTISSUESNOTHELE 55 W +EAL+G+ ++ T LSH V++ A + HE + E+ ELE A0A073IM30 468 WAAEALMGHQDHQTYPLSHWVDLHLKIANDVAAGTSGNTEHELWQQKAGMEARRVMQELE 527 Query 56 ASTTHATDI 64 A + TD+	A0A073IM30 A0A07	3IM30_9RHOB -	Helicase Sulfitobacter donghicola DSW-25 = KCTC 12864 = JCM 14565	
W +EAL+G+ ++ T LSH V++ A + HE + ELE A0A073IM30 468 WAAEALMGHQDHQTYPLSHWVDLHLKIANDVAAGTSGNTEHELWQQKAGMEARRVMQELE 527 Query 56 ASTTHATDI 64 A + TD+ 64 A	Score: 75 Ident.: 29.0% Positives : 46.0% Query Length: 106			
W +EAL+G+ ++ T LSH V++ A + HE + ELE A0A073IM30 468 WAAEALMGHQDHQTYPLSHWVDLHLKIANDVAAGTSGNTEHELWQQKAGMEARRVMQELE 527 Query 56 ASTTHATDI 64 A + TD+ 64 A				
A + TD+			$\label{eq:matrix} \texttt{W} + \texttt{EAL} + \texttt{G} + \ + \ \texttt{T} \texttt{LSH} \ \texttt{V} + + \qquad \texttt{A} + \ \texttt{HE} + \texttt{E} + \texttt{ELE}$	
A0A073IM30 528 AEAGYGTDL 536	Query	56		
	A0A073IM30	528	AEAGYGTDL 536	


- Protein sequence databases are queried primarily to establish functional familial relationships
 - A given sequence is compared to those in a sequence database
 - The database sequences with the highest alignment similarity to the sequence in question are listed in a descending order
 - The queried sequence is then presumed to belong to the functional family that is most represented among the statistically significant query hits
 - A query hit is a database sequence with a significantly high sequence alignment score

 Very low E value
- The success of the querying algorithm is measured in its ability to group
 - the correct familial proteins at the top of the hit list with high statistical significance and
 - everything else in the bottom with no statistical significance


- Performance evaluation is critical to predict the success rates of alternative methods
 - Alternative alignment methods
 - Different parameter choices for the chosen alignment method
- **Ideally**, performance evaluation would be conducted on unseen-before data (i.e. real life testing)
 - The operation would be carried out for a newly sequenced protein
 - Alignment against a database
 - Ranking of the statistically significant hits in terms of the alignment scores
 - Prediction of the familial relationships
 - Testing of these predictions in conventional wet-lab experiments
 - The average performance for several such proteins would estimate the performance of the employed algorithms

- But the ideal procedure is neither feasible nor viable:
 - Requiring the whole wet-lab verification process for each unseen-before sequence for performance evaluation is extremely costly
 - Using hard-collected data on unseen-before proteins to test the performance of prediction algorithms defeats their purpose
 - The whole reason for employing such algorithms is to be able to predict the functional and familial properties of newly-sequenced proteins without the wet-lab procedures
- Instead, cross-validation techniques from the statistical learning literature are used for performance evaluation
 - A functional protein group is identified for the purpose
 - Transcription factors
 - Antigen-binding proteins
 - Kinases
 - ...
 - The prediction procedure is carried out for a small subset of the protein group by removing them from the working database
 - The recognition performance is evaluated in terms of how many members of the protein group in consideration are identified beyond a statistical significance threshold

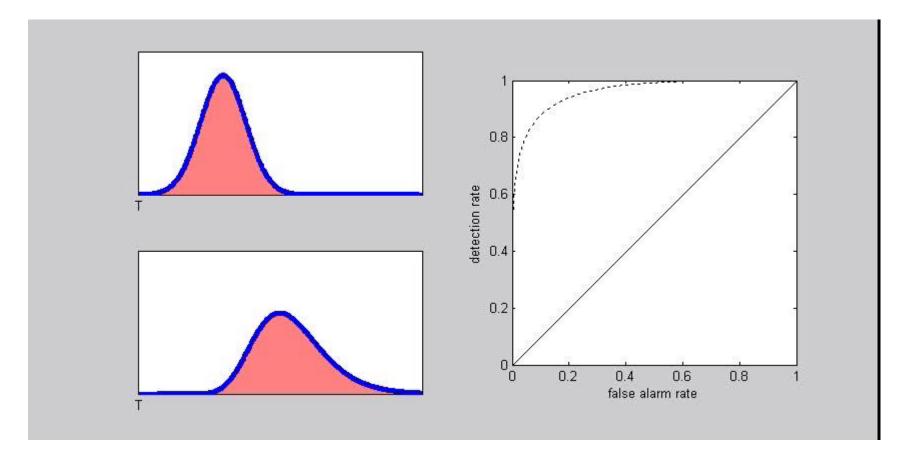
- Procedure:
 - A randomly selected member of a protein group of interest is queried against a database that consists of
 - the sequences of the remaining members of the protein group, C_1 , and
 - the sequences of all the other proteins in the original database, C_0
 - The relevant statistics (alignment score, identity, E value, ...) are compared against varying threshold levels for detection
 - The number of sequences in C_1 and C_0 above or below a given detection threshold are counted
 - The proteins with statistics satisfying the threshold are "detected"
 - Conversely, the proteins with statistics failing to satisfy the threshold are "not detected"
 - Performance of the prediction algorithm is measured in terms of the respective fractions of C_1 and C_0 that are "detected," respectively, correctly and incorrectly

