EE550 Computational Biology

Week 14 Course Notes

Instructor: Bilge Karaçalı, PhD

Topics

- Regulation of gene transcription
 - Regulation in a biomolecular network
 - Primary regulation mechanisms
 - Autoregulation
 - Feed-forward loops

Regulation in a Biomolecular Network

• Selection promotes

- efficiency
 - Cells operate in an environment with limited resources
 - The resources must be spent on supplying the mechanisms that are of higher priority than others
- adaptability
 - The extracellular environment and the conditions it imposes on the cells change in time
 - The cells must be able to respond to these changes by adjusting their priorities
- rapid response
 - The quicker the cells adapt to the changing conditions the better for maintaining efficiency
- robustness
 - At the same time, the cellular operations must also be shielded from random fluctuations in the environmental conditions

Regulation in a Biomolecular Network

- Tightly controlled regulation of gene transcription is a result of natural selection
 - Genetic variability produces diverse organisms with slightly different regulatory skills
 - The organisms possessing the regulatory skills that endow them with a higher fitness undergo positive selection
- Several primary regulatory mechanisms for gene transcription are present "conspicuously" across different species
 - Autoregulation
 - Feed-forward loop

Autoregulation

- Regulation of a gene Y by another gene X is indicated by an edge in the network graph between the nodes X and Y
 - If the regulation is activation, the edge is an arrow

$\mathsf{X} \to \mathsf{Y}$

X - Y

- Conversely if X represses Y, the edge ends with a line stop

In autogenous regulation, a gene's product acts as its own transcription factor

- Such cases are indicated by a self-edge
- The edge can be activation or repression as any other edge in the regulatory network

Production Rates of Autogenously Regulated Genes

- Positive autoregulation
 - This situation refers to the case where the gene's own protein product acts as a transcription factor activating its expression
 - The input function governing a positively autoregulated gene X is given by the usual Hill function

rate of production of
$$X = f([X^*]) = \frac{\beta[X^*]^n}{\kappa^n + [X^*]^n}$$

- Negative autoregulation
 - The gene's product represses its expression
 - The input function is given by

rate of production of
$$X = f([X^*]) = \frac{\beta}{1 + \left(\frac{[X^*]}{\kappa}\right)^n}$$

Production Rates of Autogenously Regulated Genes

- Note that these functions do not characterize a static system
 - By definition, a positive production rate increases [X]
 - Since we assume that the signal S_X is always present, all [X] is readily transformed into the active state $[X^*]$
 - Thus, the concentration does not remain on the initial value of $[X^*]$
 - Same thing happens with a negative production rate
- Instead, they represent instantaneous production rates
 That vary with time
- Consequently, the system becomes a dynamic one

Transients of Autoregulation

- Dynamic response in negative autoregulation kinetic modelling
 - The equation governing the temporal variation of a gene product is

$$\frac{d}{dt}([X])(t) = f\big(([X^*])(t)\big) - \alpha([X])(t)$$

where the production rate follows the relationship

$$f(([X^*])(t)) = \frac{\beta}{1 + \left(\frac{([X^*])(t)}{\kappa}\right)^n}$$

- Assuming S_X is always present allows $[X^*] = [X]$ and produces

$$\frac{d}{dt}([X])(t) = \frac{\beta}{1 + \left(\frac{S_X(t)([X])(t)}{\kappa}\right)^n} - \alpha([X])(t)$$

Transients of Autoregulation

- Dynamic response in negative autoregulation approximate analysis
 - However, before solving the dynamic equation above, it is possible to predict how the system will respond using the logic approximation to the Hill function in repression
 - The logic approximation for repression provides

$$\frac{d}{dt}([X])(t) \simeq \beta \mathbf{1}(S_X(t)([X])(t) < \kappa) - \alpha([X])(t)$$

• When $([X])(t) < \kappa$, [X] is simply regulated with

$$\frac{d}{dt}([X])(t) = \beta - \alpha([X])(t)$$

resulting in an exponential rise towards the β/α with $T_{1/2} = \log(2)/\alpha$

- When $([X])(t) > \kappa$, however, the production ceases and exponential decay starts
- → stability around $[X] = \kappa$

Transients of Autoregulation

- Dynamic response in negative autoregulation numerical analysis
 - The ordinary differential equation is to be solved numerically using Euler's method that provides

$$([X])(t + \Delta t) \simeq ([X])(t) + \Delta t \frac{d}{dt}([X])(t)$$

- Thus, starting at t = 0 with $([X])(t) = [X]_0$ and for $\Delta t \ll 1$
 - Calculate $\frac{d}{dt}([X])(t)$ using the formula in the differential equation
 - Set $([X])(t + \Delta t) = ([X])(t) + \Delta t \frac{d}{dt}([X])(t)$
 - Let $t \leftarrow t + \Delta t$
 - Repeat until convergence

