EE550 Computational Biology

Week 3 Course Notes

Instructor: Bilge Karaçalı, PhD

Topics

- Evolution mechanisms through mutations
 - Population genetics
 - -Nucleic acid sequence evolution
 - Evolutionary distance vs. sequence distance
 - Jukes-Cantor model

Population Genetics

- Evolution:
 - Changes in the frequency as well as the sequence of genes in a population observed across time
 - Heritable changes in a population over many generations

— ...

- Two essential components:
 - Error-prone self replication produces genetic variants
 - Different variants incur varying levels of success at self replication through selection
 - Molecular evolution involves natural selection; selection carried out by nature
 - Unnatural selection; or artificial selection by humans forms the basis of agriculture
 - juicier and sweeter fruits
 - bigger and disease resistant crops
 - dogs and other animals bred selectively to fulfill different tasks

Case in Point: Dogs and Birds

- Dogs differ widely in their size and appearance, but belong to the same species
 many years of selective breeding is responsible for all dog varieties
- Birds of prey look very similar but belong to different species

Source: http://www.dogbreedslist.info/all-dog-breeds/

Source: https://www.thespruce.com/types-of-birds-of-prey-387307

EE550 Week 3

Nucleic Acid Sequences and Evolutionary History

- Organisms with common evolutionary ancestors share similar genetic sequences
 - At the time of genetic bifurcation, the two daughter species embark on different evolutionary paths
 - These different paths are characterized by the accumulation of different mutations
- The differences between their genetic sequences observed at the present time are related to the time of the bifurcation from the common ancestor
 - The earlier the separation, the higher the number of accumulated differences
 - The fraction of differences between sequences related to the evolutionary distances through mutation models
 - → Estimation of the evolutionary relationship among a given set of genetic sequences from different organisms

Spread of Mutations

- An organism's fitness: The ability to leave descendants in future generations
 - The greater the number of descendants, the higher the fitness
 - Has little to do with the health or the general well being of an organism
 - Has more to do with how beneficial its traits are in the organism's specific environment to leave descendants
- Mutations can have three types of effects on the fitness:
 - Advantageous: Increase the chance of leaving descendants
 - Neutral: No perceivable change in fitness
 - Deleterious: Decrease the chance of leaving descendants

Genetic Variation Between Species

- Evolution traces out ancestors and descendants
 - Common ancestors of different species from which they have diverged some time in the distant past
 - Some evolutionary tracts lead to survival
 - Other tracts disappear into extinction
 - Evolution is competition between alternative genetic configurations
 - Species that get outcompeted by others die out

Tree of Life

Source: http://biologicalphysics.iop.org/cws/article/lectures/47042

Genetic Divergence Mechanism

- Changing environmental conditions work on the genetic variations within an ancestral species to create and shape the descendants
 - The descendants start off in the same species with slightly different genetic makeup
 - Time enhances the differences that allow exploiting different environmental niches
 - Eventually different species become "discernable"

Mutation Models on Nucleic Acid Sequences

- Genetic variations are characterized by differences in the gene sequences
 - Identical genes imply nearly identical organisms (up to chance effects from the environment)
 - Differences between organisms and species imply differences in their genes
- Quantification of these differences require
 stochastic models of nucleic acid sequer

stochastic models of nucleic acid sequence evolution

- These models also link sequence differences to evolutionary distances in units of evolutionary time
 - in terms of the nearest common ancestor in the evolutionary past

Modeling Nucleic Acid Substitutions

- **Objective**: to derive the relationship between the observed substitutions on different sequences and their evolutionary correspondence
 - Evolutionary correspondence refers to the amount of time in which the sequences went down independent evolutionary paths

• Premises:

- Substitutions occur randomly
- Fixation is assumed to have been...
 - achieved when comparing sequences of different species
 - not achieved when comparing sequences across individuals
- Rates of substitution are constant for the sequences involved during the corresponding time period

• Approach:

 Establish a functional relationship between a sequence distance and the corresponding evolutionary distance

evolutionary distance (in time units) = $\mathcal{F}($ sequence distance)

Modeling Nucleic Acid Substitutions

- Sequence difference *D*:
 - Measured by the fraction of nucleotides that are different between two nucleic acid sequence fragments
 - Correlates linearly with the evolutionary time span for small time periods, but varies nonlinearly for large time periods
 - Can be measured quantitatively for any given two sequences simply by counting the number of sites where the sequences do not match
 - Hamming distance in coding theory
- Evolutionary distance *d*:
 - Measured by the average number of substitutions that have occurred per site between the two sequences during the time span of independent evolution
 - Correlates linearly with the time span of independent evolution for all time ranges, small AND large
 - Cannot be measured directly but can be inferred from D using a stochastic model