- The values of the statistic observed on C_0 and C_1 constitute the distributions p_0 and p_1
- The integrals of p_0 and p_1 computed over the intervals $(-\infty, T)$ and (T, ∞) determine the basic performance markers
 - True negatives: $\int_{-\infty}^{T} p_0(t) dt$
 - False positives: $\int_T^{\infty} p_0(t) dt$
 - False negatives: $\int_{-\infty}^{T} p_1(t) dt$
 - True positives: $\int_T^{\infty} p_1(t) dt$
- In actual applications, the distributions are replaced by histograms
 - TN, FP, FN, and TP become protein counts and not fractions

- Higher order performance measures are computed from the basic quantities of TN, FP, FN, and TP
 - Detection rate = TP/(TP+FN)
 - False detection rate = FP/(TN+FP)
 - Specificity = TP/(TP+FP)

{sensitivity}

{false alarm rate}


{selectivity}

- F-measure = 2·sensitivity·specificity/(sensitivity+specificity)
- The variation of the detection rate with respect to the false alarm rate is called

the receiver operating characteristics

of the detection rule

 The area under this curve provides an average measure of performance irrespective of a threshold

More on Alignment Statistics

- Given any sequence fragment, querying it against a sequence database will always return a ranked list of entries
 - The ranking is typically returned in the order of decreasing alignment score starting from the entry with the highest score
- The real question is whether any of the obtained alignments carries any significance at all
 - Databases are queried in order to establish functional and familial relationships between the sequence at hand to the sequences in the database
 - The results obtained from the query are believable only if they are supported by a statistical significance analysis
 - Otherwise, the obtained good scores may very well have been accidental, and hence, meaningless
- The statistical significance of the results is determined against random queries of comparable nature
 - The observed results are significant if the probability of observing them is *really* low

Pairwise Alignment Statistics

- Consider the pairwise alignment of two nucleotide sequences of length *N*
 - The probability p that a given site is occupied by the same nucleotide in both sequences by pure chance is

$$p = \pi_{\rm A}^2 + \pi_{\rm T}^2 + \pi_{\rm G}^2 + \pi_{\rm C}^2$$

where π_A , π_T , π_G , and π_C denote the prior probabilities of the corresponding nucleotides

- The expected number of sites occupied by the same nucleotide, whatever that nucleotide may be, is then $p \cdot N$
 - Note, however, that the probability of having all sites in two sequences of length N match is p^N, assuming
 independence of sites
- The number m of sites occupied by the same nucleotides in both sequences by pure chance follows a binomial distribution with the probability mass function

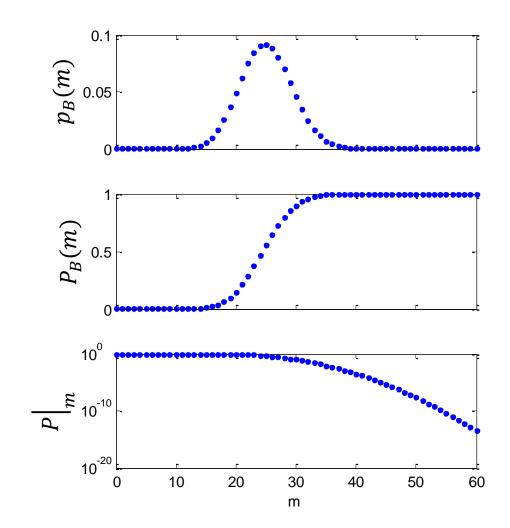
$$p_B(m) = \binom{N}{m} p^m (1-p)^{N-m}$$

- The probability P of observing greater than or equal to m matching sites is

$$P = \sum_{m'=m} p_B(m')$$

- The smaller the P value, the less likely to observe m matching sites by pure chance

Pairwise Alignment Statistics


• Example:

– Let

- $\pi_{\rm A} = \pi_{\rm T} = \pi_{\rm G} = \pi_{\rm C} = 1/4$
- *N* = 100
- The probability distribution then becomes

$$p_B(m) = {\binom{100}{m}} (0.25)^m (0.75)^{100-m}$$

- The *P* values associated with observing various *m* numbers of matching sites can be obtained as
 - $P|_{m=25} = 5.38 \cdot 10^{-1}$
 - $P|_{m=35} = 1.64 \cdot 10^{-2}$
 - $P|_{m=45} = 1.09 \cdot 10^{-5}$