- Negative autoregulation alters the response time of gene activation
 - The time to half steady state (around $\kappa < \beta/\alpha$) is given by

$$\frac{\kappa}{2} = \frac{\beta}{\alpha} \left(1 - e^{-\alpha T_{1/2}} \right)$$

$$T_{1/2} = \log\left(\frac{2\beta}{2\beta - \kappa\alpha}\right)/\alpha$$

- Compare that to $\log(2)/\alpha$ in a simple regulation alternative with $\beta' = \kappa \alpha$

that achieves the same steady state level

К

 \Rightarrow

 $\kappa = \beta_0 / \alpha, \beta_1 >> \beta_0$

- In addition to a faster rise, negative autoregulation provides robustness in gene expression against random fluctuations in the production rate β
 - Twin bacterial cells show variations in their respective production rates
 - Differences in capacity leads to variations from a few percents to tens
 - The production rate also varies in time due to random effects
 - The steady state level in simple regulation is directly affected by the production rate fluctuations
 - Note that the steady state level is given by β/α
 - The **threshold** κ on the other hand is a biochemical property of the input function, and is much more **stable across individuals and in time**
 - ➔ The steady state expression level in negative autoregulation is stable even though the production rate may fluctuate

- In positive autoregulation, a gene product improves the expression rate of its own gene
 - Kinetic modelling: Using the Hill function and positive autoregulation transient equation provides

$$\frac{d}{dt}([X])(t) = \frac{\beta([X])^n(t)}{\kappa^n + ([X])^n(t)} - \alpha([X])(t)$$

- The logic function approximation leads to

$$\frac{d}{dt}([X])(t) = \beta \mathbf{1}\big(([X])(t) > \kappa\big) - \alpha([X])(t)$$

- This suggests that
 - If [X] is low, it stays low
 - If [X] is high (at the steady state level), it stays high
 - → Bi-stability in gene expression

- Bi-stability represents permanent decision making
 - Once a gene is activated by some other regulatory means, it remains active
 - Such decisions are frequently made in the early stages of development
 - In cellular differentiation, identical stem cells are set to grow into different tissues and organs
 - The state of positively autoregulated genes thus represents a bar-code for the cell's identity
 - This set would naturally include the genes that are governed by positive autoregulation cascades
- Delay represents timing priorities
 - The genes that produce proteins required at a specific stage of a process are delayed to wait for the completion of the preceding stages

The Feed-Forward Loop

- Another common regulation mechanism in gene transcription networks is the feed-forward loop
 - Consists of three nodes
 - First node regulates the other two
 - The second is regulated by the first and regulates the third
 - The third is regulated jointly by the first two
 - The regulatory mechanism consists of the effects of the signals to the first two nodes onto the expression of the third

The Feed-Forward Loop

- Depending on the functionality on the edges, the regulatory function of the feed-forward loop changes
 - Coherent type: The regulatory effects of both paths are the same
 - Incoherent type: The regulatory effects conflict with each other
- An additional control mechanism is in the integration of the regulatory inputs from both paths at the third node
 - AND or OR (SUM is not particularly interesting; it merely provides a linear combination of both paths)

- Characteristics of the regulatory mechanism:
 - All regulatory edges are activations
 - $X \rightarrow Y$ with κ_{XY}
 - $X \rightarrow Z$ with κ_{XZ}
 - $Y \rightarrow Z$ with κ_{YZ}
 - Two alternate paths with the same regulatory function on gene Z
 - Activation signals from both paths are required to express Z
 - AND integration

- Kinetic model •
 - Premises:

 - S_Y is present, S_X becomes present at time t = 0
 [X] is constant at steady state, [Y] and [Z] are initially zero

 $([X])(0^{-}) = [X]_{st}, ([Y])(0^{-}) = ([Z])(0^{-}) = 0$

- $X \rightarrow Y$:
 - Simply regulated
 - The expression of Y begins at time t = 0 when X is activated into X*
 - The dynamics are governed by

$$\frac{d}{dt}([Y])(t) = \beta_Y \cdot S_X(t) - \alpha_Y([Y])(t)$$

- X AND Y \rightarrow Z:
 - Both are simply regulated as well
 - Since $[X] > \kappa_{XZ}$ already, the expression of Z begins after [Y] crosses the threshold κ_{YZ}

production rate of
$$Z = \frac{\beta_Z [Y]^{n_{YZ}} \cdot S_Y(t)}{\kappa_{YZ}^{n_{YZ}} + [Y]^{n_{YZ}}} \cdot S_X(t)$$

The dynamics are thus governed by

$$\frac{d}{dt}([Z])(t) = \frac{\beta_Z([Y])^{n_{YZ}}(t) \cdot S_Y(t)}{\kappa_{YZ}^{n_{YZ}} + ([Y])^{n_{YZ}}(t)} \cdot S_X(t) - \alpha_Z([Z])(t)$$

- Dynamic evaluation:
 - The expression of Y is turned on when S_X is switched on at time t = 0
 - The activated transcription factor X* binds the promoters of Y and Z
 - [Y] (and hence [Y*]) starts to build up toward its steady state value following an exponential rise
 - As activated [Y] crosses the threshold κ_{YZ} , it starts binding the promoter of Z in large amounts, initiating the transcription of Z