Modeling Nucleic Acid Substitutions

- Visible substitutions:
 - One sequence remains the same and the other incurs a substitution, or
 - Both sequences incur substitutions into different nucleotides
- Invisible substitutions:
 - Neither sequence incurs a substitution (i.e., the original nucleotide remains preserved/conserved in both sequences), or
 - Both sequences incur substitutions into the same nucleotide
- Annulled substitutions:
 - Successive substitutions in both sequences result in the same nucleotide

- The substitution phenomenon is modeled by a Markov chain
- In the Jukes-Cantor model, the rate of substitution from one base to any other is denoted by α, in number of substitutions per unit time
 - Thus, the net rate of change of a base is 3α

The corresponding state transition rate matrix is given by

$$Q = \begin{bmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{bmatrix}$$

⁻ $\alpha \ll 1$

• The resulting transition probability matrix is

$$P(t) = e^{Qt} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} \\ \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} \end{bmatrix}$$

or, more simply,

$$P_{i,j}(t) = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & \text{if } i = j\\ \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} & \text{otherwise} \end{cases}$$

- Note that $P_{i,j}(t)$ represents the probability with which the *i*'th nucleotide occupying a specific site on the original DNA sequence will be replaced by the *j*'th nucleotide in *t* units of time
- This allows calculating the average sequence difference between the original sequence and the evolving sequence as the expected value

$$D(t) = \sum_{i,j} \mathbf{1}(i \neq j) P_{i,j}(t) \pi_i$$

• Assuming an equal rate of nucleotides across the DNA, i.e. $\pi_i = 1/4$ for all i = 1,2,3,4, we get

$$D(t) = 12\left(\frac{1}{4} - \frac{1}{4}e^{-4\alpha t}\right)\frac{1}{4} = \frac{3}{4} - \frac{3}{4}e^{-4\alpha t}$$

• In addition, the incurred evolutionary distance by the evolving sequence to the original sequence is given by

$$d(t) = \sum_{i,j} \mathbf{1}(i \neq j) Q_{i,j} t \pi_i = 3\alpha t$$

- To relate the observed sequence distance *D* between two evolved sequences to the evolutionary distance *d* between them:
 - the first sequence incurs $3\alpha t$ from the original
 - the second sequence incurs another $3\alpha t$ from the original, independent of the substitutions of the first one
 - this implies a total evolutionary distance of

$$d(t) = 6\alpha t$$

between the independently evolving sequences

- furthermore, a combined evolution time of 2t produces a sequence distance of

$$D(t) = \frac{3}{4} - \frac{3}{4}e^{-8\alpha t}$$

- solving for the two in terms of αt , we get

$$D = \frac{3}{4} - \frac{3}{4}e^{-\frac{4}{3}d}$$
 or $d = -\frac{3}{4}\log\left(1 - \frac{4}{3}D\right)$

Example: Slow Evolution of a Single Sequence

Example: Fast Evolution of a Single Sequence

Example: Simultaneous Evolution of Two Sequences

Alternative Models

Jukes-Cantor					
	А	G	С	Т	
А	*	α	α	α	
G	α	*	α	α	
С	α	α	*	α	
Т	α	α	α	*	

НКҮ				
	А	G	С	Т
А	*	$\alpha \pi_G$	$\beta \pi_C$	$\beta \pi_T$
G	$\alpha \pi_A$	*	$\beta \pi_C$	$\beta \pi_T$
С	$\beta \pi_A$	$\beta \pi_G$	*	$\alpha \pi_T$
Т	$\beta \pi_A$	$\beta \pi_G$	$\alpha \pi_C$	*

Kimura 2-parameter					
	А	G	С	Т	
А	*	α	β	β	
G	α	*	β	β	
С	β	β	*	α	
Т	β	β	α	*	

General Reversible					
	А	G	С	Т	
А	*	$\alpha_{A \to G}$	$\alpha_{A \to C}$	$\alpha_{A \to T}$	
G	$\alpha_{G \to A}$	*	$\alpha_{G \to C}$	$\alpha_{G \to T}$	
С	$\alpha_{C \to A}$	$\alpha_{C \to G}$	*	$\alpha_{C \to T}$	
Т	$\alpha_{T \to A}$	$\alpha_{T \to G}$	$\alpha_{T \to C}$	*	

Variable Substitution Rates

- The Jukes-Cantor model as well as the more sophisticated ones assume that all sites along the DNA are equally prone to base substitutions
 - $P_{i,j}(t)$ is assumed to be the same regardless of the position of the nucleotide on the sequence
- This assumption simplifies the analysis, but does not exactly hold in reality
 - Some sites are structurally or functionally important, and evolve more slowly
 - Due to strong selective pressure
 - Some very important sites are practically invariant