Query Alignment Statistics

- When a whole set of sequence alignments are evaluated for statistical significance, the probability structure of the experiment changes
 - Instead of one observation, we will need to sort out several observations simultaneously
- The question then becomes whether any of the observed similarity scores are higher than the expected maximum in a random case
 - In the random case, a comparable but random sequence is queried against the dataset
 - If the distribution of the resulting alignment scores can be obtained, then the distribution of the maximal scores can be modeled as well
 - The expected maximum can then be obtained as the mean of the distribution of the maximal scores
 - This maximal distribution can also be used to compute the P values associated with observing a certain maximal score in chance experiments
 - → Extreme Value Distributions

- Extreme value distributions govern the statistical behavior of extreme events
 - Maxima
 - Minima
- Note that extreme events are also random variables
 - Let X be a random variable, and $\{X_i\}$, i = 1, ..., n, denote a random collection of n independent and identically distributed random variables with the same distribution as X
 - Define *M* as the maximum of the collection $\{X_i\}$

$$M = \max_i \{X_i\}$$

- Note that
 - *M* is a random variable as well, and
 - the distribution of *M* is an **extreme value distribution**

• The probability distribution of the maxima

$$M = \max_{i} \{X_{i}\}$$

$$\Rightarrow F_{M}(x) = \Pr\{M \le x\}$$

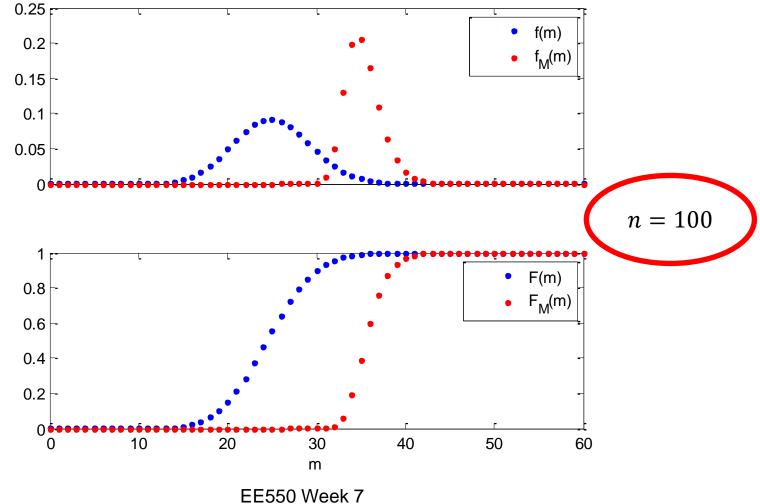
$$= \Pr\{X_{1} \le x, X_{2} \le x, \dots, X_{n} \le x\}$$

$$= \Pr\{X_{1} \le x\} \cdot \Pr\{X_{2} \le x\} \cdot \dots \cdot \Pr\{X_{n} \le x\}$$

$$= (\Pr\{X \le x\})^{n}$$

$$= (F_{X}(x))^{n}$$

$$\Rightarrow f_{M}(x) = \frac{d}{dx}F_{M}(x) = n(F_{X}(x))^{n-1}f_{X}(x)$$


 For discrete distributions, increments at integer *x* produce the corresponding probability mass functions

- Consider the case where a nucleotide sequence of length *N* is queried in a database of *n* sequences, each of length *N*
- The objective is to compute the extreme value distribution governing the maximum alignment score between the dataset sequences and a random sequence of length *N*
- Procedure:
 - Given the binomial probability distribution of the pairwise match score f(m) for sequence pairs of length N
 - Compute the associated cumulative distribution function F(m)
 - Compute the cumulative distribution function $F_M(m)$ by

$$F_M(m) = \left(F(m)\right)^n$$

and the extreme value distribution's probability mass function by $f_{f_{i}}(m) = F_{i}(m) + F_{i}(m-1)$

$$F_M(m) = F_M(m) - F_M(m-1)$$

Remarks

- The extreme value distribution for the maximal alignment scores on random sequences estimates the number of random hits that would be included for a given threshold
 - The E values provided by the UniProt query system corresponds to the expected number of random hits with the same or better similarity score in the same database
- Note that in actuality, the extreme value distribution is quite difficult to obtain (numerically or in closed form)
 - Sequence databases are not random collection of arbitrary sequences
 - These sequences are the products of millions of years of selection
 - The alignment scores from one sequence to the next are not necessarily independent from one another
 - The sequences in the database usually belong to distinct sequence families
 - A viable approach is to sample the distribution using alignments with random sequences of varying length and composition, and then to generalize to suitable extreme value distribution models

Summary

- Sequence databases provide online utilities that allow submitting queries with novel sequences
- These queries determine the most similar sequences in the database to the queried sequence
- A common functional or familial grouping among the most similar database sequences is suggestive of similar functionality and lineage
- The degree at which one should trust the identified hits lies in the level of statistical significance
 - Usually provided by the E values in query result tables