- The coherent type-1 FFL network element with AND integration acts as a sign-sensitive delay element
 - A delay of $-\log(1 \kappa_{YZ} \alpha_Y / \beta_Y) / \alpha_Y$ is present at the initiation of the Z transcription
 - No such delay exists when either S_X or S_Y is turned off
- This mechanism protects the gene transcription against spurious activations
 - Spurious activations cause the cell both energy and raw materials
 - Hence, there is no reason to start Z transcription unless it really is required
 - In C1-FFL w/ AND, the Z transcription is activated only when the signal S_X persists for a sufficiently long time
 - Indicating that Z transcription really is required

- Premises:
 - S_Y is present
 - S_X becomes present at time t = 0
 - [X] is constant at steady state, [Y] and [Z] are initially zero
 ([X])(0⁻) = [X]_{st}, ([Y])(0⁻) = ([Z])(0⁻) = 0
- Dynamic evaluation:
 - As soon as S_X becomes present, the transcriptions of both Y and Z begin
 - Only one of X or Y is sufficient to initiate Z transcription
 - When S_X is turned off again, the transcription of Y ceases and the [Y] level drop exponentially
 - The transcription of Z ceases only when the [Y] level is below κ_{YZ}

- The coherent type-1 FFL network element with OR integration also acts as a sign-sensitive delay element
- However, in contrast with the same element with AND integration, the delay is observed at the cessation of the gene transcription
- This mechanism thus protects the transcription of gene Z against spurious loss of signal S_X
 - The process requiring Z should not be shut off accidentally due to a noise in S_X
 - Accidental shut-off's are also costly

- In this feed forward loop, the two paths are antagonistic
 - X directly activates Z
 - X also represses Z indirectly through Y
- Dynamic evaluation:
 - Premises:
 - S_Y is present
 - S_X becomes present at time t = 0
 - $\begin{bmatrix} \hat{X} \\ Z \end{bmatrix}$ is constant at steady state, $\begin{bmatrix} Y \end{bmatrix}$ and $\begin{bmatrix} Z \end{bmatrix}$ are initially zero
 - Immediately as S_X is turned on, the transcriptions of both Y and Z begin following the exponential curve
 - Gradually as [Y] builds up, it crosses the threshold κ_{YZ} , causing Y to repress Z
 - As Z is repressed, [Z] decreases

- Kinetic model:
 - With the activation of $X \rightarrow X^*$ at time t = 0, [Y] increases via

$$\frac{d}{dt}([Y])(t) = S_X(t)\beta_Y - \alpha_Y([Y])(t)$$

toward its steady state level $[Y]_{st} = \beta_Y / \alpha_Y$

- The transcription of Z follows the transient equation

$$\frac{d}{dt}([Z])(t) = \frac{\beta_Z}{1 + \left(\frac{S_Y(t)([Y])(t)}{\kappa_{YZ}}\right)^{n_{YZ}}} S_X(t) - \alpha_Z([Z])(t)$$

- Initially, [Z] rises according to the exponential curve of simple regulation towards $[Z]_{st} = \beta_Z / \alpha_Z$
- Around time $t \simeq -\log(1 \kappa_{YZ} \alpha_Y / \beta_Y) / \alpha_Y$, increasing [Y] starts to repress the Z transcription

- Kinetic model (continued):
 - Eventually, [Y] attains its steady state level and [Z] decays toward a different steady state level $[Z]'_{st}$

$$[Z]'_{st} = \frac{\beta_Z}{\alpha_Z \left(1 + \left(\frac{[Y]_{st}}{\kappa_{YZ}}\right)^{n_{YZ}}\right)}$$

– The repression coefficient *F* is defined as the ratio of the two levels:

$$F = \frac{[Z]_{st}}{[Z]'_{st}} = 1 + \left(\frac{[Y]_{st}}{\kappa_{YZ}}\right)^{n_{YZ}}$$

- The incoherent type-1 feed forward loop with AND integration acts as a pulse generator
 - In the absence of repression from Y, Z undergoes a rapid rise towards $[Z]_{st}$
 - Eventually [Y] rises sufficiently and begins to repress [Z]
 - Under repression, [Z] declines toward $[Z]'_{st}$
- The response time of [Z] is dramatically improved as well (assuming [Z]'_{st} is the desired steady-state level)
 - Instead of rising towards $[Z]'_{st}$ via simple regulation, [Z] is shot up towards $[Z]_{st} \gg [Z]'_{st}$ and brought back down to $[Z]'_{st}$ later
 - Rise towards $[Z]_{st}$ is much faster than towards $[Z]'_{st}$ via simple regulation and crosses the $[Z]'_{st}$ level much sooner

Summary

- Gene transcription networks are endowed with specific network
 elements that carry out critical functions
 - Autoregulation
 - Negative autoregulation: Rapid response
 - Positive autoregulation: Delayed response and bi-stability
 - Feed-forward loop
 - C1-FFL: Sign-sensitive delay for protection against spurious signals (with AND integration) and signal losses (with OR integration)
 - I1-FFL: Pulse generation and rapid response
- Such critical network elements are observed "abundantly" in gene transcription networks
- The statistical significance of this "abundance" is crucial to derive a functional understanding of gene transcription regulation