Variable Substitution Rates

- Relaxing this assumption requires incorporating site-specific variation in observed differences
 - Jukes-Cantor model with a fixed fraction q of invariable sites:

$$d = -\frac{3}{4}(1-q)\log\left(1-\frac{4D}{3-3q}\right)$$

- Jukes-Cantor model where the variability of sites is governed by a gamma distribution:

$$d = \frac{3}{4}a\left(\left(1 - \frac{4}{3}D\right)^{-1/a} - 1\right)$$

where *a* is the shape parameter of the gamma distribution governing the probability of a site being subject to a substitution rate of *r*, described by the probability density function $f_R(r; a) = Zra^{-1}e^{-ar}$

Example: Evolutionary Siblinghood

• Data

- A random "original" nucleic acid sequence SQ of length N = 100 nucleotides undergoing point mutations according to a Jukes-Cantor model
- Molecular evolution carried out *in silica* for 1000 epochs
 - **SQ**^(k): The evolved sequence at the k'th epoch
 - $SQ^{(0)} = SQ$ (the original sequence)
 - $SQ_0 = SQ^{(1000)}$
- A total of 5 sibling sequences, SQ_1 , SQ_2 , SQ_3 , SQ_4 and SQ_5 identified as
 - $SQ_1^{(0)} = SQ^{(0)}, SQ_1 = SQ_1^{(1000)}$
 - $SQ_2^{(0)} = SQ^{(200)}, SQ_2 = SQ_2^{(800)}$
 - $SQ_3^{(0)} = SQ^{(400)}, SQ_3 = SQ_3^{(600)}$
 - $SQ_4^{(0)} = SQ^{(600)}, SQ_4 = SQ_4^{(400)}$
 - $SQ_5^{(0)} = SQ^{(800)}, SQ_5 = SQ_5^{(200)}$

evolved independently through the remaining epochs.

- Procedure:
 - Compute the sequence distances $D_{0,j}$ between SQ_0 and SQ_1 , SQ_2 , SQ_3 , SQ_4 and SQ_5
 - Calculate the evolutionary distances $d_{0,j}$ from $D_{0,j}$ using the Jukes-Cantor model

Example: Sequence Data

Example: Sequence Data

SQ₀ AGTACCCGGGGCCATCGAAG...

AGTACCTGCGGCCATCGAAG... SQ₅

Example: Evolutionary Distances

- Sequence distances:
 - $\begin{array}{ll} & D_{0,1} = 0.4900 \Rightarrow d_{0,1} = 0.7945 \\ & \mathsf{AGTACCCGGGGGCCATCGAAG...} \\ & 1 & 11 & 11 & 1... \\ & \mathsf{ATTTCCCGTCGAGATCGAAT...} \end{array}$
 - $D_{0,2} = 0.3400 \Rightarrow d_{0,2} = 0.4529$ AGTACCCGGGGCCATCGAAG... 1 11 1 11 ... ATTACCCGTTGCGAGGGAAG...
 - $D_{0,3} = 0.2300 \Rightarrow d_{0,3} = 0.2747$ AGTACCCGGGGCCATCGAAG... 1 1 1 1 ... AGTACACGTGGCAATCGAGG...
 - $D_{0,4} = 0.1700 \Rightarrow d_{0,4} = 0.1928$ AGTACCCGGGGGCCATCGAAG... 1 1 1 1 ... AGCAACCGTGCCCATCGAAG...
 - $D_{0,5} = 0.0900 \Rightarrow d_{0,5} = 0.0959$ AGTACCCGGGGCCATCGAAG... 1 1 ... AGTACCTGCGGCCATCGAAG...

Repeat Example: Sequence Data

Repeat Example: Evolutionary Distances

- Distances:
 - $D_{0,1} = 0.4400 \Rightarrow d_{0,1} = 0.6626$
 - $D_{0,2} = 0.3000 \Rightarrow d_{0,2} = 0.3831$
 - $D_{0,3} = 0.3000 \Rightarrow d_{0,3} = 0.3831$
 - $D_{0,4} = 0.1500 \Rightarrow d_{0,4} = 0.1674$
 - $D_{0,5} = 0.0800 \Rightarrow d_{0,5} = 0.0846$
- Remark:
 - Even though the experiment setup is exactly the same, the distances vary
 - Sequence evolution is a stochastic process
 - The variation even produces a rather strange and quite disagreeable result:

$$D_{0,2} = D_{0,3}$$
 providing $d_{0,2} = d_{0,3}$!!!

Example: Variability in Computed Evolutionary Distances

EE550 Week 3

Remarks

- Models of nucleic acid sequence evolution links the sequence differences to evolutionary distances
- The parameters of these models are fitted to the available data to capture reality as much as possible
 - More sophisticated models better fit the available data
 - With better fits, the risk of losing general validity increases
- The viability of these models depends on the validity of the premises on the given application data
 - Assumptions may not hold
- The estimated evolutionary distances, however, are subject to estimation errors
 - These errors may switch the order of evolutionary siblinghood
- The extent of errors are directly proportional to the expected evolutionary distances
 - For sequences that are similar, the expected error is small
 - For sequences that are significantly different, the errors are large