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Topics

• Microarray data analysis

– Microarray technology

– Gene expression profiling

– Identification of genes with altered expression

• Gene expression data normalization

• SAM analysis
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DNA Microarrays

• A cornerstone of the high-throughput biology revolution is the development of 
DNA microarrays

• The technology allows assessing the presence and abundance of nucleotide 
sequences in cells
– A large number of labeled oligonucleotide sequences are fixated on glass slides

• The sequence lengths are in the order of tens of nucleotides

– When washed over by a solution of fluorescent-labeled nucleotide sequence fragments, 
they bind those that carry the complementary nucleotide sequences

• Binding occurs by hybridization

– The amount of binding is assessed by imaging the glass slide under light excitation
• The fluorescent dye emits light at certain frequencies when excited by a laser
• The amount of detected light at each spot provides a measure of the total hybridization at that 

spot
• More hybridization means more of the target oligonucleotide

• As such, it plays essential roles in a variety of applications such as 
genotyping and gene expression profiling
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The Microarray Technology

• The basis of the technology is the fixation of oligonucleotides 
onto a glass slide

• Two main types are identified based on the process of 
fixation
– Oligonucleotide arrays are grown on the slide to a suitable 

length

– Spotted oligonucleotide arrays are manufactured by depositing 
small drops of oligonucleotide solutions on the glass slide

– Each such spot of oligonucleotide is referred to as a probe

• Each oligonucleotide is specific to a complementary 
nucleotide sequence
– DNA fragments

– mRNA sequences

• The expression of all known human genes can be carried out 
in one experiment on a single glass slide A spotted oligonucleotide array

Source: Agilent technologies



One-Color vs. Two-Color Hybridization

• DNA microarrays can measure the absolute 
or relative abundance of the target nucleotide 
sequences
– In two-color hybridization experiments, differences 

between a sample of interest and a control sample 
are assessed

• The target nucleotide sequences in the two samples 
are dyed with different fluorescent markers

• The probes hybridize with their targets from both 
samples

• Differences in abundance of the target 
oligonucleotides in the two samples reflects as color 
variations

– In one-color hybridization experiments, the 
abundance of target nucleotide sequences in one 
sample is assessed by itself

• The intensity of the detected light correlates with the 
amount of the target nucleotide sequences 
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Source: http://microarray.csc.mrc.ac.uk/subsection.html?id=16
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DNA Microarray Data

• The data collected in a one-color hybridization experiment 
consist of measured expression levels for each spot on the glass 
slide
– Each expression level is unsigned 16-bit integer

– The whole data corresponds to a single vector of length determined by 
the number of probes

• Collection of expression vectors from multiple experiments 
provides a large matrix of expression levels
– The number of rows equals the number of probes

– The number of columns equals the number of experiments

• The analysis focuses on identifying variations in expression 
levels between groups of experiments captured in the data matrix
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DNA Microarray Data

• Notes:
– In order to be merged into a collective microarray data matrix, 

each experiment must be carried out using the same
technology

– Experiments must bear a distinction in the represented 
conditions

• Cancer samples versus control samples
• Samples of cancers at different grades
• Different cancers
• …

– The numeric data is immense
• Many thousands of gene expression values for several samples
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Gene Expression Profiling

• The expression of genes is quantified by the abundance 
of their respective mRNA sequences

• The amount of mRNA for thousands of genes can be 
measured by a microarray analysis using one-color 
hybridization technique

• Remarks:
– Genes are transcribed in response to intracellular or 

extracellular stimuli
– The ultimate goal of transcription is protein synthesis
– While gene expression analysis does not provide quantitative 

measures of protein abundance, it does provide insight on what 
the cell is trying to accomplish



Microarray Experiment Protocol

• A typical protocol consists of the following steps
– RNA isolation: The cells are lysed to destroy the membrane and obtain a solution of cellular 

material
– cDNA synthesis: Reverse transcription of the total RNA is carried out to obtain the complementary 

DNA, which is also paired to its complementary sequence to produce a paired DNA strand
– cRNA synthesis: RNA polymerase acts on the cDNA to synthesize the cRNA

• Amplification occurs by letting the RNA polymerase carry out the RNA synthesis multiple times
• RNA sequences are later heated to 94C to break them up into strands of about 50 nucleotides
• The RNA strands are conjugated to fluorescent markers for easy detection

– Hybridization: The oligonucleotide array is dipped into the solution of the RNA strands for 
incubation

• The RNA strands hybridize to the oligonucleotide chains that match their sequences
• Washing eliminates the non-hybridized RNA strands

– Scan: The markers are excited with an external light source and the emitted light detected by a 
suitable sensor

– Statistical analysis

(See the animations at http://www.bio.davidson.edu/genomics/chip/chip.html and 
http://learn.genetics.utah.edu/content/labs/microarray/ )
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Microarray Gene Expression Data Analysis

• The microarray data consists of gene expression levels for several 
experiments
– Individual experiments correspond to distinct tissue samples
– The collection reflects a dichotomy in the conditions associated with individual 

experiments
• Some of the experiments belong to one condition category, while the remaining experiments 

belong to the other
• Each experiment belongs to one of the conditions
• No experiment belongs to both conditions simultaneously

– The objective of the data analysis is to determine the genes that are expressed 
differentially between the two conditions

• Comparisons of mean expression levels are to be carried out between the two conditions

• Issues:
– Reliability of the differentially expressed gene lists rests on the power of the statistical 

comparison tests
– Normalization of the gene expression data is essential to prevent any magnitude bias in 

the results
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Normalization of Gene Expression Data

• Normalization of the expression levels are necessary to account for 
systematic variations incurred in different stages of data acquisition
– Variations in RNA amounts
– Variations in data preparation and measurement procedures

• Fluorescent labeling materials and procedures
• Detection by spectral sensors
• Non-identical probe sets on oligonucleotide arrays
• Skill variations in laboratory personnel 

• Several normalization procedures have been proposed to account for these 
variations
– Total intensity normalization
– Normalization with respect to the housekeeping genes
– Standard deviation regularization
– Locally Weighted Least Squares (LOWESS) normalization (two-color slides)
– Mean centering (two-color slides)
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Total Intensity Normalization

• The amount of RNA hybridized to a probe increases the light intensity 
emitted from the probe by the fluorescent dyes conjugated to the RNA 
fragments

• The total light intensity collected from the glass slide then reflects the 
amount of total RNA in the solution
– More tissue → brighter spots

• Dividing the detected intensities with the average observed over all spots 
removes any potential biases in the analysis toward the experiments with 
more abundant RNA synthesis
– Typically, the spot intensities are divided by the total slide intensity so the total intensity 

after normalization is 1

– This normalization implicitly assumes that the total number of RNA in cells is more or less 
constant
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Normalization Using Housekeeping Genes

• Some genes are presumably expressed uniformly in all samples
– Actin, ubiquitin, ribosomal RNAs, …

• These are genes essential to the cellular metabolism
– They are also not likely to be implicated in any disease conditions that 

may be present in the collected experiment set

– For if they are, the cells would most probably become unviable and not be 
able to continue to live

• Instead of normalizing the total intensity across the whole slide, a 
normalizing factor that equates the intensity over these 
housekeeping genes can be used
– Hence, the spot intensities over those related to the housekeeping genes 

would be the same for all slides
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Standard Deviation Regularization

• The objective in standard deviation regularization is to remove 
any potential bias to high magnitude arrays
– Division by the standard deviation completes the conventional 

normalization along with total intensity normalization
– Consequently, zero mean and unit standard deviation around the mean is 

obtained for all log expression values across all experiments

• In one-color hybridization experiments, the log expression 
values are divided by the standard deviation

• In two-color hybridization experiments, the log expression ratios
are divided by the standard deviation

• If spatial bias is suspected to be particularly strong, the standard 
deviation normalization can be done independently on spot blocks 
over the arrays
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LOWESS Normalization

• In two-color hybridization experiments, the total spot 
intensity may introduce spurious readings
– Variations in microarray technology

– Variations in dye conjugation efficiencies

– Spatial location on the glass slide

• These readings are neutralized by estimating this 
bias, and removing it from the original readings
– In two-color hybridization experiments, the value 

log(𝑅/𝐺) determines the relative RNA abundance in 
the two conditions
• 𝑅 stands for the intensity of the red dye 

• 𝐺 stands for the intensity of the green dye

– A least squares regression is carried out to the graph 
of log(𝑅/𝐺) versus log 𝑅 ⋅ 𝐺 (i.e., spot intensity)

– The regression estimate is removed from the log(𝑅/𝐺)
readings

Source: 

http://www.improvedoutcomes.com/docs/WebSiteDocs/PrePr

ocessing/Normalization/Two_Color_Datasets/Overview_of_Lo

wess_Normalization.htm

lo
g(
𝑅
/𝐺

)

log 𝑅 ⋅ 𝐺
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Mean Centering

• Two-color hybridization experiments rely on the relative RNA 
abundances in the two samples

• The reciprocal of total intensity normalization in two-color hybridization 
experiments is the mean centering normalization

• The log-transformed ratios are divided by the average ratio of all spots 
on the array

log
𝑅𝑖

𝐺𝑖
←

log
𝑅𝑖
𝐺𝑖

𝜇

for all 𝑖 = 1,2, … , 𝑛, where

𝜇 =
1

𝑛


𝑖=1

𝑛

log
𝑅𝑖
𝐺𝑖
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Statistical Comparison of Mean Expression 

Levels
• Objective: to identify the list of genes that exhibit statistically significant variations between 

different experimental conditions

• Remarks:
– Different experimental conditions refer to the different groups defined over the experiments

• Healthy controls vs. cancer

• Cells under varying levels of stress

• Tissue samples treated with different compounds

– The genes that are differentially expressed between the two conditions indicate the cellular 
mechanisms that operate with noticeable differences

– Decoding the differences in cellular mechanism in health and disease provides essential clues to 
the underlying abnormality in disease conditions in the biomolecular mechanism

• Diagnostic information

• Prognostic predictions

• Identification of potential molecular targets for smart drug therapy

• …

• This is achieved by carrying out hypothesis tests against the null hypothesis that the mean 
expression levels of the genes in the two conditions are equal
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Detecting Differentially Expressed Genes by a 

𝑡-Test
• Series of two-sample two-tailed 𝑡-tests can be carried out between the two 

conditions for every gene
– Small 𝑃 values would indicate the genes for which the unknown means are different in the 

two conditions

– However, in a comparison involving, say, 20000 genes, about 1000 genes would be expected 
to provide smaller 𝑃 values than 0.05 by pure random chance!

• The critical 𝑃 values must be adjusted so that across all genes, only a small 
percentage is likely to cross the threshold by pure chance
– The typical correction is the Bonferroni correction

• Given a total of 𝑛 genes, and an initial significance level of 𝛼
• Only the genes that achieve a 𝑃 value less then 𝛼/𝑛 are included in the list of differentially 

expressed genes

– But this almost surely is an overkill, since the actual degrees of freedom is much less than 𝑛
due to extensive cross correlations

• The expression level of a given gene is tightly related to the expression of several other genes

• The biomolecular machinery in cells is massively parallel
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Detecting Differentially Expressed Genes by 

SAM

• The Significance Analysis of Microarrays (SAM) technique has 
been developed explicitly to account for the cross correlations 
between genes
– Tusher, Tibshirani, et al., PNAs, 98(9):5116:5121, 2001

• Since then, it has become one of the main tools used in detecting 
the differentially expressed genes in microarray data

• It relies on
– computing a test statistic much like a regular 𝑡-test, and

– contrasting its observed value to the expected value from a random 
permutation experiment to compute a false alarm rate for a given 
threshold of significance



SAM Procedure

• Given the expression {𝑥𝑖,𝑗} of 𝑛 genes over 𝑚 samples, and the condition label data 
𝑦𝑗{1,2}, for 𝑖 = 1,… , 𝑛, and 𝑗 = 1,… ,𝑚

• Calculate the entities

𝑟𝑖 = 𝑥1𝑖 − 𝑥2𝑖

𝑠𝑖 =

1
𝑛1

+
1
𝑛2

σ𝑗∈𝐽1
𝑥𝑖,𝑗 − 𝑥1𝑖

2
+ σ𝑗∈𝐽2

𝑥𝑖,𝑗 − 𝑥2𝑖
2

𝑛1 + 𝑛2 − 2

where

𝑥1𝑖 =
1

𝑛1
σ𝑗∈𝐽1

𝑥𝑖,𝑗, and 𝑥2𝑖 =
1

𝑛2
σ𝑗∈𝐽2

𝑥𝑖,𝑗

with 𝐽1 = 𝑗 𝑦𝑗 = 1 , 𝐽2 = 𝑗 𝑦𝑗 = 2 , 𝑛1 = 𝐽1 and 𝑛2 = 𝐽2
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SAM Procedure

• Then, calculate the statistic 
𝑑𝑖 = 𝑟𝑖/(𝑠𝑖 + 𝑠0)

where 𝑠0 is to be determined using one of several alternative methods in the literature 

• Compute the order statistics 𝑑 1 ≤ 𝑑 2 ≤ ⋯ ≤ 𝑑 𝑛

• Permute the condition label data 𝐵 times, and compute the corresponding order statistics 
𝑑 1
𝑘 ≤ 𝑑 2

𝑘 ≤ ⋯ ≤ 𝑑 𝑛
𝑘 , for 𝑘 = 1,… , 𝐵

• Estimate the average order statistics

𝑑 𝑖
′ =

1

𝐵


𝑘=1

𝐵

𝑑 𝑖
𝑘

and plot 𝑑 𝑖 versus 𝑑 𝑖
′

• On the graph of 𝑑 𝑖 versus 𝑑 𝑖
′ , for a given discrepancy Δ, 

– the genes for which 𝑑 𝑖 − 𝑑 𝑖
′ > Δ are those that are differentially expressed

– the median number of genes for which 𝑑 𝑖
𝑘 − 𝑑 𝑖

′ > Δ provides the number of falsely identified 
genes
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Example

• Microarray dataset downloaded from the Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 
– Accession number GDS2958 

(http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2958)
– Work by Vivanco et al. 

• Vivanco I, Palaskas N, Tran C, Finn SP et al., “Identification of the JNK signaling pathway as a 
functional target of the tumor suppressor PTEN,” Cancer Cell, 2007 Jun;11(6):555-69

– Analysis of carcinoma cell lines depleted for the tumor suppressor PTEN
• A431 (epidermoid carcinoma)
• HCC827 (non-small cell lung carcinoma)
• SKBR-3 (mammary adenocarcinoma)

– The data files to be downloaded and extracted from the archives
• Dataset SOFT file and the annotation soft file

• The microarray data is to be analyzed using the data analysis tools provided 
by the GEO website and TIGR MeV software package (http://www.tm4.org)
– The package provides a wide array of resources for microarray data analysis
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Example

• Data:

– 54681 genes

– 12 experiments

– 3×2 conditions

• Task list:

– Load the data to the package

– Identify the conditions to be analyzed

– Carry out a SAM analysis and identify the genes expressed differently in 

different conditions


